organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3315-o3316

5′′-(4-Chloro­benzyl­­idene)-1′-(4-chloro­phen­yl)-1′′-methyl-1′,2′,3′,5′,6′,7′,8′,8a'-octa­hydro­di­spiro­[ace­naphthyl­ene-1,3′-indolizine-2′,3′′-piperidine]-2,4′′(1H)-dione

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 2 November 2012; accepted 3 November 2012; online 10 November 2012)

In the title compound, C37H32Cl2N2O2, the pyridinone ring adopts a twisted half-chair conformation. The fused pyrrolidine and piperidine rings of the octa­hydro­indolizine unit exhibit envelope (with the C atom bound to the C atom bearing the chloro­benzene ring being the flap atom) and chair conformations, respectively. The dihedral angle between the chloro­benzene rings is 84.03 (1)°. In the crystal, C—H⋯π inter­actions lead to supra­molecular chains along [101] that assemble in the ac plane. Connections along the b axis are of the type Cl⋯Cl [3.4065 (8) Å].

Related literature

For general properties of indolizines, see: Gundersen et al. (2007[Gundersen, L.-L., Charnock, C., Negussie, A. H., Rise, F. & Teklu, S. (2007). Eur. J. Pharm. Sci. 30, 26-35.]). For related structures, see: Sussman & Wodak (1973[Sussman, J. L. & Wodak, S. J. (1973). Acta Cryst. B29, 2918-2926.]); Wodak (1975[Wodak, S. J. (1975). Acta Cryst. B31, 569-573.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C37H32Cl2N2O2

  • Mr = 607.55

  • Monoclinic, P 21 /n

  • a = 14.1346 (5) Å

  • b = 15.2184 (6) Å

  • c = 14.5603 (6) Å

  • β = 102.337 (1)°

  • V = 3059.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 32144 measured reflections

  • 7321 independent reflections

  • 4492 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.113

  • S = 1.01

  • 7321 reflections

  • 389 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C52–C57 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C75—H75⋯Cg1i 0.93 2.88 3.669 (2) 144
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indolizines are electron-rich heterocycles with very low oxidation potentials. Functionalised indolizines are common substructures found in biologically important natural products and synthetic pharmaceuticals. Due to the various biological functions associated with this skeleton, it has been frequently employed as a key scaffold in the drug industry (Gundersen et al., 2007).

In the title compound (Fig.1), the pyridinone ring adopts twisted half chair conformation with atoms N2 and C3 deviating by 0.6030 (1) Å and 0.4814 (1) Å respectively from the least squares planes defined by other atoms (C2/C4/C5/C6). Within the octahydroindolizine, the six membered piperidine ring adopts a chair conformation as evident from the puckering parameters Q = 0.567 (2) Å, θ = 180 (2)° and Φ = 50 (8)° (Cremer & Pople, 1975). The dihedral angle between the two chlorobenzene rings is 84.03 (1)°, and these rings (C71—C76) and (C52—C57) form angles of 80.91 (1) and 32.50 (1)°, respectively, with the plane defined by atoms (C2/C4/C5/C6) of pyridinone ring. Each of the carbonyl bond lengths, i.e C4=O1 and C14=O2, is 1.214 (2) Å, and each of these atoms participates in two intramolecular C—H···O contacts, with the closest of these listed in Table 1. The C8—N1 bond length (1.454 (2) Å) is comparable with the Csp2—Nsp2 distance found in the similar structures (Sussman & Wodak, 1973; Wodak, 1975).

A weak intermolecular C—H···π interaction, viz. C75—H75···Cg1 (Cg1 is the centroid of the ring C52—C57; symmetry code is given in Table 1) is observed. These lead to supramolecular chains along [101] that assemble in the ac plane. Connections between layers are of the type Cl···Cl (Cl1···Cl1i = 3.4065 (8) Å: symmetry code: 1 - x, 1 - y, 2 - z).

Related literature top

For general properties of indolizines, see: Gundersen et al. (2007). For related structures, see: Sussman & Wodak (1973); Wodak (1975). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 1-methyl-3,5-bis[(E)-4-cholromethylidene]tetrahydro-4(1H)- pyridinone (1 mmol), acenaphthenequinone (1 mmol) and piperidine-2- carboxylic acid (1 mmol) was dissolved in isopropyl alcohol (15 ml) and heated to reflux for 60 min. After completion of the reaction, as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure yellow solid. Melting point: 518 K, Yield: 93%

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å; Uiso = 1.2Ueq(C) for CH2 and CH groups, and Uiso = 1.5Ueq(C) for CH3 groups. The (-1 0 1) reflection was probably affected by the beam-stop and was omitted from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms have been omitted.
5''-(4-Chlorobenzylidene)-1'-(4-chlorophenyl)-1''-methyl- 1',2',3',5',6',7',8',8a'-octahydrodispiro[acenaphthylene-1,3'-indolizine- 2',3''-piperidine]-2,4''(1H)-dione top
Crystal data top
C37H32Cl2N2O2F(000) = 1272
Mr = 607.55Dx = 1.319 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 14.1346 (5) Åθ = 2–31°
b = 15.2184 (6) ŵ = 0.25 mm1
c = 14.5603 (6) ÅT = 293 K
β = 102.337 (1)°Block, yellow
V = 3059.7 (2) Å30.21 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
7321 independent reflections
Radiation source: fine-focus sealed tube4492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 0 pixels mm-1θmax = 27.9°, θmin = 2.0°
ω and ϕ scansh = 1816
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1620
Tmin = 0.967, Tmax = 0.974l = 1917
32144 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.7517P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
7321 reflectionsΔρmax = 0.23 e Å3
389 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (4)
Crystal data top
C37H32Cl2N2O2V = 3059.7 (2) Å3
Mr = 607.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.1346 (5) ŵ = 0.25 mm1
b = 15.2184 (6) ÅT = 293 K
c = 14.5603 (6) Å0.21 × 0.19 × 0.18 mm
β = 102.337 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
7321 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4492 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.041
32144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
7321 reflectionsΔρmin = 0.38 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04645 (4)0.07200 (4)0.43166 (3)0.07029 (19)
Cl20.71789 (5)0.05345 (6)0.16446 (6)0.1089 (3)
O10.13905 (9)0.07134 (8)0.05296 (10)0.0538 (4)
N10.00938 (10)0.28748 (10)0.08843 (9)0.0402 (4)
O20.13090 (10)0.42902 (8)0.00055 (9)0.0547 (4)
C160.18467 (12)0.32304 (11)0.19504 (12)0.0380 (4)
C70.03322 (12)0.19119 (11)0.03419 (11)0.0368 (4)
H70.00630.14160.00600.044*
C130.09576 (12)0.28443 (11)0.07824 (11)0.0356 (4)
N20.28362 (10)0.29147 (10)0.05353 (10)0.0421 (4)
C40.18149 (13)0.13902 (12)0.02618 (11)0.0383 (4)
C60.34414 (13)0.21861 (13)0.03624 (14)0.0487 (5)
H6A0.37480.19210.09580.058*
H6B0.39480.24070.00680.058*
C710.04004 (12)0.16261 (11)0.13512 (11)0.0371 (4)
C510.32365 (14)0.09841 (12)0.08389 (13)0.0473 (5)
H510.27930.06030.12000.057*
C210.22039 (13)0.31929 (13)0.27798 (13)0.0463 (5)
C30.12964 (12)0.21704 (11)0.00698 (11)0.0349 (4)
C170.12068 (12)0.26047 (11)0.17163 (11)0.0363 (4)
C140.14749 (13)0.37636 (12)0.05770 (12)0.0413 (4)
C740.04679 (13)0.10710 (13)0.31784 (12)0.0453 (5)
C80.03173 (12)0.26980 (12)0.00271 (12)0.0411 (4)
H80.01130.31950.04510.049*
C150.20574 (12)0.39111 (12)0.12968 (12)0.0407 (4)
C720.05102 (14)0.07488 (12)0.15926 (13)0.0458 (5)
H720.05570.03370.11320.055*
C20.20079 (12)0.26003 (12)0.08805 (12)0.0406 (4)
H2A0.16980.30870.11300.049*
H2B0.22160.21770.13810.049*
C50.28707 (13)0.14998 (11)0.02579 (12)0.0397 (4)
C520.42240 (14)0.09202 (12)0.10001 (14)0.0476 (5)
C190.12123 (15)0.19024 (14)0.31828 (13)0.0529 (5)
H190.09870.14540.36070.064*
C240.26740 (14)0.45710 (13)0.14340 (15)0.0506 (5)
H240.28220.50330.10100.061*
C760.03301 (15)0.22134 (13)0.20577 (12)0.0515 (5)
H760.02620.28090.19150.062*
C200.18534 (15)0.24935 (14)0.33970 (14)0.0552 (5)
H200.20640.24370.39570.066*
C230.30756 (14)0.45261 (15)0.22372 (17)0.0592 (6)
H230.35140.49580.23250.071*
C120.06134 (14)0.36225 (14)0.13800 (14)0.0563 (5)
H12A0.04430.36920.19870.068*
H12B0.04340.41560.10200.068*
C180.08774 (13)0.19465 (12)0.23358 (12)0.0439 (4)
H180.04400.15330.22040.053*
C730.05515 (14)0.04700 (13)0.25014 (13)0.0502 (5)
H730.06360.01230.26530.060*
C750.03572 (15)0.19436 (13)0.29690 (13)0.0531 (5)
H750.03010.23500.34310.064*
C550.60436 (16)0.06903 (14)0.13949 (18)0.0621 (6)
C540.52339 (17)0.05391 (14)0.20863 (17)0.0667 (6)
H540.52920.03670.26840.080*
C90.13872 (14)0.25407 (15)0.00761 (15)0.0601 (6)
H9A0.15330.24660.05410.072*
H9B0.15690.20050.04310.072*
C220.28499 (14)0.38774 (15)0.28913 (15)0.0565 (6)
H220.31230.38840.34180.068*
C10.33930 (15)0.35679 (14)0.11492 (15)0.0615 (6)
H1A0.39300.37560.08910.092*
H1B0.36290.33170.17600.092*
H1C0.29880.40630.12030.092*
C530.43343 (16)0.06461 (14)0.18817 (16)0.0615 (6)
H530.37850.05320.23460.074*
C570.50604 (15)0.10706 (13)0.03210 (14)0.0534 (5)
H570.50100.12520.02770.064*
C100.19697 (16)0.33041 (18)0.05758 (16)0.0737 (7)
H10A0.18420.38280.01900.088*
H10B0.26560.31730.06750.088*
C560.59666 (15)0.09545 (14)0.05184 (16)0.0586 (5)
H560.65210.10560.00560.070*
C110.16993 (15)0.34676 (18)0.15152 (15)0.0703 (7)
H11A0.20470.39770.18140.084*
H11B0.18850.29650.19230.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0784 (4)0.0908 (4)0.0412 (3)0.0074 (3)0.0117 (3)0.0230 (3)
Cl20.0596 (4)0.1353 (7)0.1435 (7)0.0031 (4)0.0477 (4)0.0432 (6)
O10.0486 (8)0.0433 (8)0.0701 (9)0.0097 (7)0.0140 (7)0.0120 (7)
N10.0354 (8)0.0510 (9)0.0346 (7)0.0028 (7)0.0082 (6)0.0081 (7)
O20.0640 (9)0.0452 (8)0.0559 (8)0.0004 (7)0.0152 (7)0.0112 (7)
C160.0324 (9)0.0422 (10)0.0396 (9)0.0029 (8)0.0079 (7)0.0080 (8)
C70.0370 (9)0.0413 (10)0.0322 (8)0.0053 (8)0.0074 (7)0.0008 (7)
C130.0367 (9)0.0390 (10)0.0316 (8)0.0041 (8)0.0081 (7)0.0004 (7)
N20.0378 (8)0.0436 (9)0.0435 (8)0.0079 (7)0.0058 (7)0.0082 (7)
C40.0404 (10)0.0388 (10)0.0343 (9)0.0014 (9)0.0048 (8)0.0023 (8)
C60.0378 (10)0.0545 (12)0.0521 (11)0.0036 (9)0.0061 (8)0.0059 (10)
C710.0362 (9)0.0411 (10)0.0346 (9)0.0059 (8)0.0086 (7)0.0028 (8)
C510.0434 (11)0.0448 (11)0.0533 (11)0.0020 (9)0.0091 (9)0.0037 (9)
C210.0392 (10)0.0571 (12)0.0450 (10)0.0081 (9)0.0148 (8)0.0119 (9)
C30.0358 (9)0.0383 (9)0.0300 (8)0.0033 (8)0.0060 (7)0.0007 (7)
C170.0356 (9)0.0415 (10)0.0316 (8)0.0004 (8)0.0068 (7)0.0029 (8)
C140.0420 (10)0.0400 (10)0.0402 (9)0.0005 (9)0.0052 (8)0.0009 (8)
C740.0402 (10)0.0591 (12)0.0360 (9)0.0073 (9)0.0066 (8)0.0123 (9)
C80.0396 (10)0.0507 (11)0.0339 (9)0.0000 (9)0.0101 (8)0.0047 (8)
C150.0363 (10)0.0388 (10)0.0458 (10)0.0006 (8)0.0060 (8)0.0079 (8)
C720.0511 (11)0.0423 (11)0.0446 (10)0.0017 (9)0.0116 (9)0.0008 (9)
C20.0392 (10)0.0473 (11)0.0341 (9)0.0033 (9)0.0051 (7)0.0004 (8)
C50.0371 (10)0.0389 (10)0.0419 (9)0.0004 (8)0.0055 (8)0.0015 (8)
C520.0468 (11)0.0393 (10)0.0583 (12)0.0012 (9)0.0149 (9)0.0043 (9)
C190.0588 (13)0.0590 (13)0.0412 (10)0.0016 (11)0.0111 (9)0.0087 (9)
C240.0432 (11)0.0438 (11)0.0622 (12)0.0055 (9)0.0053 (10)0.0086 (10)
C760.0779 (15)0.0398 (11)0.0392 (10)0.0039 (10)0.0176 (10)0.0036 (8)
C200.0577 (13)0.0709 (14)0.0423 (11)0.0082 (11)0.0229 (10)0.0013 (10)
C230.0380 (11)0.0579 (13)0.0840 (16)0.0038 (10)0.0184 (11)0.0239 (12)
C120.0519 (12)0.0691 (14)0.0478 (11)0.0115 (11)0.0100 (9)0.0183 (10)
C180.0462 (11)0.0493 (11)0.0358 (9)0.0052 (9)0.0080 (8)0.0011 (8)
C730.0538 (12)0.0428 (11)0.0526 (11)0.0027 (10)0.0079 (9)0.0149 (9)
C750.0709 (14)0.0540 (12)0.0365 (10)0.0066 (11)0.0159 (10)0.0019 (9)
C550.0493 (13)0.0520 (13)0.0901 (17)0.0005 (11)0.0260 (12)0.0113 (12)
C540.0667 (15)0.0624 (14)0.0772 (15)0.0058 (12)0.0289 (13)0.0253 (12)
C90.0394 (11)0.0851 (16)0.0581 (12)0.0032 (11)0.0157 (9)0.0171 (12)
C220.0424 (11)0.0698 (14)0.0638 (13)0.0049 (11)0.0259 (10)0.0193 (12)
C10.0508 (12)0.0633 (14)0.0671 (13)0.0151 (11)0.0050 (10)0.0207 (11)
C530.0512 (13)0.0642 (14)0.0698 (14)0.0068 (11)0.0146 (11)0.0224 (11)
C570.0506 (12)0.0555 (13)0.0539 (12)0.0084 (10)0.0104 (10)0.0011 (10)
C100.0420 (12)0.109 (2)0.0717 (15)0.0186 (13)0.0155 (11)0.0181 (14)
C560.0438 (12)0.0599 (13)0.0708 (14)0.0061 (10)0.0093 (10)0.0020 (11)
C110.0470 (13)0.0984 (18)0.0625 (13)0.0161 (13)0.0048 (10)0.0231 (13)
Geometric parameters (Å, º) top
Cl1—C741.7422 (17)C72—H720.9300
Cl2—C551.736 (2)C2—H2A0.9700
O1—C41.214 (2)C2—H2B0.9700
N1—C81.454 (2)C52—C571.389 (3)
N1—C121.459 (2)C52—C531.390 (3)
N1—C131.462 (2)C19—C201.360 (3)
O2—C141.214 (2)C19—C181.414 (2)
C16—C151.395 (2)C19—H190.9300
C16—C171.405 (2)C24—C231.407 (3)
C16—C211.406 (2)C24—H240.9300
C7—C711.516 (2)C76—C751.382 (2)
C7—C81.518 (2)C76—H760.9300
C7—C31.549 (2)C20—H200.9300
C7—H70.9800C23—C221.361 (3)
C13—C171.520 (2)C23—H230.9300
C13—C141.577 (2)C12—C111.524 (3)
C13—C31.602 (2)C12—H12A0.9700
N2—C21.450 (2)C12—H12B0.9700
N2—C11.451 (2)C18—H180.9300
N2—C61.455 (2)C73—H730.9300
C4—C51.500 (2)C75—H750.9300
C4—C31.527 (2)C55—C561.364 (3)
C6—C51.499 (2)C55—C541.373 (3)
C6—H6A0.9700C54—C531.376 (3)
C6—H6B0.9700C54—H540.9300
C71—C721.381 (2)C9—C101.517 (3)
C71—C761.382 (2)C9—H9A0.9700
C51—C51.336 (2)C9—H9B0.9700
C51—C521.467 (3)C22—H220.9300
C51—H510.9300C1—H1A0.9600
C21—C201.413 (3)C1—H1B0.9600
C21—C221.417 (3)C1—H1C0.9600
C3—C21.525 (2)C53—H530.9300
C17—C181.362 (2)C57—C561.383 (3)
C14—C151.482 (2)C57—H570.9300
C74—C751.364 (3)C10—C111.517 (3)
C74—C731.368 (3)C10—H10A0.9700
C8—C91.507 (3)C10—H10B0.9700
C8—H80.9800C56—H560.9300
C15—C241.372 (2)C11—H11A0.9700
C72—C731.379 (2)C11—H11B0.9700
C8—N1—C12114.29 (14)C57—C52—C53117.44 (18)
C8—N1—C13108.41 (13)C57—C52—C51124.71 (18)
C12—N1—C13117.92 (14)C53—C52—C51117.77 (18)
C15—C16—C17113.11 (15)C20—C19—C18122.18 (19)
C15—C16—C21123.54 (16)C20—C19—H19118.9
C17—C16—C21123.29 (17)C18—C19—H19118.9
C71—C7—C8115.34 (14)C15—C24—C23117.86 (19)
C71—C7—C3116.33 (13)C15—C24—H24121.1
C8—C7—C3103.35 (13)C23—C24—H24121.1
C71—C7—H7107.1C75—C76—C71122.07 (18)
C8—C7—H7107.1C75—C76—H76119.0
C3—C7—H7107.1C71—C76—H76119.0
N1—C13—C17109.97 (13)C19—C20—C21120.86 (17)
N1—C13—C14114.26 (14)C19—C20—H20119.6
C17—C13—C14101.29 (13)C21—C20—H20119.6
N1—C13—C3103.18 (12)C22—C23—C24122.75 (18)
C17—C13—C3116.83 (13)C22—C23—H23118.6
C14—C13—C3111.79 (13)C24—C23—H23118.6
C2—N2—C1112.59 (14)N1—C12—C11109.27 (17)
C2—N2—C6110.89 (14)N1—C12—H12A109.8
C1—N2—C6111.54 (15)C11—C12—H12A109.8
O1—C4—C5121.23 (16)N1—C12—H12B109.8
O1—C4—C3121.60 (16)C11—C12—H12B109.8
C5—C4—C3117.17 (15)H12A—C12—H12B108.3
N2—C6—C5112.01 (15)C17—C18—C19118.81 (17)
N2—C6—H6A109.2C17—C18—H18120.6
C5—C6—H6A109.2C19—C18—H18120.6
N2—C6—H6B109.2C74—C73—C72119.55 (17)
C5—C6—H6B109.2C74—C73—H73120.2
H6A—C6—H6B107.9C72—C73—H73120.2
C72—C71—C76117.25 (16)C74—C75—C76118.84 (18)
C72—C71—C7120.31 (16)C74—C75—H75120.6
C76—C71—C7122.42 (16)C76—C75—H75120.6
C5—C51—C52130.55 (18)C56—C55—C54121.0 (2)
C5—C51—H51114.7C56—C55—Cl2119.89 (18)
C52—C51—H51114.7C54—C55—Cl2119.13 (18)
C16—C21—C20115.82 (17)C55—C54—C53119.1 (2)
C16—C21—C22115.27 (18)C55—C54—H54120.5
C20—C21—C22128.90 (18)C53—C54—H54120.5
C2—C3—C4107.26 (14)C8—C9—C10110.89 (17)
C2—C3—C7112.44 (13)C8—C9—H9A109.5
C4—C3—C7113.04 (14)C10—C9—H9A109.5
C2—C3—C13111.31 (13)C8—C9—H9B109.5
C4—C3—C13109.70 (13)C10—C9—H9B109.5
C7—C3—C13103.12 (13)H9A—C9—H9B108.0
C18—C17—C16119.00 (16)C23—C22—C21120.88 (19)
C18—C17—C13131.08 (15)C23—C22—H22119.6
C16—C17—C13109.81 (14)C21—C22—H22119.6
O2—C14—C15127.07 (17)N2—C1—H1A109.5
O2—C14—C13124.48 (16)N2—C1—H1B109.5
C15—C14—C13107.78 (14)H1A—C1—H1B109.5
C75—C74—C73120.88 (16)N2—C1—H1C109.5
C75—C74—Cl1119.19 (15)H1A—C1—H1C109.5
C73—C74—Cl1119.90 (15)H1B—C1—H1C109.5
N1—C8—C9110.34 (15)C54—C53—C52121.8 (2)
N1—C8—C7100.73 (13)C54—C53—H53119.1
C9—C8—C7115.74 (16)C52—C53—H53119.1
N1—C8—H8109.9C56—C57—C52121.09 (19)
C9—C8—H8109.9C56—C57—H57119.5
C7—C8—H8109.9C52—C57—H57119.5
C24—C15—C16119.59 (17)C9—C10—C11110.04 (18)
C24—C15—C14132.85 (18)C9—C10—H10A109.7
C16—C15—C14107.46 (15)C11—C10—H10A109.7
C73—C72—C71121.41 (17)C9—C10—H10B109.7
C73—C72—H72119.3C11—C10—H10B109.7
C71—C72—H72119.3H10A—C10—H10B108.2
N2—C2—C3108.72 (13)C55—C56—C57119.6 (2)
N2—C2—H2A109.9C55—C56—H56120.2
C3—C2—H2A109.9C57—C56—H56120.2
N2—C2—H2B109.9C10—C11—C12110.47 (18)
C3—C2—H2B109.9C10—C11—H11A109.6
H2A—C2—H2B108.3C12—C11—H11A109.6
C51—C5—C6124.03 (17)C10—C11—H11B109.6
C51—C5—C4116.83 (16)C12—C11—H11B109.6
C6—C5—C4119.11 (15)H11A—C11—H11B108.1
C8—N1—C13—C17154.02 (14)C21—C16—C15—C242.6 (3)
C12—N1—C13—C1774.14 (19)C17—C16—C15—C143.0 (2)
C8—N1—C13—C1492.89 (16)C21—C16—C15—C14174.40 (16)
C12—N1—C13—C1439.0 (2)O2—C14—C15—C2412.2 (3)
C8—N1—C13—C328.69 (17)C13—C14—C15—C24176.95 (19)
C12—N1—C13—C3160.53 (15)O2—C14—C15—C16164.31 (18)
C2—N2—C6—C552.69 (19)C13—C14—C15—C166.59 (18)
C1—N2—C6—C5179.04 (16)C76—C71—C72—C730.2 (3)
C8—C7—C71—C72146.51 (17)C7—C71—C72—C73178.48 (16)
C3—C7—C71—C7292.2 (2)C1—N2—C2—C3161.35 (16)
C8—C7—C71—C7631.7 (2)C6—N2—C2—C372.88 (18)
C3—C7—C71—C7689.6 (2)C4—C3—C2—N261.91 (17)
C15—C16—C21—C20175.04 (17)C7—C3—C2—N2173.22 (14)
C17—C16—C21—C202.1 (3)C13—C3—C2—N258.09 (18)
C15—C16—C21—C223.5 (3)C52—C51—C5—C62.4 (3)
C17—C16—C21—C22179.40 (16)C52—C51—C5—C4179.48 (18)
O1—C4—C3—C2143.79 (16)N2—C6—C5—C51150.50 (18)
C5—C4—C3—C237.17 (19)N2—C6—C5—C427.6 (2)
O1—C4—C3—C719.3 (2)O1—C4—C5—C5122.6 (2)
C5—C4—C3—C7161.68 (14)C3—C4—C5—C51156.42 (16)
O1—C4—C3—C1395.18 (18)O1—C4—C5—C6159.19 (17)
C5—C4—C3—C1383.86 (17)C3—C4—C5—C621.8 (2)
C71—C7—C3—C233.4 (2)C5—C51—C52—C5731.6 (3)
C8—C7—C3—C294.06 (16)C5—C51—C52—C53151.9 (2)
C71—C7—C3—C488.23 (18)C16—C15—C24—C230.4 (3)
C8—C7—C3—C4144.31 (14)C14—C15—C24—C23176.51 (19)
C71—C7—C3—C13153.41 (14)C72—C71—C76—C750.7 (3)
C8—C7—C3—C1325.94 (16)C7—C71—C76—C75177.56 (18)
N1—C13—C3—C2121.20 (14)C18—C19—C20—C211.0 (3)
C17—C13—C3—C2118.03 (16)C16—C21—C20—C190.1 (3)
C14—C13—C3—C22.04 (19)C22—C21—C20—C19178.4 (2)
N1—C13—C3—C4120.25 (14)C15—C24—C23—C222.4 (3)
C17—C13—C3—C40.5 (2)C8—N1—C12—C1158.0 (2)
C14—C13—C3—C4116.51 (15)C13—N1—C12—C11172.85 (16)
N1—C13—C3—C70.43 (16)C16—C17—C18—C191.7 (3)
C17—C13—C3—C7121.19 (15)C13—C17—C18—C19177.35 (17)
C14—C13—C3—C7122.81 (14)C20—C19—C18—C170.2 (3)
C15—C16—C17—C18174.47 (16)C75—C74—C73—C720.9 (3)
C21—C16—C17—C182.9 (3)Cl1—C74—C73—C72177.12 (15)
C15—C16—C17—C132.0 (2)C71—C72—C73—C741.0 (3)
C21—C16—C17—C13179.45 (15)C73—C74—C75—C760.0 (3)
N1—C13—C17—C1849.0 (2)Cl1—C74—C75—C76177.98 (15)
C14—C13—C17—C18170.25 (18)C71—C76—C75—C740.8 (3)
C3—C13—C17—C1868.1 (2)C56—C55—C54—C530.9 (4)
N1—C13—C17—C16126.93 (15)Cl2—C55—C54—C53178.73 (18)
C14—C13—C17—C165.71 (17)N1—C8—C9—C1055.0 (2)
C3—C13—C17—C16115.96 (16)C7—C8—C9—C10168.55 (17)
N1—C13—C14—O245.7 (2)C24—C23—C22—C211.5 (3)
C17—C13—C14—O2163.85 (17)C16—C21—C22—C231.4 (3)
C3—C13—C14—O271.0 (2)C20—C21—C22—C23176.9 (2)
N1—C13—C14—C15125.51 (15)C55—C54—C53—C521.3 (3)
C17—C13—C14—C157.35 (17)C57—C52—C53—C541.0 (3)
C3—C13—C14—C15117.78 (15)C51—C52—C53—C54177.8 (2)
C12—N1—C8—C957.7 (2)C53—C52—C57—C560.2 (3)
C13—N1—C8—C9168.56 (15)C51—C52—C57—C56176.79 (18)
C12—N1—C8—C7179.52 (15)C8—C9—C10—C1155.3 (3)
C13—N1—C8—C745.76 (17)C54—C55—C56—C570.1 (3)
C71—C7—C8—N1171.17 (14)Cl2—C55—C56—C57179.47 (16)
C3—C7—C8—N143.08 (16)C52—C57—C56—C550.2 (3)
C71—C7—C8—C969.9 (2)C9—C10—C11—C1256.0 (3)
C3—C7—C8—C9162.04 (15)N1—C12—C11—C1056.2 (3)
C17—C16—C15—C24179.99 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C52–C57 benzene ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.982.382.826 (2)107
C2—H2A···O20.972.452.951 (2)112
C75—H75···Cg1i0.932.883.669 (2)144
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC37H32Cl2N2O2
Mr607.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.1346 (5), 15.2184 (6), 14.5603 (6)
β (°) 102.337 (1)
V3)3059.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.21 × 0.19 × 0.18
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
32144, 7321, 4492
Rint0.041
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.113, 1.01
No. of reflections7321
No. of parameters389
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C52–C57 benzene ring.
D—H···AD—HH···AD···AD—H···A
C75—H75···Cg1i0.932.883.669 (2)144
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

JS and RAN thank the management of Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (grant No. SR/FT/CS-073/2009).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGundersen, L.-L., Charnock, C., Negussie, A. H., Rise, F. & Teklu, S. (2007). Eur. J. Pharm. Sci. 30, 26–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSussman, J. L. & Wodak, S. J. (1973). Acta Cryst. B29, 2918–2926.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWodak, S. J. (1975). Acta Cryst. B31, 569–573.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3315-o3316
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds