metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1563-m1564

trans-Di-μ-chlorido-bis­­{chlorido[tris­­(3,5-di­methyl­phen­yl)phosphane-κP]palla­dium(II)} di­chloro­methane monosolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 24 November 2012; accepted 26 November 2012; online 30 November 2012)

In the dimeric title compound, [Pd2Cl4{P(C8H9)3}2]·CH2Cl2, the metal complex molecule is situated about an inversion centre and is accompanied by a dichloro­methane solvent mol­ecule situated on a twofold rotation axis. The PdII atom has a slightly distorted square-planar coordination sphere. The effective cone angle for the tris­(3,5-dimethyl­phen­yl)phos­phane ligand was calculated to be 169°. In the crystal, the metal complex and solvent mol­ecules are linked via C—H⋯Cl inter­actions, generating chains along [10-2]. There are also C—H⋯π and weak ππ inter­actions present [centroid–centroid distance = 3.990 (2) Å, plane–plane distance = 3.6352 (15) Å and ring slippage = 1.644 Å], forming of a three-dimensional structure.

Related literature

For background on catalysis of palladium compounds, see: Bedford et al. (2004[Bedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283-2321.]). For the synthesis of the starting materials, see: Drew & Doyle (1990[Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For background on cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2Cl4(C24H27P)2]·CH2Cl2

  • Mr = 1132.38

  • Monoclinic, P 2/c

  • a = 14.747 (2) Å

  • b = 9.1038 (13) Å

  • c = 21.376 (3) Å

  • β = 117.576 (8)°

  • V = 2543.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 100 K

  • 0.19 × 0.16 × 0.13 mm

Data collection
  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.816, Tmax = 0.868

  • 30952 measured reflections

  • 6349 independent reflections

  • 4776 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.03

  • 6349 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −1.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C17–C19/C21/C22/C24 and C9–C11/C13/C14/C16, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25A⋯Cl2 0.99 2.82 3.733 (4) 154
C21—H21⋯Cl1i 0.95 2.85 3.693 (4) 148
C5—H5⋯Cg1ii 0.95 2.95 3.847 (5) 159
C15—H15ACg2iii 0.99 2.79 3.620 (5) 143
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Complexes involving palladium metal centres are among some of the most popular catalytic precursors in organic synthesis due to their catalytic abilities. They are used in carbon-carbon bond formation reactions, e.g. the Heck, Stille and Suzuki reactions (Bedford et al., 2004). [PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound is the product of the reaction of [PdCl2(COD)] with tris(3,5-dimethylphenyl)phosphane as ligand, which shows dimerization of the square-planar PdII monomer. The crystal structure reported on herein is, to the best of our knowledge, the first Pd complex containing this phosphane ligand.

In the title compound, Fig. 1, the dimeric PdII complex is situated about an inversion centre and crystallizes with a dichloromethane solvate molecule that is located on a 2-fold rotation axis. Each equivalent pair of terminal bonded ligands is in a mutually trans orientation, with only slight distortions in the P1—Pd1—Cl1 and Cl2—Pd1—Cl1 angles of 173.90 (3) and 173.20 (3)°, respectively. The distortion of the square-planar metal coordination is further exemplified by the displacement of the PdII metal centre by 0.1122 (4) Å from the plane formed by the coordinating atoms Cl2/P1/Cl1/Cl1i (symmetry code: (i) = -x+1, -y+1, -z+1; r.m.s. deviation of mean plane = 0.0085 Å).

To describe the steric demand of the phosphane ligand the Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained for the title compound (and adjusting the Pd—P bond distance to 2.28 Å) we calculated an effective cone angle (Otto, 2001) of 169°. A search of the Cambridge Structural Database (CSD, V5.33, last update Aug. 2012; Allen, 2002) gave only three hits for structures containing the tris(3,5-dimethylphenyl)phosphane moiety. Cone angle calculations for these structures gave values ranging from 160 to 180°, with the value obtained for the title compound (169°) fitting well in this range.

In the crystal, weak C—H···Cl interactions between the dichloromethane solvate and the dimeric metal complex generate chains along the [1 0 -2] direction (Fig. 2 and Table 1). Additionally, several C—H···π (Fig. 3 and Table 1) and π-π stacking interactions (centroid-to-centroid distance = 3.990 (2) Å, plane-to plane separation 3.6352 (15) Å, ring slippage = 1.644 Å) are observed (Fig. 4), leading to the formation of a three-dimensional structure.

Related literature top

For background on catalysis of palladium compounds, see: Bedford et al. (2004). For the synthesis of the starting materials, see: Drew & Doyle (1990). For a description of the Cambridge Structural Database, see: Allen (2002). For background on cone angles, see: Tolman (1977); Otto (2001).

Experimental top

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl2(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). Tris(3,5-dimethylphenyl)phosphane (12.1 mg, 0.035 mmol) was dissolved in CH2Cl2 (5 cm3). A solution of [Pd(COD)Cl2] (5.0 mg, 0.017 mmol) in CH2Cl2 (5 cm3) was added to the phosphane solution. The mixture was stirred for 2hr at room temperature, after which the solution was left to slowly evaporate. Dark red crystals of the title compound suitable for a single-crystal X-ray study were obtained. Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

The H atoms were placed in calculated positions and allowed to ride on their parent atoms: C—H = 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and = 1.2 for other H atoms. Methyl torsion angles were refined from electron density. The deepest residual electron-density hole (-1.12 eÅ3) is located at 0.71 Å from Cl3 and the highest peak (0.9 eÅ3) 0.86 Å from Pd1.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, showing the atom-numbering. Displacement ellipsoids are drawn at the 50% probability level. [symmetry code (i) = -x+1, -y+1, -z+1; H atoms have been omitted for clarity].
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing the C—H···Cl interactions (red dashed lines) between the metal complex and the dichloromethane solvate. H atoms not involved in H-bonding have been omitted for clarity.
[Figure 3] Fig. 3. A view of the crystal packing of the title compound, showing the C—H···π interactions (red dashed lines). H atoms not involved in H-bonding have been omitted for clarity.
[Figure 4] Fig. 4. A view of the crystal packing of the title compound, showing the π···π interactions (red dashed lines). H atoms have been omitted for clarity.
trans-Di-µ-chlorido-bis{chlorido[tris(3,5-dimethylphenyl)phosphane- κP]palladium(II)} dichloromethane monosolvate top
Crystal data top
[Pd2Cl4(C24H27P)2]·CH2Cl2F(000) = 1148
Mr = 1132.38Dx = 1.478 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 4452 reflections
a = 14.747 (2) Åθ = 2.2–27.5°
b = 9.1038 (13) ŵ = 1.12 mm1
c = 21.376 (3) ÅT = 100 K
β = 117.576 (8)°Cube, orange
V = 2543.8 (6) Å30.19 × 0.16 × 0.13 mm
Z = 2
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
6349 independent reflections
Radiation source: sealed tube4776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 8.4 pixels mm-1θmax = 28.4°, θmin = 1.6°
ϕ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1212
Tmin = 0.816, Tmax = 0.868l = 2828
30952 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.7351P]
where P = (Fo2 + 2Fc2)/3
6349 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 1.12 e Å3
Crystal data top
[Pd2Cl4(C24H27P)2]·CH2Cl2V = 2543.8 (6) Å3
Mr = 1132.38Z = 2
Monoclinic, P2/cMo Kα radiation
a = 14.747 (2) ŵ = 1.12 mm1
b = 9.1038 (13) ÅT = 100 K
c = 21.376 (3) Å0.19 × 0.16 × 0.13 mm
β = 117.576 (8)°
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
6349 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4776 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.868Rint = 0.071
30952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.90 e Å3
6349 reflectionsΔρmin = 1.12 e Å3
273 parameters
Special details top

Experimental. Spectroscopic data for the title compund: 31P NMR (CDCl3, 162.0 MHz): δ (p.p.m.) 33.54 (s, 1P). 1H NMR (CDCl3, 400 MHz): δ (p.p.m.) 2.34 (m, 36H), 7.11 (m, 4H), 7.34 (m, 4H), 7.36 (m, 2H) 7.66 (m, 6H), 7.32 (m, 4H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.627522 (18)0.56103 (3)0.537254 (13)0.01368 (8)
Cl10.49039 (6)0.53788 (9)0.42440 (4)0.01841 (17)
Cl20.74975 (6)0.60182 (10)0.65077 (4)0.02141 (19)
P10.72374 (6)0.67044 (10)0.49592 (4)0.01491 (18)
C10.8616 (2)0.6459 (4)0.53793 (17)0.0175 (7)
C20.9098 (3)0.5328 (4)0.58601 (18)0.0214 (7)
H20.87150.4720.60120.026*
C31.0148 (3)0.5092 (4)0.6118 (2)0.0258 (8)
C41.0691 (3)0.3890 (5)0.6654 (2)0.0391 (11)
H4A1.09030.3110.64340.059*
H4B1.02260.34820.6820.059*
H4C1.12950.430.70550.059*
C51.0682 (3)0.6006 (4)0.5881 (2)0.0268 (9)
H51.13930.58430.60510.032*
C61.0219 (3)0.7144 (4)0.54062 (19)0.0245 (8)
C71.0833 (3)0.8123 (5)0.5172 (2)0.0371 (10)
H7A1.12720.75170.50450.056*
H7B1.12580.87880.55580.056*
H7C1.03670.870.47610.056*
C80.9174 (2)0.7360 (4)0.51530 (18)0.0202 (7)
H80.88370.81250.48240.024*
C90.6976 (2)0.8629 (4)0.49952 (18)0.0174 (7)
C100.7633 (2)0.9478 (4)0.55679 (18)0.0187 (7)
H100.82750.9090.58990.022*
C110.7352 (3)1.0906 (4)0.56585 (19)0.0224 (8)
C120.8050 (3)1.1774 (4)0.6300 (2)0.0315 (9)
H12A0.81251.12660.67250.047*
H12B0.77581.27520.62770.047*
H12C0.87221.18710.63150.047*
C130.6423 (3)1.1449 (4)0.5154 (2)0.0234 (8)
H130.62361.24220.52070.028*
C140.5749 (3)1.0627 (4)0.45713 (19)0.0228 (8)
C150.4734 (3)1.1257 (4)0.4041 (2)0.0280 (8)
H15A0.42961.14090.42670.042*
H15B0.44011.05730.36450.042*
H15C0.48481.21980.38660.042*
C160.6032 (3)0.9208 (4)0.45022 (19)0.0199 (7)
H160.55820.8620.41160.024*
C170.6861 (2)0.6207 (4)0.40528 (17)0.0196 (7)
C180.6758 (3)0.7236 (4)0.35443 (18)0.0244 (8)
H180.68430.82510.36610.029*
C190.6527 (3)0.6785 (5)0.28588 (19)0.0305 (9)
C200.6411 (4)0.7934 (6)0.2318 (2)0.0491 (13)
H20A0.57640.84590.2170.074*
H20B0.64130.74570.19070.074*
H20C0.69810.8630.25250.074*
C210.6429 (3)0.5291 (5)0.2705 (2)0.0338 (10)
H210.62830.49820.22430.041*
C220.6539 (3)0.4227 (5)0.3208 (2)0.0286 (9)
C230.6476 (3)0.2622 (5)0.3036 (2)0.0421 (11)
H23A0.63040.20690.3360.063*
H23B0.71370.22850.30850.063*
H23C0.59460.24620.25490.063*
C240.6751 (2)0.4700 (4)0.38800 (19)0.0228 (8)
H240.68220.39970.42290.027*
Cl30.94842 (13)0.9023 (2)0.79374 (9)0.0900 (6)
C2510.7942 (9)0.750.075 (3)
H25A0.94570.73020.71530.09*0.5
H25B1.05430.73020.78470.09*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01213 (12)0.01374 (13)0.01494 (13)0.00036 (10)0.00608 (9)0.00087 (10)
Cl10.0153 (4)0.0246 (4)0.0149 (4)0.0037 (3)0.0066 (3)0.0005 (3)
Cl20.0167 (4)0.0287 (5)0.0168 (4)0.0024 (3)0.0061 (3)0.0026 (3)
P10.0136 (4)0.0145 (4)0.0174 (4)0.0015 (3)0.0077 (3)0.0005 (3)
C10.0139 (15)0.0186 (18)0.0211 (17)0.0003 (13)0.0089 (14)0.0036 (14)
C20.0171 (16)0.0199 (19)0.0270 (18)0.0014 (13)0.0101 (15)0.0013 (15)
C30.0186 (17)0.024 (2)0.032 (2)0.0030 (15)0.0097 (16)0.0002 (17)
C40.0206 (19)0.042 (3)0.049 (3)0.0067 (18)0.0111 (19)0.010 (2)
C50.0147 (16)0.029 (2)0.037 (2)0.0013 (14)0.0121 (16)0.0086 (17)
C60.0190 (17)0.025 (2)0.031 (2)0.0029 (14)0.0133 (16)0.0064 (16)
C70.025 (2)0.033 (2)0.062 (3)0.0014 (17)0.027 (2)0.001 (2)
C80.0187 (17)0.0180 (18)0.0257 (18)0.0014 (13)0.0119 (15)0.0018 (15)
C90.0187 (16)0.0142 (17)0.0248 (17)0.0012 (13)0.0147 (14)0.0018 (14)
C100.0170 (15)0.0184 (17)0.0245 (17)0.0022 (14)0.0129 (14)0.0022 (15)
C110.0299 (19)0.0149 (18)0.0302 (19)0.0010 (14)0.0206 (17)0.0012 (14)
C120.040 (2)0.017 (2)0.038 (2)0.0007 (17)0.0180 (19)0.0064 (17)
C130.0294 (19)0.0130 (17)0.035 (2)0.0037 (14)0.0212 (17)0.0038 (15)
C140.0248 (18)0.0220 (18)0.0297 (19)0.0069 (15)0.0194 (16)0.0087 (16)
C150.029 (2)0.022 (2)0.034 (2)0.0102 (16)0.0150 (17)0.0080 (17)
C160.0183 (16)0.0172 (18)0.0272 (18)0.0019 (13)0.0131 (15)0.0026 (15)
C170.0122 (15)0.028 (2)0.0191 (17)0.0012 (14)0.0078 (14)0.0027 (15)
C180.0187 (17)0.033 (2)0.0215 (18)0.0006 (15)0.0097 (15)0.0018 (16)
C190.0182 (18)0.054 (3)0.0200 (18)0.0020 (17)0.0095 (15)0.0014 (19)
C200.051 (3)0.071 (4)0.024 (2)0.002 (3)0.016 (2)0.010 (2)
C210.0173 (18)0.064 (3)0.0196 (18)0.0011 (18)0.0084 (15)0.012 (2)
C220.0131 (16)0.045 (3)0.0268 (19)0.0006 (16)0.0085 (15)0.0130 (18)
C230.035 (2)0.051 (3)0.037 (2)0.003 (2)0.014 (2)0.023 (2)
C240.0164 (16)0.028 (2)0.0242 (18)0.0018 (14)0.0098 (15)0.0050 (15)
Cl30.0711 (11)0.1022 (14)0.0712 (10)0.0143 (10)0.0113 (9)0.0306 (10)
C250.061 (5)0.052 (5)0.070 (5)00.006 (4)0
Geometric parameters (Å, º) top
Pd1—P12.2241 (9)C12—H12B0.98
Pd1—Cl22.2859 (9)C12—H12C0.98
Pd1—Cl12.3317 (9)C13—C141.399 (5)
Pd1—Cl1i2.4138 (8)C13—H130.95
Cl1—Pd1i2.4138 (8)C14—C161.387 (5)
P1—C91.803 (4)C14—C151.511 (5)
P1—C171.809 (3)C15—H15A0.98
P1—C11.816 (3)C15—H15B0.98
C1—C21.395 (5)C15—H15C0.98
C1—C81.397 (5)C16—H160.95
C2—C31.398 (5)C17—C181.389 (5)
C2—H20.95C17—C241.410 (5)
C3—C51.392 (5)C18—C191.404 (5)
C3—C41.519 (5)C18—H180.95
C4—H4A0.98C19—C211.391 (6)
C4—H4B0.98C19—C201.509 (6)
C4—H4C0.98C20—H20A0.98
C5—C61.388 (5)C20—H20B0.98
C5—H50.95C20—H20C0.98
C6—C81.391 (5)C21—C221.401 (6)
C6—C71.512 (5)C21—H210.95
C7—H7A0.98C22—C241.389 (5)
C7—H7B0.98C22—C231.500 (6)
C7—H7C0.98C23—H23A0.98
C8—H80.95C23—H23B0.98
C9—C101.392 (5)C23—H23C0.98
C9—C161.402 (5)C24—H240.95
C10—C111.405 (5)Cl3—C251.755 (5)
C10—H100.95C25—Cl3ii1.755 (5)
C11—C131.384 (5)C25—H25A0.99
C11—C121.502 (5)C25—H25B0.99
C12—H12A0.98
P1—Pd1—Cl290.82 (3)C11—C12—H12C109.5
P1—Pd1—Cl192.10 (3)H12A—C12—H12C109.5
Cl2—Pd1—Cl1173.20 (3)H12B—C12—H12C109.5
P1—Pd1—Cl1i173.90 (3)C11—C13—C14122.8 (3)
Cl2—Pd1—Cl1i92.18 (3)C11—C13—H13118.6
Cl1—Pd1—Cl1i84.35 (3)C14—C13—H13118.6
Pd1—Cl1—Pd1i95.65 (3)C16—C14—C13117.9 (3)
C9—P1—C17108.87 (16)C16—C14—C15121.1 (3)
C9—P1—C1108.11 (16)C13—C14—C15121.0 (3)
C17—P1—C1102.52 (15)C14—C15—H15A109.5
C9—P1—Pd1103.29 (11)C14—C15—H15B109.5
C17—P1—Pd1112.19 (12)H15A—C15—H15B109.5
C1—P1—Pd1121.50 (12)C14—C15—H15C109.5
C2—C1—C8120.5 (3)H15A—C15—H15C109.5
C2—C1—P1121.8 (3)H15B—C15—H15C109.5
C8—C1—P1117.4 (3)C14—C16—C9120.9 (3)
C1—C2—C3119.8 (3)C14—C16—H16119.5
C1—C2—H2120.1C9—C16—H16119.5
C3—C2—H2120.1C18—C17—C24119.6 (3)
C5—C3—C2118.3 (3)C18—C17—P1122.5 (3)
C5—C3—C4121.1 (3)C24—C17—P1117.7 (3)
C2—C3—C4120.6 (3)C17—C18—C19120.3 (4)
C3—C4—H4A109.5C17—C18—H18119.8
C3—C4—H4B109.5C19—C18—H18119.8
H4A—C4—H4B109.5C21—C19—C18118.8 (4)
C3—C4—H4C109.5C21—C19—C20122.3 (4)
H4A—C4—H4C109.5C18—C19—C20118.9 (4)
H4B—C4—H4C109.5C19—C20—H20A109.5
C6—C5—C3122.8 (3)C19—C20—H20B109.5
C6—C5—H5118.6H20A—C20—H20B109.5
C3—C5—H5118.6C19—C20—H20C109.5
C5—C6—C8118.1 (3)H20A—C20—H20C109.5
C5—C6—C7121.0 (3)H20B—C20—H20C109.5
C8—C6—C7120.9 (3)C19—C21—C22122.1 (4)
C6—C7—H7A109.5C19—C21—H21118.9
C6—C7—H7B109.5C22—C21—H21118.9
H7A—C7—H7B109.5C24—C22—C21118.1 (4)
C6—C7—H7C109.5C24—C22—C23121.0 (4)
H7A—C7—H7C109.5C21—C22—C23120.8 (4)
H7B—C7—H7C109.5C22—C23—H23A109.5
C6—C8—C1120.4 (3)C22—C23—H23B109.5
C6—C8—H8119.8H23A—C23—H23B109.5
C1—C8—H8119.8C22—C23—H23C109.5
C10—C9—C16119.8 (3)H23A—C23—H23C109.5
C10—C9—P1120.1 (3)H23B—C23—H23C109.5
C16—C9—P1119.4 (3)C22—C24—C17121.0 (4)
C9—C10—C11120.4 (3)C22—C24—H24119.5
C9—C10—H10119.8C17—C24—H24119.5
C11—C10—H10119.8Cl3—C25—Cl3ii111.8 (5)
C13—C11—C10118.2 (3)Cl3—C25—H25A109.3
C13—C11—C12122.4 (3)Cl3ii—C25—H25A109.3
C10—C11—C12119.5 (3)Cl3—C25—H25B109.3
C11—C12—H12A109.5Cl3ii—C25—H25B109.3
C11—C12—H12B109.5H25A—C25—H25B107.9
H12A—C12—H12B109.5
P1—Pd1—Cl1—Pd1i175.03 (3)Pd1—P1—C9—C1673.6 (3)
Cl1i—Pd1—Cl1—Pd1i0C16—C9—C10—C110.6 (5)
Cl2—Pd1—P1—C982.49 (12)P1—C9—C10—C11169.5 (3)
Cl1—Pd1—P1—C991.38 (12)C9—C10—C11—C131.7 (5)
Cl2—Pd1—P1—C17160.43 (13)C9—C10—C11—C12177.0 (3)
Cl1—Pd1—P1—C1725.71 (13)C10—C11—C13—C141.4 (5)
Cl2—Pd1—P1—C138.80 (13)C12—C11—C13—C14177.2 (3)
Cl1—Pd1—P1—C1147.34 (13)C11—C13—C14—C160.0 (5)
C9—P1—C1—C2134.7 (3)C11—C13—C14—C15179.0 (3)
C17—P1—C1—C2110.4 (3)C13—C14—C16—C91.2 (5)
Pd1—P1—C1—C215.8 (3)C15—C14—C16—C9179.8 (3)
C9—P1—C1—C851.4 (3)C10—C9—C16—C140.9 (5)
C17—P1—C1—C863.6 (3)P1—C9—C16—C14171.1 (3)
Pd1—P1—C1—C8170.3 (2)C9—P1—C17—C1821.2 (3)
C8—C1—C2—C30.0 (5)C1—P1—C17—C1893.2 (3)
P1—C1—C2—C3173.7 (3)Pd1—P1—C17—C18134.9 (3)
C1—C2—C3—C50.1 (5)C9—P1—C17—C24163.9 (3)
C1—C2—C3—C4178.6 (4)C1—P1—C17—C2481.8 (3)
C2—C3—C5—C60.6 (6)Pd1—P1—C17—C2450.2 (3)
C4—C3—C5—C6178.1 (4)C24—C17—C18—C191.1 (5)
C3—C5—C6—C80.8 (6)P1—C17—C18—C19176.0 (3)
C3—C5—C6—C7179.0 (4)C17—C18—C19—C211.6 (5)
C5—C6—C8—C10.6 (5)C17—C18—C19—C20179.5 (3)
C7—C6—C8—C1179.2 (3)C18—C19—C21—C221.0 (5)
C2—C1—C8—C60.2 (5)C20—C19—C21—C22179.9 (4)
P1—C1—C8—C6174.2 (3)C19—C21—C22—C240.1 (5)
C17—P1—C9—C10144.0 (3)C19—C21—C22—C23177.2 (3)
C1—P1—C9—C1033.4 (3)C21—C22—C24—C170.5 (5)
Pd1—P1—C9—C1096.6 (3)C23—C22—C24—C17176.7 (3)
C17—P1—C9—C1645.8 (3)C18—C17—C24—C220.1 (5)
C1—P1—C9—C16156.4 (3)P1—C17—C24—C22175.2 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C17-C19/C21/C22/C24 and C9-C11/C13/C14/C16, respectively.
D—H···AD—HH···AD···AD—H···A
C25—H25A···Cl20.992.823.733 (4)154
C21—H21···Cl1iii0.952.853.693 (4)148
C5—H5···Cg1iv0.952.953.847 (5)159
C15—H15A···Cg2v0.992.793.620 (5)143
Symmetry codes: (iii) x+1, y, z+1/2; (iv) x+2, y+1, z+1; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Pd2Cl4(C24H27P)2]·CH2Cl2
Mr1132.38
Crystal system, space groupMonoclinic, P2/c
Temperature (K)100
a, b, c (Å)14.747 (2), 9.1038 (13), 21.376 (3)
β (°) 117.576 (8)
V3)2543.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.19 × 0.16 × 0.13
Data collection
DiffractometerBruker APEX DUO 4K-CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.816, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
30952, 6349, 4776
Rint0.071
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.03
No. of reflections6349
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 1.12

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C17-C19/C21/C22/C24 and C9-C11/C13/C14/C16, respectively.
D—H···AD—HH···AD···AD—H···A
C25—H25A···Cl20.992.823.733 (4)154
C21—H21···Cl1i0.952.853.693 (4)148
C5—H5···Cg1ii0.952.953.847 (5)159
C15—H15A···Cg2iii0.992.793.620 (5)143
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged. Mrs Z. Phasha is thanked for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283–2321.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1563-m1564
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds