organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,5-Di­chloro­phen­yl)-2-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 November 2012; accepted 25 November 2012; online 30 November 2012)

In the title compound, C12H8Cl2N2O4S, the C—S—N—C torsion angle is 49.34 (18)° and the dihedral angle between the benzene rings is 71.92 (10)°. The amide H atom exhibits bifurcated hydrogen bonding. The N—H bond is syn to the ortho-nitro group enabling the formation of an S(7) loop. In the crystal, pairs of N—H⋯O(S) hydrogen bonds link the mol­ecules into inversion dimers via R22(8) rings.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda & Weiss (1994[Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695-702.]); Shahwar et al. (2012[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.]), of N-aryl­sulfonamides, see: Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2823.]) and of N-chloro­aryl­sulfonamides, see: Shetty & Gowda (2004[Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.]). For hydrogen-bonding patterns and motifs, see: Adsmond et al. (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8Cl2N2O4S

  • Mr = 347.16

  • Triclinic, [P \overline 1]

  • a = 8.2823 (8) Å

  • b = 8.3436 (9) Å

  • c = 10.670 (1) Å

  • α = 76.730 (8)°

  • β = 89.298 (9)°

  • γ = 86.875 (9)°

  • V = 716.59 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 K

  • 0.44 × 0.40 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.774, Tmax = 0.847

  • 4766 measured reflections

  • 2925 independent reflections

  • 2600 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.04

  • 2925 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (2) 2.23 (2) 3.052 (2) 162 (2)
N1—H1N⋯O3 0.85 (2) 2.44 (2) 2.940 (2) 118 (2)
Symmetry code: (i) -x, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994; Shahwar et al., 2012); N-arylsulfonamides (Chaithanya et al., 2012); and N-chloroarylsulfonamides (Shetty & Gowda, 2004), in the present work, the crystal structure of N-(3,5-dichlorophenyl)-2-nitrobenzenesulfonamide (I) has been determined (Fig. 1).

The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsions with respect to the SO bonds (Fig. 1), similar to that observed in N-(3,5-dimethylphenyl)-2-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012). Further, the conformation of the N—H bond in the —SO2—NH— segment is syn to the ortho- nitro group in the sulfonyl benzene ring. The molecule is twisted at the S—N bond with the torsional angle of 49.34 (18)°, compared to the values of 44.24 (26) and -49.34 (25)° in the two independent molecules of (II).

The dihedral angle between the sulfonyl and the aniline rings in (I) is 71.92 (10)°, compared to the values of 71.53 (7)° and 72.11 (7)° in the two molecules of (II).

The amide H-atom shows bifurcated intramolecular H-bonding with the O-atom of the ortho-nitro group in the sulfonyl benzene ring, generating S(7) motifs, and the intermolecular H-bonding with the sulfonyl oxygen atom of a symmetry related molecule, generating R22(8) motifs (Adsmond et al., 2001). The latter (Table 1) link the molecules into inversion dimers. Part of the crystal structure is shown in Fig. 2.

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda & Weiss (1994); Shahwar et al. (2012), of N-arylsulfonamides, see: Chaithanya et al. (2012) and of N-chloroarylsulfonamides, see: Shetty & Gowda (2004). For hydrogen-bonding patterns and motifs, see: Adsmond et al. (2001),

Experimental top

The title compound was prepared by treating 2-nitrobenzenesulfonylchloride with 3,5-dichloroaniline in a stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid, N-(3,5-dichlorophenyl)-2-nitrobenzenesulfonamide, was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol.

Prism-like colourless crystals of the title compound used in X-ray diffraction studies were grown from its ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93 Å. The amino H atom was refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates an intramolecular N—H···O hydrogen bond.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3,5-Dichlorophenyl)-2-nitrobenzenesulfonamide top
Crystal data top
C12H8Cl2N2O4SZ = 2
Mr = 347.16F(000) = 352
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2823 (8) ÅCell parameters from 3256 reflections
b = 8.3436 (9) Åθ = 3.1–27.7°
c = 10.670 (1) ŵ = 0.61 mm1
α = 76.730 (8)°T = 293 K
β = 89.298 (9)°Prism, colourless
γ = 86.875 (9)°0.44 × 0.40 × 0.28 mm
V = 716.59 (12) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2925 independent reflections
Radiation source: fine-focus sealed tube2600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 810
Tmin = 0.774, Tmax = 0.847k = 910
4766 measured reflectionsl = 713
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.4244P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2925 reflectionsΔρmax = 0.44 e Å3
194 parametersΔρmin = 0.49 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.100 (5)
Crystal data top
C12H8Cl2N2O4Sγ = 86.875 (9)°
Mr = 347.16V = 716.59 (12) Å3
Triclinic, P1Z = 2
a = 8.2823 (8) ÅMo Kα radiation
b = 8.3436 (9) ŵ = 0.61 mm1
c = 10.670 (1) ÅT = 293 K
α = 76.730 (8)°0.44 × 0.40 × 0.28 mm
β = 89.298 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2925 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2600 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.847Rint = 0.009
4766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.44 e Å3
2925 reflectionsΔρmin = 0.49 e Å3
194 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3367 (2)0.2350 (2)0.37443 (17)0.0340 (4)
C20.2649 (2)0.3607 (2)0.42524 (17)0.0371 (4)
C30.3229 (3)0.5157 (2)0.4011 (2)0.0459 (5)
H30.27290.59730.43690.055*
C40.4565 (3)0.5488 (3)0.3228 (2)0.0492 (5)
H40.49640.65370.30460.059*
C50.5305 (2)0.4268 (3)0.2718 (2)0.0498 (5)
H50.62070.44960.21920.060*
C60.4721 (2)0.2700 (2)0.29780 (19)0.0419 (4)
H60.52410.18800.26360.050*
C70.0975 (2)0.1026 (2)0.19048 (18)0.0380 (4)
C80.2129 (2)0.0663 (3)0.1044 (2)0.0448 (4)
H80.30310.00320.13310.054*
C90.1901 (3)0.1361 (3)0.0251 (2)0.0495 (5)
C100.0575 (3)0.2374 (3)0.0718 (2)0.0560 (6)
H100.04430.28240.15940.067*
C110.0553 (3)0.2695 (3)0.0166 (2)0.0549 (5)
C120.0370 (2)0.2058 (3)0.14680 (19)0.0472 (5)
H120.11360.23150.20460.057*
N10.10830 (19)0.0311 (2)0.32445 (15)0.0403 (4)
H1N0.024 (2)0.045 (3)0.367 (2)0.048*
N20.1200 (2)0.3345 (2)0.50690 (17)0.0481 (4)
O10.39505 (17)0.06691 (17)0.36502 (15)0.0478 (3)
O20.21976 (16)0.01250 (17)0.54098 (13)0.0438 (3)
O30.00227 (19)0.2822 (2)0.4655 (2)0.0675 (5)
O40.1245 (3)0.3732 (2)0.60935 (17)0.0764 (6)
Cl10.33194 (8)0.08990 (10)0.13460 (6)0.0734 (2)
Cl20.22590 (10)0.39424 (13)0.03893 (7)0.0972 (3)
S10.27077 (5)0.03037 (5)0.40942 (4)0.03530 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0303 (8)0.0350 (9)0.0351 (9)0.0007 (7)0.0013 (7)0.0052 (7)
C20.0361 (9)0.0384 (9)0.0349 (9)0.0005 (7)0.0055 (7)0.0054 (7)
C30.0510 (11)0.0397 (10)0.0480 (11)0.0017 (8)0.0055 (9)0.0121 (8)
C40.0502 (11)0.0416 (10)0.0550 (12)0.0117 (9)0.0049 (9)0.0074 (9)
C50.0388 (10)0.0546 (12)0.0541 (12)0.0114 (9)0.0127 (9)0.0074 (10)
C60.0343 (9)0.0461 (11)0.0452 (10)0.0008 (8)0.0080 (8)0.0113 (8)
C70.0370 (9)0.0437 (10)0.0349 (9)0.0102 (8)0.0032 (7)0.0104 (8)
C80.0386 (10)0.0517 (11)0.0449 (11)0.0060 (8)0.0070 (8)0.0123 (9)
C90.0472 (11)0.0633 (13)0.0411 (11)0.0130 (10)0.0143 (9)0.0171 (10)
C100.0607 (13)0.0719 (15)0.0347 (10)0.0075 (11)0.0036 (9)0.0101 (10)
C110.0515 (12)0.0702 (15)0.0413 (11)0.0051 (11)0.0041 (9)0.0105 (10)
C120.0415 (10)0.0637 (13)0.0375 (10)0.0027 (9)0.0026 (8)0.0152 (9)
N10.0330 (8)0.0512 (9)0.0356 (8)0.0068 (7)0.0055 (6)0.0070 (7)
N20.0528 (10)0.0374 (9)0.0497 (10)0.0056 (7)0.0200 (8)0.0040 (7)
O10.0430 (7)0.0395 (7)0.0611 (9)0.0055 (6)0.0042 (6)0.0141 (6)
O20.0438 (7)0.0464 (8)0.0363 (7)0.0034 (6)0.0012 (6)0.0008 (6)
O30.0427 (8)0.0656 (11)0.0972 (14)0.0082 (8)0.0266 (9)0.0246 (10)
O40.0956 (14)0.0836 (13)0.0489 (10)0.0012 (11)0.0302 (9)0.0156 (9)
Cl10.0674 (4)0.0992 (5)0.0540 (4)0.0063 (3)0.0297 (3)0.0193 (3)
Cl20.0839 (5)0.1405 (8)0.0550 (4)0.0480 (5)0.0145 (3)0.0092 (4)
S10.0331 (2)0.0330 (2)0.0379 (3)0.00006 (16)0.00272 (17)0.00480 (17)
Geometric parameters (Å, º) top
C1—C61.384 (2)C8—C91.382 (3)
C1—C21.390 (3)C8—H80.9300
C1—S11.7763 (18)C9—C101.374 (3)
C2—C31.372 (3)C9—Cl11.737 (2)
C2—N21.470 (2)C10—C111.378 (3)
C3—C41.379 (3)C10—H100.9300
C3—H30.9300C11—C121.376 (3)
C4—C51.374 (3)C11—Cl21.735 (2)
C4—H40.9300C12—H120.9300
C5—C61.386 (3)N1—S11.6308 (16)
C5—H50.9300N1—H1N0.848 (16)
C6—H60.9300N2—O41.210 (2)
C7—C81.387 (3)N2—O31.217 (3)
C7—C121.387 (3)O1—S11.4200 (14)
C7—N11.419 (2)O2—S11.4312 (14)
C6—C1—C2117.76 (17)C10—C9—C8122.82 (19)
C6—C1—S1118.50 (14)C10—C9—Cl1118.30 (17)
C2—C1—S1123.64 (13)C8—C9—Cl1118.86 (18)
C3—C2—C1122.36 (17)C9—C10—C11117.3 (2)
C3—C2—N2116.28 (17)C9—C10—H10121.3
C1—C2—N2121.35 (16)C11—C10—H10121.3
C2—C3—C4118.96 (19)C12—C11—C10122.3 (2)
C2—C3—H3120.5C12—C11—Cl2119.11 (18)
C4—C3—H3120.5C10—C11—Cl2118.64 (18)
C5—C4—C3119.99 (19)C11—C12—C7118.90 (19)
C5—C4—H4120.0C11—C12—H12120.6
C3—C4—H4120.0C7—C12—H12120.6
C4—C5—C6120.64 (18)C7—N1—S1123.42 (13)
C4—C5—H5119.7C7—N1—H1N114.9 (16)
C6—C5—H5119.7S1—N1—H1N111.2 (16)
C1—C6—C5120.27 (18)O4—N2—O3124.45 (19)
C1—C6—H6119.9O4—N2—C2117.1 (2)
C5—C6—H6119.9O3—N2—C2118.40 (18)
C8—C7—C12120.52 (18)O1—S1—O2119.91 (9)
C8—C7—N1121.79 (18)O1—S1—N1108.52 (9)
C12—C7—N1117.63 (17)O2—S1—N1105.46 (8)
C9—C8—C7118.2 (2)O1—S1—C1106.10 (8)
C9—C8—H8120.9O2—S1—C1108.89 (8)
C7—C8—H8120.9N1—S1—C1107.41 (8)
C6—C1—C2—C30.5 (3)C10—C11—C12—C71.5 (4)
S1—C1—C2—C3177.01 (15)Cl2—C11—C12—C7178.31 (17)
C6—C1—C2—N2179.58 (17)C8—C7—C12—C111.0 (3)
S1—C1—C2—N23.9 (3)N1—C7—C12—C11176.4 (2)
C1—C2—C3—C40.5 (3)C8—C7—N1—S150.4 (2)
N2—C2—C3—C4178.64 (19)C12—C7—N1—S1132.29 (17)
C2—C3—C4—C50.8 (3)C3—C2—N2—O452.3 (3)
C3—C4—C5—C60.2 (3)C1—C2—N2—O4128.6 (2)
C2—C1—C6—C51.2 (3)C3—C2—N2—O3124.8 (2)
S1—C1—C6—C5177.86 (16)C1—C2—N2—O354.3 (3)
C4—C5—C6—C10.9 (3)C7—N1—S1—O164.96 (18)
C12—C7—C8—C90.2 (3)C7—N1—S1—O2165.37 (15)
N1—C7—C8—C9177.49 (18)C7—N1—S1—C149.34 (18)
C7—C8—C9—C101.0 (3)C6—C1—S1—O19.79 (17)
C7—C8—C9—Cl1179.14 (15)C2—C1—S1—O1166.71 (16)
C8—C9—C10—C110.5 (4)C6—C1—S1—O2140.13 (15)
Cl1—C9—C10—C11178.63 (18)C2—C1—S1—O236.37 (18)
C9—C10—C11—C120.8 (4)C6—C1—S1—N1106.13 (16)
C9—C10—C11—Cl2179.01 (19)C2—C1—S1—N177.38 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.23 (2)3.052 (2)162 (2)
N1—H1N···O30.85 (2)2.44 (2)2.940 (2)118 (2)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H8Cl2N2O4S
Mr347.16
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2823 (8), 8.3436 (9), 10.670 (1)
α, β, γ (°)76.730 (8), 89.298 (9), 86.875 (9)
V3)716.59 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.44 × 0.40 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.774, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
4766, 2925, 2600
Rint0.009
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.04
No. of reflections2925
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.49

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.848 (16)2.234 (17)3.052 (2)162 (2)
N1—H1N···O30.848 (16)2.44 (2)2.940 (2)118.1 (18)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

UC thanks Mangalore University for the award of a research fellowship. BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2823.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds