organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3332-o3333

Di­ethyl 3,4-di­methyl­thieno[2,3-b]thio­phene-2,5-di­carboxyl­ate

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, cDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fAnalytical Sciences, Manchester Metropolitan University, Manchester M1 5GD, England
*Correspondence e-mail: akkurt@erciyes.edu.tr, a.r.Kennedy@strath.ac.uk, G.Miller@mmu.ac.uk

(Received 6 November 2012; accepted 7 November 2012; online 10 November 2012)

In the title compound, C14H16O4S2, the thieno[2,3-b]thio­phene ring systems are planar [maximum deviation = 0.008 (2) Å]. The mol­ecular conformation is stabilized by intra­molecular C—H⋯O hydrogen bonds, while the crystal packing is stabilized by C—H⋯O, C—H⋯π and ππ stacking [centroid–centroid distance = 3.6605 (14) Å] inter­actions, which lead to supra­molecular layers in the ab plane.

Related literature

For the use of thienthio­phenes as versatile precursors for the synthesis of various heterocycles, see: Mabkhot et al. (2010[Mabkhot, Y. N., Kheder, N. A. & Al-Majid, A. M. (2010). Molecules, 15, 9418-9426.], 2012[Mabkhot, N. Y., Barakat, A., Al-Majid, A. M. & Alshahrani, S. A. (2012). Int. J. Mol. Sci. 13, 2263-2275.]); Litvinov (2005[Litvinov, V. P. (2005). Russ. Chem. Rev. 74, 217-248.]). For their industrial applications, see: Lee & Sotzing (2001[Lee, K. & Sotzing, G. A. (2001). Macromolecules, 34, 5746-5747.]); Heeney et al. (2005[Heeney, M., Bailey, C., Genevicius, K., Shkunov, M., Sparrowe, D., Tierney, S. & McCulloch, U. (2005). J. Am. Chem. Soc. 127, 1078-1079.]); Gather et al. (2008[Gather, M. C., Heeny, M., Zhang, W., Whitehead, K. S., Bradley, D. D. C., McCulloch, I. & Campbell, A. J. (2008). Chem. Commun. 9, 1079-1081.]); He et al. (2009[He, M., Li, J., Sorensen, M. L., Zhang, F., Hancock, R. R., Fong, H. H., Pozdin, V. A., Smilgies, D. & Malliaras, G. G. (2009). J. Am. Chem. Soc. 131, 11930-11938.]). For pharmaceutical values of thieno[2,3-b]thio­phenes, see: Jarak et al. (2006[Jarak, I., Kralj, M., Piantanida, I., Suman, L., Zinic, M., Pavelic, K. & Karminski-Zamola, G. (2006). Bioorg. Med. Chem. 14, 2859-2868.]); Egbertson et al. (1999[Egbertson, M. S., Cook, J. J., Hednar, H., Prugh, J. D., Hednar, R. A., Gaul, S. L., Gould, R. J., Hartman, G. D., Homnick, C. F., Holahan, L. M. M., Libby, L. A., Lynch, J. J., Sitko, G. R., Stranieri, M. T. & Vassallo, L. M. (1999). J. Med. Chem. 42, 2409-2421.]). For bond lengths and bond angles in similar compounds, see: Umadevi et al. (2009[Umadevi, M., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2790.]); Gunasekaran et al. (2009[Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2455.]); Wang et al. (2008[Wang, X., Li, Y. & Liu, M.-G. (2008). Acta Cryst. E64, o1180.]). For the synthesis of the title compound, see: Comel & Kirsch (2001a[Comel, A. & Kirsch, G. (2001a). J. Heterocycl. Chem. 38, 1167-1171.],b[Comel, A. & Kirsch, G. (2001b). J. Heterocycl. Chem. 38, 1167-1171.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16O4S2

  • Mr = 312.39

  • Triclinic, [P \overline 1]

  • a = 7.3497 (3) Å

  • b = 8.4720 (4) Å

  • c = 12.8629 (5) Å

  • α = 102.770 (3)°

  • β = 99.545 (3)°

  • γ = 107.779 (4)°

  • V = 719.96 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 123 K

  • 0.30 × 0.08 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.966, Tmax = 1.000

  • 6901 measured reflections

  • 3486 independent reflections

  • 2661 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.106

  • S = 1.04

  • 3486 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the S2/C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O1 0.98 2.22 2.980 (3) 133
C8—H8A⋯O3 0.98 2.23 2.909 (3) 125
C11—H11A⋯O4i 0.98 2.53 3.471 (3) 161
C8—H8CCg2ii 0.98 2.74 3.578 (3) 144
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

Thienothiophene compounds are a great class of sulfur heterocyclic chemistry due their utilities in various applications in industrial and medicinal fields. They have wide variety applications in optical and electronic systems (Gather et al., 2008; He et al., 2009). Besides, thieno[2,3-b]thiophenes showed useful reactivities as co-polymerization agents (Lee & Sotzing, 2001) and as semiconductors (Heeney et al., 2005). They have been developed and tested as potential antitumor, antiviral, antiglaucoma drugs, antiproliferation agents, or as inhibitors of platelet aggregation (Jarak et al., 2006; Egbertson et al., 1999). In addition, thienothiophenes have been used as versatile precursors for synthesis of various heterocycles (Mabkhot et al., 2012, Mabkhot et al., 2010; Litvinov, 2005). In view of such important applications, we herein report the crystal structure determination of the title compound (I) to investigate the relationship between its structure and antibacterial activity.

In the title compound, C14H16O4S2, the thieno[2,3-b]thiophene ring systems are planar with a maximum deviation of 0.008 (2) Å for C2. The values of the bond lengths and bond angles in (I) are in the normal range and comparable to those reported for the similar compounds (Umadevi et al., 2009; Gunasekaran et al., 2009; Wang et al., 2008). The O1–C9–C2–S2, O2–C9–C2–S2, O3–C12–C6–S1 and O4–C12–C6–S1 bond angles are 175.95 (19), -4.8 (3), 176.14 (16) and 4.0 (3)°, respectively.

The intramolecular C7—H7A···O1 and C8—H8A···O3 interactions form six- membered rings, producing S(6) ring motif (Table 1; Bernstein et al., 1995). In the crystal, the molecules are linked by intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2), and are further consolidated by C—H···π interactions and π-π stacking [Cg1···Cg1(-x, 1 - y, 1 - z) = 3.6605 (14) Å; where Cg1 is a centroid of the S1/C1/C4–C6 ring] interactions.

Related literature top

For the use of thienthiophenes as versatile precursors for the synthesis of various heterocycles, see: Mabkhot et al. (2010, 2012); Litvinov (2005). For their industrial applications, see: Lee & Sotzing (2001); Heeney et al. (2005); Gather et al. (2008); He et al. (2009). For pharmaceutical values of thieno[2,3-b]thiophenes, see: Jarak et al. (2006); Egbertson et al. (1999). For bond lengths and bond angles in similar compounds, see: Umadevi et al. (2009); Gunasekaran et al. (2009); Wang et al. (2008). For the synthesis of the title compound, see: Comel & Kirsch (2001a,b). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared according to the reported method in literature (Comel & Kirsch, 2001a,b). Single crystals suitable for X-ray analysis were grown in an ethanol solution of (I) at room temperature over 24 h. M.pt: 413 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.98 and 0.99 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding of (I) down the a axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
Diethyl 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylate top
Crystal data top
C14H16O4S2Z = 2
Mr = 312.39F(000) = 328
Triclinic, P1Dx = 1.441 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3497 (3) ÅCell parameters from 2806 reflections
b = 8.4720 (4) Åθ = 3.2–29.4°
c = 12.8629 (5) ŵ = 0.38 mm1
α = 102.770 (3)°T = 123 K
β = 99.545 (3)°Rod, colourless
γ = 107.779 (4)°0.30 × 0.08 × 0.06 mm
V = 719.96 (6) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3486 independent reflections
Radiation source: Enhance (Mo) X-ray Source2661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.0727 pixels mm-1θmax = 29.5°, θmin = 3.2°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.966, Tmax = 1.000l = 1717
6901 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.4173P]
where P = (Fo2 + 2Fc2)/3
3486 reflections(Δ/σ)max = 0.002
185 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C14H16O4S2γ = 107.779 (4)°
Mr = 312.39V = 719.96 (6) Å3
Triclinic, P1Z = 2
a = 7.3497 (3) ÅMo Kα radiation
b = 8.4720 (4) ŵ = 0.38 mm1
c = 12.8629 (5) ÅT = 123 K
α = 102.770 (3)°0.30 × 0.08 × 0.06 mm
β = 99.545 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3486 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2661 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 1.000Rint = 0.025
6901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
3486 reflectionsΔρmin = 0.34 e Å3
185 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19179 (8)0.66605 (7)0.37995 (4)0.0197 (2)
S20.42025 (8)0.92886 (7)0.61200 (4)0.0196 (2)
O10.6436 (2)0.8879 (2)0.90039 (13)0.0290 (5)
O20.6126 (2)1.1054 (2)0.83495 (12)0.0258 (5)
O30.0104 (2)0.1626 (2)0.26378 (12)0.0222 (5)
O40.0238 (2)0.3735 (2)0.19133 (13)0.0273 (5)
C10.3073 (3)0.7294 (3)0.51711 (17)0.0180 (6)
C20.4771 (3)0.8283 (3)0.71229 (17)0.0198 (7)
C30.4109 (3)0.6525 (3)0.67430 (17)0.0179 (6)
C40.3115 (3)0.5931 (3)0.55924 (17)0.0167 (6)
C50.2161 (3)0.4277 (3)0.47680 (17)0.0173 (6)
C60.1453 (3)0.4496 (3)0.37738 (18)0.0187 (6)
C70.4314 (3)0.5352 (3)0.74333 (19)0.0241 (7)
C80.2012 (3)0.2576 (3)0.49704 (18)0.0215 (7)
C90.5860 (3)0.9392 (3)0.82492 (18)0.0208 (7)
C100.7119 (4)1.2220 (3)0.94621 (19)0.0270 (8)
C110.7189 (4)1.3989 (3)0.9461 (2)0.0333 (8)
C120.0360 (3)0.3267 (3)0.26830 (18)0.0200 (7)
C130.0980 (3)0.0358 (3)0.15737 (18)0.0238 (7)
C140.1327 (4)0.1397 (3)0.1742 (2)0.0339 (8)
H7A0.514400.604500.817100.0360*
H7B0.492600.456300.709200.0360*
H7C0.300700.467800.748900.0360*
H8A0.095000.164300.439000.0320*
H8B0.172400.257700.568800.0320*
H8C0.326500.239300.496600.0320*
H10A0.847401.221800.968100.0320*
H10B0.638701.183200.999400.0320*
H11A0.792501.436600.893700.0500*
H11B0.784701.478901.020100.0500*
H11C0.584201.398000.924500.0500*
H13A0.020200.051300.102100.0290*
H13B0.225300.049300.131100.0290*
H14A0.005800.149500.202900.0510*
H14B0.201100.229200.103800.0510*
H14C0.214000.154900.227000.0510*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0227 (3)0.0181 (3)0.0164 (3)0.0062 (2)0.0022 (2)0.0049 (2)
S20.0231 (3)0.0171 (3)0.0170 (3)0.0065 (2)0.0030 (2)0.0041 (2)
O10.0353 (9)0.0283 (10)0.0183 (8)0.0094 (8)0.0007 (7)0.0051 (7)
O20.0300 (9)0.0246 (10)0.0164 (8)0.0088 (7)0.0017 (7)0.0003 (7)
O30.0253 (8)0.0173 (9)0.0181 (8)0.0045 (7)0.0002 (6)0.0020 (6)
O40.0327 (9)0.0233 (10)0.0199 (8)0.0064 (7)0.0002 (7)0.0045 (7)
C10.0162 (10)0.0191 (12)0.0167 (10)0.0050 (9)0.0030 (8)0.0037 (9)
C20.0196 (11)0.0256 (13)0.0152 (10)0.0092 (9)0.0043 (8)0.0063 (9)
C30.0156 (10)0.0218 (12)0.0186 (11)0.0074 (9)0.0055 (8)0.0083 (9)
C40.0130 (10)0.0188 (12)0.0187 (10)0.0050 (8)0.0053 (8)0.0063 (9)
C50.0157 (10)0.0173 (12)0.0201 (11)0.0065 (9)0.0059 (8)0.0061 (9)
C60.0171 (10)0.0175 (12)0.0199 (11)0.0054 (9)0.0048 (8)0.0033 (9)
C70.0279 (12)0.0230 (13)0.0210 (11)0.0095 (10)0.0029 (9)0.0074 (10)
C80.0225 (11)0.0188 (12)0.0218 (11)0.0063 (9)0.0035 (9)0.0063 (9)
C90.0164 (11)0.0251 (13)0.0203 (11)0.0071 (9)0.0053 (9)0.0052 (9)
C100.0321 (13)0.0239 (14)0.0191 (12)0.0081 (10)0.0013 (10)0.0010 (10)
C110.0400 (15)0.0257 (15)0.0266 (13)0.0098 (12)0.0010 (11)0.0023 (11)
C120.0172 (11)0.0207 (12)0.0200 (11)0.0046 (9)0.0058 (8)0.0041 (9)
C130.0221 (11)0.0187 (13)0.0211 (11)0.0023 (9)0.0009 (9)0.0025 (9)
C140.0379 (15)0.0217 (14)0.0345 (15)0.0076 (11)0.0043 (11)0.0012 (11)
Geometric parameters (Å, º) top
S1—C11.711 (2)C10—C111.484 (4)
S1—C61.751 (3)C13—C141.501 (4)
S2—C11.712 (2)C7—H7A0.9800
S2—C21.758 (2)C7—H7B0.9800
O1—C91.214 (3)C7—H7C0.9800
O2—C91.334 (3)C8—H8A0.9800
O2—C101.465 (3)C8—H8B0.9800
O3—C121.331 (3)C8—H8C0.9800
O3—C131.459 (3)C10—H10A0.9900
O4—C121.211 (3)C10—H10B0.9900
C1—C41.386 (3)C11—H11A0.9800
C2—C31.360 (3)C11—H11B0.9800
C2—C91.475 (3)C11—H11C0.9800
C3—C41.437 (3)C13—H13A0.9900
C3—C71.495 (3)C13—H13B0.9900
C4—C51.441 (3)C14—H14A0.9800
C5—C61.373 (3)C14—H14B0.9800
C5—C81.495 (4)C14—H14C0.9800
C6—C121.472 (3)
C1—S1—C689.57 (11)C3—C7—H7C109.00
C1—S2—C289.39 (11)H7A—C7—H7B109.00
C9—O2—C10114.48 (17)H7A—C7—H7C109.00
C12—O3—C13115.57 (17)H7B—C7—H7C109.00
S1—C1—S2132.34 (15)C5—C8—H8A109.00
S1—C1—C4113.81 (17)C5—C8—H8B109.00
S2—C1—C4113.85 (16)C5—C8—H8C109.00
S2—C2—C3113.92 (16)H8A—C8—H8B110.00
S2—C2—C9118.18 (18)H8A—C8—H8C109.00
C3—C2—C9127.9 (2)H8B—C8—H8C109.00
C2—C3—C4111.0 (2)O2—C10—H10A110.00
C2—C3—C7124.9 (2)O2—C10—H10B110.00
C4—C3—C7124.1 (2)C11—C10—H10A110.00
C1—C4—C3111.8 (2)C11—C10—H10B110.00
C1—C4—C5112.16 (19)H10A—C10—H10B108.00
C3—C4—C5136.0 (2)C10—C11—H11A109.00
C4—C5—C6110.3 (2)C10—C11—H11B109.00
C4—C5—C8124.45 (19)C10—C11—H11C109.00
C6—C5—C8125.3 (2)H11A—C11—H11B109.00
S1—C6—C5114.18 (18)H11A—C11—H11C109.00
S1—C6—C12113.10 (17)H11B—C11—H11C109.00
C5—C6—C12132.7 (2)O3—C13—H13A110.00
O1—C9—O2123.4 (2)O3—C13—H13B110.00
O1—C9—C2125.1 (2)C14—C13—H13A110.00
O2—C9—C2111.59 (19)C14—C13—H13B110.00
O2—C10—C11108.25 (19)H13A—C13—H13B109.00
O3—C12—O4124.3 (2)C13—C14—H14A109.00
O3—C12—C6113.56 (19)C13—C14—H14B109.00
O4—C12—C6122.1 (2)C13—C14—H14C109.00
O3—C13—C14106.76 (18)H14A—C14—H14B110.00
C3—C7—H7A109.00H14A—C14—H14C109.00
C3—C7—H7B109.00H14B—C14—H14C109.00
C6—S1—C1—S2179.7 (2)C9—C2—C3—C72.3 (4)
C6—S1—C1—C40.3 (2)S2—C2—C9—O1175.95 (19)
C1—S1—C6—C50.3 (2)S2—C2—C9—O24.8 (3)
C1—S1—C6—C12179.25 (18)C3—C2—C9—O14.7 (4)
C2—S2—C1—S1179.2 (2)C3—C2—C9—O2174.6 (2)
C2—S2—C1—C40.3 (2)C2—C3—C4—C10.5 (3)
C1—S2—C2—C30.6 (2)C2—C3—C4—C5179.2 (3)
C1—S2—C2—C9180.0 (2)C7—C3—C4—C1177.4 (2)
C10—O2—C9—O12.0 (3)C7—C3—C4—C53.0 (4)
C10—O2—C9—C2177.3 (2)C1—C4—C5—C60.1 (3)
C9—O2—C10—C11176.3 (2)C1—C4—C5—C8178.6 (2)
C13—O3—C12—O40.1 (3)C3—C4—C5—C6179.8 (3)
C13—O3—C12—C6179.74 (19)C3—C4—C5—C81.0 (4)
C12—O3—C13—C14172.8 (2)C4—C5—C6—S10.3 (3)
S1—C1—C4—C3179.62 (17)C4—C5—C6—C12179.2 (2)
S1—C1—C4—C50.1 (3)C8—C5—C6—S1178.41 (19)
S2—C1—C4—C30.1 (3)C8—C5—C6—C122.1 (4)
S2—C1—C4—C5179.66 (17)S1—C6—C12—O3176.14 (16)
S2—C2—C3—C40.7 (3)S1—C6—C12—O44.0 (3)
S2—C2—C3—C7177.17 (19)C5—C6—C12—O34.4 (4)
C9—C2—C3—C4179.9 (2)C5—C6—C12—O4175.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the S2/C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···O10.982.222.980 (3)133
C8—H8A···O30.982.232.909 (3)125
C11—H11A···O4i0.982.533.471 (3)161
C8—H8C···Cg2ii0.982.743.578 (3)144
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H16O4S2
Mr312.39
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)7.3497 (3), 8.4720 (4), 12.8629 (5)
α, β, γ (°)102.770 (3), 99.545 (3), 107.779 (4)
V3)719.96 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.30 × 0.08 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.966, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6901, 3486, 2661
Rint0.025
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.106, 1.04
No. of reflections3486
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.34

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the S2/C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···O10.982.222.980 (3)133
C8—H8A···O30.982.232.909 (3)125
C11—H11A···O4i0.982.533.471 (3)161
C8—H8C···Cg2ii0.982.743.578 (3)144
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

SHHY thanks Sohag University for facilitating this collaborative project with Manchester Metropolitan University. Our gratitude is extended to Erciyes University and the University of Strathclyde for supporting this study.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationComel, A. & Kirsch, G. (2001a). J. Heterocycl. Chem. 38, 1167–1171.  CAS Google Scholar
First citationComel, A. & Kirsch, G. (2001b). J. Heterocycl. Chem. 38, 1167–1171.  CAS Google Scholar
First citationEgbertson, M. S., Cook, J. J., Hednar, H., Prugh, J. D., Hednar, R. A., Gaul, S. L., Gould, R. J., Hartman, G. D., Homnick, C. F., Holahan, L. M. M., Libby, L. A., Lynch, J. J., Sitko, G. R., Stranieri, M. T. & Vassallo, L. M. (1999). J. Med. Chem. 42, 2409–2421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGather, M. C., Heeny, M., Zhang, W., Whitehead, K. S., Bradley, D. D. C., McCulloch, I. & Campbell, A. J. (2008). Chem. Commun. 9, 1079–1081.  Web of Science CrossRef Google Scholar
First citationGunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, M., Li, J., Sorensen, M. L., Zhang, F., Hancock, R. R., Fong, H. H., Pozdin, V. A., Smilgies, D. & Malliaras, G. G. (2009). J. Am. Chem. Soc. 131, 11930–11938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHeeney, M., Bailey, C., Genevicius, K., Shkunov, M., Sparrowe, D., Tierney, S. & McCulloch, U. (2005). J. Am. Chem. Soc. 127, 1078–1079.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJarak, I., Kralj, M., Piantanida, I., Suman, L., Zinic, M., Pavelic, K. & Karminski-Zamola, G. (2006). Bioorg. Med. Chem. 14, 2859–2868.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, K. & Sotzing, G. A. (2001). Macromolecules, 34, 5746–5747.  Web of Science CrossRef CAS Google Scholar
First citationLitvinov, V. P. (2005). Russ. Chem. Rev. 74, 217–248.  CrossRef CAS Google Scholar
First citationMabkhot, N. Y., Barakat, A., Al-Majid, A. M. & Alshahrani, S. A. (2012). Int. J. Mol. Sci. 13, 2263–2275.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMabkhot, Y. N., Kheder, N. A. & Al-Majid, A. M. (2010). Molecules, 15, 9418–9426.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUmadevi, M., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2790.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X., Li, Y. & Liu, M.-G. (2008). Acta Cryst. E64, o1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3332-o3333
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds