organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-1H-benzotriazole 3-oxide monohydrate

aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamilnadu, India, bDepartment of Physics, Sethupathy Government Arts College, Ramanathapuram 623 502, Tamilnadu, India, and cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 27 October 2012; accepted 30 October 2012; online 7 November 2012)

In the title hydrate, C13H11N3O·H2O, the benzotriazole ring system is planar (r.m.s. deviation = 0.007 Å) and is almost orthogonal to the phenyl ring to which it is linked by a methyl­ene group, forming a dihedral angle of 81.87 (15)°. In the crystal, mol­ecules are linked into chains along [001] by O—H⋯O hydrogen bonds. The chains are consolidated into a three-dimensional architecture by C—H⋯O, C—H⋯π and ππ [centroid–centroid distance between the five- and six-membered rings of the benzotriazole ring system = 3.595 (3) Å] inter­actions.

Related literature

For the biological activity of benzotriazole derivatives, see: Kopańska et al. (2005[Kopańska, K., Najda, A., Żebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2005). Bioorg. Med. Chem. 13, 3601-3616.]); Sarala et al. (2007[Sarala, G., Swamy, S. N., Prabhuswamy, B., Andalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2007). Anal. Sci. 23, 25-26.]). For their applications, see: Kopec et al. (2008[Kopec, E. A., Zwolska, Z. & Kazimierczuk, A. O. Z. (2008). Acta Pol. Pharm. Drug Res. 65, 435-439.]); Krawczyk & Gdaniec (2005[Krawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o2967-o2969.]); Smith et al. (2001[Smith, G., Bottle, S. E., Reid, D. A., Schweinsberg, D. P. & Bott, R. C. (2001). Acta Cryst. E57, o531-o532.]); Sha et al. (1996[Sha, G., Wang, W. & Ren, T. (1996). Mocha Xuebao, 16, 344-350.]). For a related structure, see: Selvarathy Grace et al. (2012[Selvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, o1132.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O·H2O

  • Mr = 243.26

  • Orthorhombic, P n a 21

  • a = 12.556 (5) Å

  • b = 20.881 (8) Å

  • c = 4.6651 (18) Å

  • V = 1223.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.40 × 0.05 × 0.04 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • 15911 measured reflections

  • 1677 independent reflections

  • 1118 reflections with I > 2σ(I)

  • Rint = 0.132

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.140

  • S = 0.98

  • 1677 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1Wi 0.82 1.93 2.744 (3) 169
O1W—H2W⋯O17 0.85 1.95 2.800 (3) 180
C10—H10A⋯O17ii 0.99 2.45 3.400 (5) 161
C10—H10BCg3iii 0.99 2.51 3.382 (4) 147
Symmetry codes: (i) [-x+1, -y, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) x, y, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzotriazole derivatives show biological activities such as anti-inflammatory, diuretic, anti-viral and anti-hypertensive (Kopańska et al., 2005; Sarala et al., 2007). They have been used as a corrosion inhibitor, anti-freeze agent, ultraviolet light stabilizer for plastics and as an anti-foggant in photography (Krawczyk & Gdaniec, 2005; Smith et al., 2001). N-aryloxy derivatives of benzotriazole have anti-mycobacterial activity (Kopec et al., 2008). Benzotriazole possessing three vicinal N atoms, is used as an anti-fouling and anti-wear reagent (Sha et al., 1996). Due to the above mentioned applications of benzotriazole, we have systematically synthesised and investigated the structures of novel benzotriazole derivatives. We have already reported the crystal structure of 1-(benzyl)-1H-benzotriazole (Selvarathy Grace et al., 2012). Here, we report the crystal structure of the title compound (I).

The benzotriazole ring in (I), Fig 1, is essentially planar with the maximum deviation from planarity being 0.010 (3) Å for atom N3. The mean plane of the benzotriazole ring (N1–N3,C4–C9) forms a dihedral angle of 81.87 (15) Å with the mean plane of the phenyl ring (C11–C16).

The molecules are linked into a one dimensional chain along [001] by O—H···O hydrogen bonds, Table 1 and Fig. 2. The crystal packing is stabilized by ππ stacking interactions with the centroid-centroid distance of 3.595 (3) Å [symmetry code: x, y, -1+z], together with C—H···O and C—H···π interactions, Table 1.

Related literature top

For the biological activity of benzotriazole derivatives, see: Kopańska et al. (2005); Sarala et al. (2007). For their applications, see: Kopec et al. (2008); Krawczyk & Gdaniec (2005); Smith et al. (2001); Sha et al. (1996). For a related structure, see: Selvarathy Grace et al. (2012).

Experimental top

A mixture of sodium salt of 1-hydroxyl benzotriazole (0.157 g, 1 mmol) and benzyl chloride (0.126 g, 1 mmol) in a mixture comprising ethanol, water and sodium ethoxide (10 ml) were heated at 333 K with continuous stirring for 6 h. The mixture was kept aside for slow evaporation. After a week, crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms were positioned geometrically [C—H = 0.95 (aromatic) or 0.99 Å (methylene); O—H= 0.82–0.85 Å] and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq(C,O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, highlighting the one-dimensional chains along [001]. Hydrogen bonds are shown as dashed lines.
1-Benzyl-1H-benzotriazole 3-oxide monohydrate top
Crystal data top
C13H11N3O·H2OF(000) = 512
Mr = 243.26Dx = 1.321 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1403 reflections
a = 12.556 (5) Åθ = 2.5–20.2°
b = 20.881 (8) ŵ = 0.09 mm1
c = 4.6651 (18) ÅT = 173 K
V = 1223.1 (8) Å3Needle, colourless
Z = 40.40 × 0.05 × 0.04 mm
Data collection top
Bruker SMART APEXII
diffractometer
1118 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.132
Graphite monochromatorθmax = 28.2°, θmin = 1.9°
CCD scanh = 1616
15911 measured reflectionsk = 2727
1677 independent reflectionsl = 66
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0825P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1677 reflectionsΔρmax = 0.19 e Å3
164 parametersΔρmin = 0.24 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (6)
Crystal data top
C13H11N3O·H2OV = 1223.1 (8) Å3
Mr = 243.26Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.556 (5) ŵ = 0.09 mm1
b = 20.881 (8) ÅT = 173 K
c = 4.6651 (18) Å0.40 × 0.05 × 0.04 mm
Data collection top
Bruker SMART APEXII
diffractometer
1118 reflections with I > 2σ(I)
15911 measured reflectionsRint = 0.132
1677 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.140H-atom parameters constrained
S = 0.98Δρmax = 0.19 e Å3
1677 reflectionsΔρmin = 0.24 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3160 (2)0.27237 (12)0.6604 (7)0.0335 (7)
N20.4106 (2)0.25008 (13)0.5616 (7)0.0372 (7)
N30.4253 (2)0.19473 (13)0.6976 (8)0.0389 (8)
C40.3429 (3)0.18041 (15)0.8807 (9)0.0343 (8)
C50.3241 (3)0.12821 (16)1.0631 (10)0.0455 (10)
H50.37200.09311.07690.055*
C60.2315 (3)0.13125 (18)1.2207 (10)0.0524 (11)
H60.21530.09741.34950.063*
C70.1594 (3)0.18339 (18)1.1969 (10)0.0464 (9)
H70.09620.18291.30890.056*
C80.1776 (3)0.23429 (16)1.0183 (8)0.0380 (9)
H80.12930.26921.00380.046*
C90.2720 (3)0.23174 (14)0.8583 (8)0.0301 (8)
C100.2800 (3)0.33671 (14)0.5809 (9)0.0344 (8)
H10A0.20190.33600.55140.041*
H10B0.31370.34920.39740.041*
C110.3069 (3)0.38601 (15)0.8068 (8)0.0310 (8)
C120.2259 (3)0.42481 (15)0.9188 (9)0.0364 (8)
H120.15450.41930.85580.044*
C130.2499 (3)0.47148 (15)1.1226 (9)0.0419 (9)
H130.19480.49791.19720.050*
C140.3532 (3)0.47944 (16)1.2161 (10)0.0423 (9)
H140.36930.51151.35390.051*
C150.4335 (3)0.44073 (16)1.1095 (9)0.0396 (9)
H150.50440.44581.17670.048*
C160.4107 (3)0.39448 (16)0.9047 (9)0.0377 (8)
H160.46630.36840.83080.045*
O170.51045 (19)0.16046 (12)0.6496 (9)0.0576 (10)
O1W0.4934 (2)0.03436 (11)0.4506 (7)0.0472 (7)
H1W0.49430.00980.58830.071*
H2W0.49860.07280.51030.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0399 (15)0.0262 (13)0.0344 (17)0.0007 (12)0.0016 (14)0.0040 (13)
N20.0383 (15)0.0306 (13)0.0426 (18)0.0002 (13)0.0004 (15)0.0061 (14)
N30.0389 (15)0.0276 (13)0.0503 (19)0.0033 (12)0.0076 (16)0.0087 (15)
C40.0400 (18)0.0240 (15)0.039 (2)0.0013 (14)0.0091 (18)0.0034 (16)
C50.063 (2)0.0263 (16)0.048 (2)0.0027 (17)0.021 (2)0.0027 (18)
C60.080 (3)0.034 (2)0.043 (2)0.017 (2)0.018 (3)0.0126 (19)
C70.056 (2)0.043 (2)0.039 (2)0.0120 (17)0.003 (2)0.008 (2)
C80.044 (2)0.0316 (18)0.038 (2)0.0022 (15)0.0036 (18)0.0001 (16)
C90.0396 (18)0.0241 (14)0.0268 (19)0.0015 (13)0.0043 (16)0.0025 (14)
C100.045 (2)0.0259 (15)0.0321 (19)0.0012 (14)0.0032 (17)0.0053 (15)
C110.0410 (18)0.0214 (14)0.0304 (18)0.0046 (14)0.0022 (16)0.0067 (14)
C120.0353 (17)0.0297 (15)0.044 (2)0.0020 (14)0.0066 (18)0.0010 (17)
C130.0461 (19)0.0287 (16)0.051 (3)0.0061 (15)0.005 (2)0.0025 (18)
C140.056 (2)0.0299 (16)0.041 (2)0.0108 (16)0.001 (2)0.0005 (18)
C150.0401 (19)0.0376 (17)0.041 (2)0.0109 (16)0.0017 (18)0.0010 (17)
C160.0376 (18)0.0372 (17)0.038 (2)0.0002 (15)0.0028 (17)0.0048 (17)
O170.0404 (14)0.0367 (13)0.096 (3)0.0084 (11)0.0063 (17)0.0224 (18)
O1W0.0745 (18)0.0287 (12)0.0382 (15)0.0030 (12)0.0035 (14)0.0018 (12)
Geometric parameters (Å, º) top
N1—N21.356 (4)C10—H10A0.9900
N1—C91.370 (4)C10—H10B0.9900
N1—C101.465 (4)C11—C161.393 (5)
N2—N31.331 (4)C11—C121.401 (5)
N3—O171.306 (4)C12—C131.394 (5)
N3—C41.374 (5)C12—H120.9500
C4—C91.398 (4)C13—C141.379 (5)
C4—C51.403 (5)C13—H130.9500
C5—C61.377 (6)C14—C151.385 (5)
C5—H50.9500C14—H140.9500
C6—C71.421 (6)C15—C161.389 (5)
C6—H60.9500C15—H150.9500
C7—C81.370 (5)C16—H160.9500
C7—H70.9500O1W—H1W0.8225
C8—C91.401 (5)O1W—H2W0.8519
C8—H80.9500
N2—N1—C9111.7 (3)N1—C10—C11112.3 (3)
N2—N1—C10119.9 (3)N1—C10—H10A109.1
C9—N1—C10127.8 (3)C11—C10—H10A109.1
N3—N2—N1104.9 (3)N1—C10—H10B109.1
O17—N3—N2120.5 (3)C11—C10—H10B109.1
O17—N3—C4127.1 (3)H10A—C10—H10B107.9
N2—N3—C4112.4 (3)C16—C11—C12118.9 (3)
N3—C4—C9105.4 (3)C16—C11—C10121.6 (3)
N3—C4—C5132.3 (3)C12—C11—C10119.5 (3)
C9—C4—C5122.3 (3)C13—C12—C11120.1 (3)
C6—C5—C4115.5 (3)C13—C12—H12119.9
C6—C5—H5122.3C11—C12—H12119.9
C4—C5—H5122.3C14—C13—C12120.2 (3)
C5—C6—C7122.1 (4)C14—C13—H13119.9
C5—C6—H6118.9C12—C13—H13119.9
C7—C6—H6118.9C13—C14—C15120.1 (4)
C8—C7—C6122.4 (4)C13—C14—H14120.0
C8—C7—H7118.8C15—C14—H14120.0
C6—C7—H7118.8C14—C15—C16120.2 (3)
C7—C8—C9115.9 (3)C14—C15—H15119.9
C7—C8—H8122.1C16—C15—H15119.9
C9—C8—H8122.1C15—C16—C11120.5 (3)
N1—C9—C4105.5 (3)C15—C16—H16119.8
N1—C9—C8132.6 (3)C11—C16—H16119.8
C4—C9—C8121.9 (3)H1W—O1W—H2W109.4
C9—N1—N2—N30.5 (4)C5—C4—C9—N1179.4 (3)
C10—N1—N2—N3172.9 (3)N3—C4—C9—C8179.3 (3)
N1—N2—N3—O17179.9 (3)C5—C4—C9—C80.3 (5)
N1—N2—N3—C40.2 (4)C7—C8—C9—N1179.4 (4)
O17—N3—C4—C9179.6 (3)C7—C8—C9—C40.1 (5)
N2—N3—C4—C90.8 (4)N2—N1—C10—C1196.1 (4)
O17—N3—C4—C50.0 (7)C9—N1—C10—C1174.9 (4)
N2—N3—C4—C5179.6 (4)N1—C10—C11—C1654.8 (4)
N3—C4—C5—C6178.9 (4)N1—C10—C11—C12126.0 (3)
C9—C4—C5—C60.6 (5)C16—C11—C12—C130.7 (5)
C4—C5—C6—C70.8 (6)C10—C11—C12—C13178.6 (3)
C5—C6—C7—C80.7 (6)C11—C12—C13—C140.4 (6)
C6—C7—C8—C90.3 (6)C12—C13—C14—C150.5 (6)
N2—N1—C9—C41.0 (4)C13—C14—C15—C161.0 (6)
C10—N1—C9—C4172.6 (3)C14—C15—C16—C110.7 (6)
N2—N1—C9—C8179.5 (4)C12—C11—C16—C150.1 (5)
C10—N1—C9—C87.8 (6)C10—C11—C16—C15179.1 (3)
N3—C4—C9—N11.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1Wi0.821.932.744 (3)169
O1W—H2W···O170.851.952.800 (3)180
C10—H10A···O17ii0.992.453.400 (5)161
C10—H10B···Cg3iii0.992.513.382 (4)147
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC13H11N3O·H2O
Mr243.26
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)12.556 (5), 20.881 (8), 4.6651 (18)
V3)1223.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.05 × 0.04
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15911, 1677, 1118
Rint0.132
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 0.98
No. of reflections1677
No. of parameters164
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1Wi0.821.932.744 (3)169
O1W—H2W···O170.851.952.800 (3)180
C10—H10A···O17ii0.992.453.400 (5)161
C10—H10B···Cg3iii0.992.513.382 (4)147
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x, y, z1.
 

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKopańska, K., Najda, A., Żebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2005). Bioorg. Med. Chem. 13, 3601–3616.  Google Scholar
First citationKopec, E. A., Zwolska, Z. & Kazimierczuk, A. O. Z. (2008). Acta Pol. Pharm. Drug Res. 65, 435–439.  Google Scholar
First citationKrawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o2967–o2969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarala, G., Swamy, S. N., Prabhuswamy, B., Andalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2007). Anal. Sci. 23, 25–26.  Web of Science PubMed Google Scholar
First citationSelvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, o1132.  CSD CrossRef IUCr Journals Google Scholar
First citationSha, G., Wang, W. & Ren, T. (1996). Mocha Xuebao, 16, 344–350.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Bottle, S. E., Reid, D. A., Schweinsberg, D. P. & Bott, R. C. (2001). Acta Cryst. E57, o531–o532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds