organic compounds
Diethyl 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylate
aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, cDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fAnalytical Sciences, Manchester Metropolitan University, Manchester M1 5GD, England
*Correspondence e-mail: akkurt@erciyes.edu.tr, a.r.Kennedy@strath.ac.uk, G.Miller@mmu.ac.uk
In the title compound, C14H16O4S2, the thieno[2,3-b]thiophene ring systems are planar [maximum deviation = 0.008 (2) Å]. The molecular conformation is stabilized by intramolecular C—H⋯O hydrogen bonds, while the crystal packing is stabilized by C—H⋯O, C—H⋯π and π–π stacking [centroid–centroid distance = 3.6605 (14) Å] interactions, which lead to supramolecular layers in the ab plane.
Related literature
For the use of thienthiophenes as versatile precursors for the synthesis of various heterocycles, see: Mabkhot et al. (2010, 2012); Litvinov (2005). For their industrial applications, see: Lee & Sotzing (2001); Heeney et al. (2005); Gather et al. (2008); He et al. (2009). For pharmaceutical values of thieno[2,3-b]thiophenes, see: Jarak et al. (2006); Egbertson et al. (1999). For bond lengths and bond angles in similar compounds, see: Umadevi et al. (2009); Gunasekaran et al. (2009); Wang et al. (2008). For the synthesis of the title compound, see: Comel & Kirsch (2001a,b). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.
Supporting information
10.1107/S160053681204593X/tk5168sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681204593X/tk5168Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681204593X/tk5168Isup3.cml
The title compound was prepared according to the reported method in literature (Comel & Kirsch, 2001a,b). Single crystals suitable for X-ray analysis were grown in an ethanol solution of (I) at room temperature over 24 h. M.pt: 413 K.
All H atoms were positioned geometrically and refined using a riding model with C—H = 0.98 and 0.99 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C14H16O4S2 | Z = 2 |
Mr = 312.39 | F(000) = 328 |
Triclinic, P1 | Dx = 1.441 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3497 (3) Å | Cell parameters from 2806 reflections |
b = 8.4720 (4) Å | θ = 3.2–29.4° |
c = 12.8629 (5) Å | µ = 0.38 mm−1 |
α = 102.770 (3)° | T = 123 K |
β = 99.545 (3)° | Rod, colourless |
γ = 107.779 (4)° | 0.30 × 0.08 × 0.06 mm |
V = 719.96 (6) Å3 |
Oxford Diffraction Xcalibur Eos diffractometer | 3486 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2661 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 16.0727 pixels mm-1 | θmax = 29.5°, θmin = 3.2° |
ω scans | h = −9→10 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −11→11 |
Tmin = 0.966, Tmax = 1.000 | l = −17→17 |
6901 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0365P)2 + 0.4173P] where P = (Fo2 + 2Fc2)/3 |
3486 reflections | (Δ/σ)max = 0.002 |
185 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C14H16O4S2 | γ = 107.779 (4)° |
Mr = 312.39 | V = 719.96 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.3497 (3) Å | Mo Kα radiation |
b = 8.4720 (4) Å | µ = 0.38 mm−1 |
c = 12.8629 (5) Å | T = 123 K |
α = 102.770 (3)° | 0.30 × 0.08 × 0.06 mm |
β = 99.545 (3)° |
Oxford Diffraction Xcalibur Eos diffractometer | 3486 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2661 reflections with I > 2σ(I) |
Tmin = 0.966, Tmax = 1.000 | Rint = 0.025 |
6901 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.53 e Å−3 |
3486 reflections | Δρmin = −0.34 e Å−3 |
185 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.19179 (8) | 0.66605 (7) | 0.37995 (4) | 0.0197 (2) | |
S2 | 0.42025 (8) | 0.92886 (7) | 0.61200 (4) | 0.0196 (2) | |
O1 | 0.6436 (2) | 0.8879 (2) | 0.90039 (13) | 0.0290 (5) | |
O2 | 0.6126 (2) | 1.1054 (2) | 0.83495 (12) | 0.0258 (5) | |
O3 | 0.0104 (2) | 0.1626 (2) | 0.26378 (12) | 0.0222 (5) | |
O4 | −0.0238 (2) | 0.3735 (2) | 0.19133 (13) | 0.0273 (5) | |
C1 | 0.3073 (3) | 0.7294 (3) | 0.51711 (17) | 0.0180 (6) | |
C2 | 0.4771 (3) | 0.8283 (3) | 0.71229 (17) | 0.0198 (7) | |
C3 | 0.4109 (3) | 0.6525 (3) | 0.67430 (17) | 0.0179 (6) | |
C4 | 0.3115 (3) | 0.5931 (3) | 0.55924 (17) | 0.0167 (6) | |
C5 | 0.2161 (3) | 0.4277 (3) | 0.47680 (17) | 0.0173 (6) | |
C6 | 0.1453 (3) | 0.4496 (3) | 0.37738 (18) | 0.0187 (6) | |
C7 | 0.4314 (3) | 0.5352 (3) | 0.74333 (19) | 0.0241 (7) | |
C8 | 0.2012 (3) | 0.2576 (3) | 0.49704 (18) | 0.0215 (7) | |
C9 | 0.5860 (3) | 0.9392 (3) | 0.82492 (18) | 0.0208 (7) | |
C10 | 0.7119 (4) | 1.2220 (3) | 0.94621 (19) | 0.0270 (8) | |
C11 | 0.7189 (4) | 1.3989 (3) | 0.9461 (2) | 0.0333 (8) | |
C12 | 0.0360 (3) | 0.3267 (3) | 0.26830 (18) | 0.0200 (7) | |
C13 | −0.0980 (3) | 0.0358 (3) | 0.15737 (18) | 0.0238 (7) | |
C14 | −0.1327 (4) | −0.1397 (3) | 0.1742 (2) | 0.0339 (8) | |
H7A | 0.51440 | 0.60450 | 0.81710 | 0.0360* | |
H7B | 0.49260 | 0.45630 | 0.70920 | 0.0360* | |
H7C | 0.30070 | 0.46780 | 0.74890 | 0.0360* | |
H8A | 0.09500 | 0.16430 | 0.43900 | 0.0320* | |
H8B | 0.17240 | 0.25770 | 0.56880 | 0.0320* | |
H8C | 0.32650 | 0.23930 | 0.49660 | 0.0320* | |
H10A | 0.84740 | 1.22180 | 0.96810 | 0.0320* | |
H10B | 0.63870 | 1.18320 | 0.99940 | 0.0320* | |
H11A | 0.79250 | 1.43660 | 0.89370 | 0.0500* | |
H11B | 0.78470 | 1.47890 | 1.02010 | 0.0500* | |
H11C | 0.58420 | 1.39800 | 0.92450 | 0.0500* | |
H13A | −0.02020 | 0.05130 | 0.10210 | 0.0290* | |
H13B | −0.22530 | 0.04930 | 0.13110 | 0.0290* | |
H14A | −0.00580 | −0.14950 | 0.20290 | 0.0510* | |
H14B | −0.20110 | −0.22920 | 0.10380 | 0.0510* | |
H14C | −0.21400 | −0.15490 | 0.22700 | 0.0510* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0227 (3) | 0.0181 (3) | 0.0164 (3) | 0.0062 (2) | 0.0022 (2) | 0.0049 (2) |
S2 | 0.0231 (3) | 0.0171 (3) | 0.0170 (3) | 0.0065 (2) | 0.0030 (2) | 0.0041 (2) |
O1 | 0.0353 (9) | 0.0283 (10) | 0.0183 (8) | 0.0094 (8) | −0.0007 (7) | 0.0051 (7) |
O2 | 0.0300 (9) | 0.0246 (10) | 0.0164 (8) | 0.0088 (7) | −0.0017 (7) | 0.0003 (7) |
O3 | 0.0253 (8) | 0.0173 (9) | 0.0181 (8) | 0.0045 (7) | 0.0002 (6) | 0.0020 (6) |
O4 | 0.0327 (9) | 0.0233 (10) | 0.0199 (8) | 0.0064 (7) | −0.0002 (7) | 0.0045 (7) |
C1 | 0.0162 (10) | 0.0191 (12) | 0.0167 (10) | 0.0050 (9) | 0.0030 (8) | 0.0037 (9) |
C2 | 0.0196 (11) | 0.0256 (13) | 0.0152 (10) | 0.0092 (9) | 0.0043 (8) | 0.0063 (9) |
C3 | 0.0156 (10) | 0.0218 (12) | 0.0186 (11) | 0.0074 (9) | 0.0055 (8) | 0.0083 (9) |
C4 | 0.0130 (10) | 0.0188 (12) | 0.0187 (10) | 0.0050 (8) | 0.0053 (8) | 0.0063 (9) |
C5 | 0.0157 (10) | 0.0173 (12) | 0.0201 (11) | 0.0065 (9) | 0.0059 (8) | 0.0061 (9) |
C6 | 0.0171 (10) | 0.0175 (12) | 0.0199 (11) | 0.0054 (9) | 0.0048 (8) | 0.0033 (9) |
C7 | 0.0279 (12) | 0.0230 (13) | 0.0210 (11) | 0.0095 (10) | 0.0029 (9) | 0.0074 (10) |
C8 | 0.0225 (11) | 0.0188 (12) | 0.0218 (11) | 0.0063 (9) | 0.0035 (9) | 0.0063 (9) |
C9 | 0.0164 (11) | 0.0251 (13) | 0.0203 (11) | 0.0071 (9) | 0.0053 (9) | 0.0052 (9) |
C10 | 0.0321 (13) | 0.0239 (14) | 0.0191 (12) | 0.0081 (10) | 0.0013 (10) | 0.0010 (10) |
C11 | 0.0400 (15) | 0.0257 (15) | 0.0266 (13) | 0.0098 (12) | −0.0010 (11) | 0.0023 (11) |
C12 | 0.0172 (11) | 0.0207 (12) | 0.0200 (11) | 0.0046 (9) | 0.0058 (8) | 0.0041 (9) |
C13 | 0.0221 (11) | 0.0187 (13) | 0.0211 (11) | 0.0023 (9) | 0.0009 (9) | −0.0025 (9) |
C14 | 0.0379 (15) | 0.0217 (14) | 0.0345 (15) | 0.0076 (11) | 0.0043 (11) | 0.0012 (11) |
S1—C1 | 1.711 (2) | C10—C11 | 1.484 (4) |
S1—C6 | 1.751 (3) | C13—C14 | 1.501 (4) |
S2—C1 | 1.712 (2) | C7—H7A | 0.9800 |
S2—C2 | 1.758 (2) | C7—H7B | 0.9800 |
O1—C9 | 1.214 (3) | C7—H7C | 0.9800 |
O2—C9 | 1.334 (3) | C8—H8A | 0.9800 |
O2—C10 | 1.465 (3) | C8—H8B | 0.9800 |
O3—C12 | 1.331 (3) | C8—H8C | 0.9800 |
O3—C13 | 1.459 (3) | C10—H10A | 0.9900 |
O4—C12 | 1.211 (3) | C10—H10B | 0.9900 |
C1—C4 | 1.386 (3) | C11—H11A | 0.9800 |
C2—C3 | 1.360 (3) | C11—H11B | 0.9800 |
C2—C9 | 1.475 (3) | C11—H11C | 0.9800 |
C3—C4 | 1.437 (3) | C13—H13A | 0.9900 |
C3—C7 | 1.495 (3) | C13—H13B | 0.9900 |
C4—C5 | 1.441 (3) | C14—H14A | 0.9800 |
C5—C6 | 1.373 (3) | C14—H14B | 0.9800 |
C5—C8 | 1.495 (4) | C14—H14C | 0.9800 |
C6—C12 | 1.472 (3) | ||
C1—S1—C6 | 89.57 (11) | C3—C7—H7C | 109.00 |
C1—S2—C2 | 89.39 (11) | H7A—C7—H7B | 109.00 |
C9—O2—C10 | 114.48 (17) | H7A—C7—H7C | 109.00 |
C12—O3—C13 | 115.57 (17) | H7B—C7—H7C | 109.00 |
S1—C1—S2 | 132.34 (15) | C5—C8—H8A | 109.00 |
S1—C1—C4 | 113.81 (17) | C5—C8—H8B | 109.00 |
S2—C1—C4 | 113.85 (16) | C5—C8—H8C | 109.00 |
S2—C2—C3 | 113.92 (16) | H8A—C8—H8B | 110.00 |
S2—C2—C9 | 118.18 (18) | H8A—C8—H8C | 109.00 |
C3—C2—C9 | 127.9 (2) | H8B—C8—H8C | 109.00 |
C2—C3—C4 | 111.0 (2) | O2—C10—H10A | 110.00 |
C2—C3—C7 | 124.9 (2) | O2—C10—H10B | 110.00 |
C4—C3—C7 | 124.1 (2) | C11—C10—H10A | 110.00 |
C1—C4—C3 | 111.8 (2) | C11—C10—H10B | 110.00 |
C1—C4—C5 | 112.16 (19) | H10A—C10—H10B | 108.00 |
C3—C4—C5 | 136.0 (2) | C10—C11—H11A | 109.00 |
C4—C5—C6 | 110.3 (2) | C10—C11—H11B | 109.00 |
C4—C5—C8 | 124.45 (19) | C10—C11—H11C | 109.00 |
C6—C5—C8 | 125.3 (2) | H11A—C11—H11B | 109.00 |
S1—C6—C5 | 114.18 (18) | H11A—C11—H11C | 109.00 |
S1—C6—C12 | 113.10 (17) | H11B—C11—H11C | 109.00 |
C5—C6—C12 | 132.7 (2) | O3—C13—H13A | 110.00 |
O1—C9—O2 | 123.4 (2) | O3—C13—H13B | 110.00 |
O1—C9—C2 | 125.1 (2) | C14—C13—H13A | 110.00 |
O2—C9—C2 | 111.59 (19) | C14—C13—H13B | 110.00 |
O2—C10—C11 | 108.25 (19) | H13A—C13—H13B | 109.00 |
O3—C12—O4 | 124.3 (2) | C13—C14—H14A | 109.00 |
O3—C12—C6 | 113.56 (19) | C13—C14—H14B | 109.00 |
O4—C12—C6 | 122.1 (2) | C13—C14—H14C | 109.00 |
O3—C13—C14 | 106.76 (18) | H14A—C14—H14B | 110.00 |
C3—C7—H7A | 109.00 | H14A—C14—H14C | 109.00 |
C3—C7—H7B | 109.00 | H14B—C14—H14C | 109.00 |
C6—S1—C1—S2 | 179.7 (2) | C9—C2—C3—C7 | 2.3 (4) |
C6—S1—C1—C4 | 0.3 (2) | S2—C2—C9—O1 | −175.95 (19) |
C1—S1—C6—C5 | −0.3 (2) | S2—C2—C9—O2 | 4.8 (3) |
C1—S1—C6—C12 | 179.25 (18) | C3—C2—C9—O1 | 4.7 (4) |
C2—S2—C1—S1 | −179.2 (2) | C3—C2—C9—O2 | −174.6 (2) |
C2—S2—C1—C4 | 0.3 (2) | C2—C3—C4—C1 | −0.5 (3) |
C1—S2—C2—C3 | −0.6 (2) | C2—C3—C4—C5 | 179.2 (3) |
C1—S2—C2—C9 | 180.0 (2) | C7—C3—C4—C1 | 177.4 (2) |
C10—O2—C9—O1 | −2.0 (3) | C7—C3—C4—C5 | −3.0 (4) |
C10—O2—C9—C2 | 177.3 (2) | C1—C4—C5—C6 | −0.1 (3) |
C9—O2—C10—C11 | −176.3 (2) | C1—C4—C5—C8 | 178.6 (2) |
C13—O3—C12—O4 | −0.1 (3) | C3—C4—C5—C6 | −179.8 (3) |
C13—O3—C12—C6 | 179.74 (19) | C3—C4—C5—C8 | −1.0 (4) |
C12—O3—C13—C14 | −172.8 (2) | C4—C5—C6—S1 | 0.3 (3) |
S1—C1—C4—C3 | 179.62 (17) | C4—C5—C6—C12 | −179.2 (2) |
S1—C1—C4—C5 | −0.1 (3) | C8—C5—C6—S1 | −178.41 (19) |
S2—C1—C4—C3 | 0.1 (3) | C8—C5—C6—C12 | 2.1 (4) |
S2—C1—C4—C5 | −179.66 (17) | S1—C6—C12—O3 | 176.14 (16) |
S2—C2—C3—C4 | 0.7 (3) | S1—C6—C12—O4 | −4.0 (3) |
S2—C2—C3—C7 | −177.17 (19) | C5—C6—C12—O3 | −4.4 (4) |
C9—C2—C3—C4 | −179.9 (2) | C5—C6—C12—O4 | 175.5 (3) |
Cg2 is the centroid of the S2/C1–C4 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···O1 | 0.98 | 2.22 | 2.980 (3) | 133 |
C8—H8A···O3 | 0.98 | 2.23 | 2.909 (3) | 125 |
C11—H11A···O4i | 0.98 | 2.53 | 3.471 (3) | 161 |
C8—H8C···Cg2ii | 0.98 | 2.74 | 3.578 (3) | 144 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H16O4S2 |
Mr | 312.39 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 123 |
a, b, c (Å) | 7.3497 (3), 8.4720 (4), 12.8629 (5) |
α, β, γ (°) | 102.770 (3), 99.545 (3), 107.779 (4) |
V (Å3) | 719.96 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.30 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.966, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6901, 3486, 2661 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.106, 1.04 |
No. of reflections | 3486 |
No. of parameters | 185 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.34 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Cg2 is the centroid of the S2/C1–C4 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···O1 | 0.98 | 2.22 | 2.980 (3) | 133 |
C8—H8A···O3 | 0.98 | 2.23 | 2.909 (3) | 125 |
C11—H11A···O4i | 0.98 | 2.53 | 3.471 (3) | 161 |
C8—H8C···Cg2ii | 0.98 | 2.74 | 3.578 (3) | 144 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
SHHY thanks Sohag University for facilitating this collaborative project with Manchester Metropolitan University. Our gratitude is extended to Erciyes University and the University of Strathclyde for supporting this study.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Comel, A. & Kirsch, G. (2001a). J. Heterocycl. Chem. 38, 1167–1171. CAS Google Scholar
Comel, A. & Kirsch, G. (2001b). J. Heterocycl. Chem. 38, 1167–1171. CAS Google Scholar
Egbertson, M. S., Cook, J. J., Hednar, H., Prugh, J. D., Hednar, R. A., Gaul, S. L., Gould, R. J., Hartman, G. D., Homnick, C. F., Holahan, L. M. M., Libby, L. A., Lynch, J. J., Sitko, G. R., Stranieri, M. T. & Vassallo, L. M. (1999). J. Med. Chem. 42, 2409–2421. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gather, M. C., Heeny, M., Zhang, W., Whitehead, K. S., Bradley, D. D. C., McCulloch, I. & Campbell, A. J. (2008). Chem. Commun. 9, 1079–1081. Web of Science CrossRef Google Scholar
Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2455. Web of Science CSD CrossRef IUCr Journals Google Scholar
He, M., Li, J., Sorensen, M. L., Zhang, F., Hancock, R. R., Fong, H. H., Pozdin, V. A., Smilgies, D. & Malliaras, G. G. (2009). J. Am. Chem. Soc. 131, 11930–11938. Web of Science CrossRef PubMed CAS Google Scholar
Heeney, M., Bailey, C., Genevicius, K., Shkunov, M., Sparrowe, D., Tierney, S. & McCulloch, U. (2005). J. Am. Chem. Soc. 127, 1078–1079. Web of Science CrossRef PubMed CAS Google Scholar
Jarak, I., Kralj, M., Piantanida, I., Suman, L., Zinic, M., Pavelic, K. & Karminski-Zamola, G. (2006). Bioorg. Med. Chem. 14, 2859–2868. Web of Science CrossRef PubMed CAS Google Scholar
Lee, K. & Sotzing, G. A. (2001). Macromolecules, 34, 5746–5747. Web of Science CrossRef CAS Google Scholar
Litvinov, V. P. (2005). Russ. Chem. Rev. 74, 217–248. CrossRef CAS Google Scholar
Mabkhot, N. Y., Barakat, A., Al-Majid, A. M. & Alshahrani, S. A. (2012). Int. J. Mol. Sci. 13, 2263–2275. Web of Science CrossRef CAS PubMed Google Scholar
Mabkhot, Y. N., Kheder, N. A. & Al-Majid, A. M. (2010). Molecules, 15, 9418–9426. Web of Science CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Umadevi, M., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2790. Web of Science CrossRef IUCr Journals Google Scholar
Wang, X., Li, Y. & Liu, M.-G. (2008). Acta Cryst. E64, o1180. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thienothiophene compounds are a great class of sulfur heterocyclic chemistry due their utilities in various applications in industrial and medicinal fields. They have wide variety applications in optical and electronic systems (Gather et al., 2008; He et al., 2009). Besides, thieno[2,3-b]thiophenes showed useful reactivities as co-polymerization agents (Lee & Sotzing, 2001) and as semiconductors (Heeney et al., 2005). They have been developed and tested as potential antitumor, antiviral, antiglaucoma drugs, antiproliferation agents, or as inhibitors of platelet aggregation (Jarak et al., 2006; Egbertson et al., 1999). In addition, thienothiophenes have been used as versatile precursors for synthesis of various heterocycles (Mabkhot et al., 2012, Mabkhot et al., 2010; Litvinov, 2005). In view of such important applications, we herein report the crystal structure determination of the title compound (I) to investigate the relationship between its structure and antibacterial activity.
In the title compound, C14H16O4S2, the thieno[2,3-b]thiophene ring systems are planar with a maximum deviation of 0.008 (2) Å for C2. The values of the bond lengths and bond angles in (I) are in the normal range and comparable to those reported for the similar compounds (Umadevi et al., 2009; Gunasekaran et al., 2009; Wang et al., 2008). The O1–C9–C2–S2, O2–C9–C2–S2, O3–C12–C6–S1 and O4–C12–C6–S1 bond angles are 175.95 (19), -4.8 (3), 176.14 (16) and 4.0 (3)°, respectively.
The intramolecular C7—H7A···O1 and C8—H8A···O3 interactions form six- membered rings, producing S(6) ring motif (Table 1; Bernstein et al., 1995). In the crystal, the molecules are linked by intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2), and are further consolidated by C—H···π interactions and π-π stacking [Cg1···Cg1(-x, 1 - y, 1 - z) = 3.6605 (14) Å; where Cg1 is a centroid of the S1/C1/C4–C6 ring] interactions.