organic compounds
1,4-Dichloro-2,3-bis(chloromethyl)butane
aEaStCHEM School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: raa@st-andrews.ac.uk
The title compound, C6H10Cl4, adopts a geometric arrangement with two C—Cl bonds antiperiplanar to C—H bonds and the other two antiperiplanar to C—C bonds. While minimising steric replusion, this arrangement still gives rise to some intramolecular C—H⋯Cl contacts. In the crystal, molecules are connected into a three-dimensional architecture via further C—H⋯Cl contacts.
Related literature
The title compound was previously prepared by Weinges & Spänig (1968). For related structures of polychlorinated acylic see: Frenzen et al. (1999); Frenzen & Coelhan (1998); Bart et al. (1979, 1980); Karapetyan et al. (2008); Kabalka et al. (2005); Podsiadło & Katrusiak (2006); Klaeboe et al. (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2010); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812048398/tk5174sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812048398/tk5174Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812048398/tk5174Isup3.cml
The title compound was prepared by the method of Weinges and Spänig (1968). Crystals suitable for X-ray
were obtained by at room temperature and ambient pressure.Carbon-bound H atoms were included in calculated positions (C—H distances are 1.00 Å for methine H atoms and 0.99 Å for methylene H atoms) and refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom).
Data collection: CrystalClear (Rigaku, 2010); cell
CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. |
C6H10Cl4 | F(000) = 912 |
Mr = 223.94 | Dx = 1.597 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 5355 reflections |
a = 8.998 (3) Å | θ = 1.7–28.6° |
b = 8.400 (3) Å | µ = 1.20 mm−1 |
c = 24.643 (7) Å | T = 93 K |
V = 1862.6 (10) Å3 | Prism, colourless |
Z = 8 | 0.25 × 0.25 × 0.10 mm |
Rigaku Mercury diffractometer | 1658 independent reflections |
Radiation source: rotating anode | 1553 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.050 |
Detector resolution: 14.7059 pixels mm-1 | θmax = 25.4°, θmin = 2.8° |
ω and ϕ scans | h = −10→10 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2010) | k = −9→10 |
Tmin = 0.746, Tmax = 1.000 | l = −25→29 |
8405 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0315P)2 + 0.758P] where P = (Fo2 + 2Fc2)/3 |
1658 reflections | (Δ/σ)max < 0.001 |
91 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C6H10Cl4 | V = 1862.6 (10) Å3 |
Mr = 223.94 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.998 (3) Å | µ = 1.20 mm−1 |
b = 8.400 (3) Å | T = 93 K |
c = 24.643 (7) Å | 0.25 × 0.25 × 0.10 mm |
Rigaku Mercury diffractometer | 1658 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2010) | 1553 reflections with I > 2σ(I) |
Tmin = 0.746, Tmax = 1.000 | Rint = 0.050 |
8405 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.29 e Å−3 |
1658 reflections | Δρmin = −0.26 e Å−3 |
91 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.07005 (5) | −0.12175 (5) | 0.063173 (16) | 0.02498 (15) | |
Cl2 | 0.32971 (5) | 0.25183 (6) | 0.190640 (17) | 0.02602 (15) | |
Cl3 | −0.33730 (5) | 0.06538 (6) | 0.184618 (18) | 0.02712 (15) | |
Cl4 | 0.08315 (5) | 0.40738 (5) | 0.056565 (18) | 0.02950 (15) | |
C1 | −0.1427 (2) | 0.0759 (2) | 0.07550 (7) | 0.0210 (4) | |
H1A | −0.1140 | 0.1468 | 0.0452 | 0.025* | |
H1B | −0.2526 | 0.0714 | 0.0768 | 0.025* | |
C2 | −0.08431 (17) | 0.14452 (19) | 0.12866 (6) | 0.0177 (4) | |
H2 | −0.1265 | 0.2541 | 0.1324 | 0.021* | |
C3 | 0.08737 (17) | 0.16035 (19) | 0.13078 (6) | 0.0174 (4) | |
H3 | 0.1284 | 0.0520 | 0.1383 | 0.021* | |
C4 | 0.13327 (19) | 0.2676 (2) | 0.17793 (6) | 0.0215 (4) | |
H4A | 0.0777 | 0.2367 | 0.2110 | 0.026* | |
H4B | 0.1079 | 0.3795 | 0.1693 | 0.026* | |
C5 | −0.13917 (19) | 0.0475 (2) | 0.17705 (7) | 0.0216 (4) | |
H5A | −0.0896 | 0.0855 | 0.2105 | 0.026* | |
H5B | −0.1126 | −0.0658 | 0.1718 | 0.026* | |
C6 | 0.15708 (18) | 0.2177 (2) | 0.07798 (7) | 0.0207 (4) | |
H6A | 0.1388 | 0.1378 | 0.0492 | 0.025* | |
H6B | 0.2659 | 0.2273 | 0.0829 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0309 (3) | 0.0212 (3) | 0.0228 (2) | −0.00077 (18) | 0.00016 (16) | −0.00473 (16) |
Cl2 | 0.0180 (3) | 0.0320 (3) | 0.0281 (3) | −0.00443 (16) | −0.00639 (15) | 0.00751 (18) |
Cl3 | 0.0168 (3) | 0.0315 (3) | 0.0331 (3) | −0.00376 (17) | 0.00498 (16) | −0.00645 (18) |
Cl4 | 0.0355 (3) | 0.0231 (3) | 0.0299 (3) | −0.00145 (18) | −0.00172 (17) | 0.00903 (18) |
C1 | 0.0210 (9) | 0.0203 (8) | 0.0215 (8) | 0.0006 (7) | −0.0031 (7) | 0.0003 (7) |
C2 | 0.0157 (9) | 0.0173 (8) | 0.0201 (8) | 0.0012 (6) | −0.0019 (6) | −0.0006 (7) |
C3 | 0.0167 (9) | 0.0167 (8) | 0.0188 (8) | 0.0017 (6) | −0.0003 (6) | 0.0010 (6) |
C4 | 0.0141 (8) | 0.0286 (9) | 0.0219 (8) | −0.0014 (7) | −0.0021 (6) | −0.0004 (7) |
C5 | 0.0157 (8) | 0.0275 (9) | 0.0217 (8) | 0.0002 (7) | 0.0012 (6) | −0.0022 (7) |
C6 | 0.0210 (10) | 0.0196 (8) | 0.0213 (8) | 0.0012 (7) | 0.0010 (6) | 0.0013 (7) |
Cl1—C1 | 1.8103 (18) | C3—C6 | 1.523 (2) |
Cl2—C4 | 1.7999 (18) | C3—C4 | 1.528 (2) |
Cl3—C5 | 1.7987 (18) | C3—H3 | 1.0000 |
Cl4—C6 | 1.8054 (18) | C4—H4A | 0.9900 |
C1—C2 | 1.525 (2) | C4—H4B | 0.9900 |
C1—H1A | 0.9900 | C5—H5A | 0.9900 |
C1—H1B | 0.9900 | C5—H5B | 0.9900 |
C2—C5 | 1.526 (2) | C6—H6A | 0.9900 |
C2—C3 | 1.551 (2) | C6—H6B | 0.9900 |
C2—H2 | 1.0000 | ||
C2—C1—Cl1 | 111.49 (11) | C3—C4—Cl2 | 110.75 (12) |
C2—C1—H1A | 109.3 | C3—C4—H4A | 109.5 |
Cl1—C1—H1A | 109.3 | Cl2—C4—H4A | 109.5 |
C2—C1—H1B | 109.3 | C3—C4—H4B | 109.5 |
Cl1—C1—H1B | 109.3 | Cl2—C4—H4B | 109.5 |
H1A—C1—H1B | 108.0 | H4A—C4—H4B | 108.1 |
C1—C2—C5 | 110.98 (14) | C2—C5—Cl3 | 110.91 (12) |
C1—C2—C3 | 113.87 (13) | C2—C5—H5A | 109.5 |
C5—C2—C3 | 109.97 (13) | Cl3—C5—H5A | 109.5 |
C1—C2—H2 | 107.2 | C2—C5—H5B | 109.5 |
C5—C2—H2 | 107.2 | Cl3—C5—H5B | 109.5 |
C3—C2—H2 | 107.2 | H5A—C5—H5B | 108.0 |
C6—C3—C4 | 110.60 (14) | C3—C6—Cl4 | 112.17 (11) |
C6—C3—C2 | 114.11 (13) | C3—C6—H6A | 109.2 |
C4—C3—C2 | 110.21 (13) | Cl4—C6—H6A | 109.2 |
C6—C3—H3 | 107.2 | C3—C6—H6B | 109.2 |
C4—C3—H3 | 107.2 | Cl4—C6—H6B | 109.2 |
C2—C3—H3 | 107.2 | H6A—C6—H6B | 107.9 |
Cl1—C1—C2—C5 | −64.59 (16) | C2—C3—C4—Cl2 | 166.96 (11) |
Cl1—C1—C2—C3 | 60.14 (17) | C1—C2—C5—Cl3 | −66.41 (15) |
C1—C2—C3—C6 | 40.2 (2) | C3—C2—C5—Cl3 | 166.68 (11) |
C5—C2—C3—C6 | 165.43 (14) | C4—C3—C6—Cl4 | −67.52 (15) |
C1—C2—C3—C4 | 165.31 (13) | C2—C3—C6—Cl4 | 57.41 (17) |
C5—C2—C3—C4 | −69.43 (18) | Cl1—C1—C2—H2 | 178.6 |
C6—C3—C4—Cl2 | −65.92 (15) | Cl4—C6—C3—H3 | 175.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···Cl3 | 0.99 | 2.76 | 3.2097 (19) | 108 |
C4—H4B···Cl4 | 0.99 | 2.80 | 3.2445 (19) | 108 |
C5—H5B···Cl1 | 0.99 | 2.74 | 3.2069 (19) | 109 |
C6—H6B···Cl2 | 0.99 | 2.72 | 3.1940 (18) | 110 |
C2—H2···Cl3i | 1.00 | 2.93 | 3.8599 (19) | 155 |
C3—H3···Cl2ii | 1.00 | 2.86 | 3.8092 (19) | 160 |
C4—H4B···Cl3i | 0.99 | 2.92 | 3.657 (2) | 132 |
C5—H5A···Cl2iii | 0.99 | 2.90 | 3.6951 (19) | 138 |
C6—H6A···Cl1iv | 0.99 | 2.84 | 3.655 (2) | 140 |
Symmetry codes: (i) −x−1/2, y+1/2, z; (ii) −x+1/2, y−1/2, z; (iii) x−1/2, y, −z+1/2; (iv) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C6H10Cl4 |
Mr | 223.94 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 93 |
a, b, c (Å) | 8.998 (3), 8.400 (3), 24.643 (7) |
V (Å3) | 1862.6 (10) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.20 |
Crystal size (mm) | 0.25 × 0.25 × 0.10 |
Data collection | |
Diffractometer | Rigaku Mercury diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2010) |
Tmin, Tmax | 0.746, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8405, 1658, 1553 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.075, 1.12 |
No. of reflections | 1658 |
No. of parameters | 91 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.26 |
Computer programs: CrystalClear (Rigaku, 2010), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···Cl3 | 0.99 | 2.76 | 3.2097 (19) | 108 |
C4—H4B···Cl4 | 0.99 | 2.80 | 3.2445 (19) | 108 |
C5—H5B···Cl1 | 0.99 | 2.74 | 3.2069 (19) | 109 |
C6—H6B···Cl2 | 0.99 | 2.72 | 3.1940 (18) | 110 |
C2—H2···Cl3i | 1.00 | 2.93 | 3.8599 (19) | 155 |
C3—H3···Cl2ii | 1.00 | 2.86 | 3.8092 (19) | 160 |
C4—H4B···Cl3i | 0.99 | 2.92 | 3.657 (2) | 132 |
C5—H5A···Cl2iii | 0.99 | 2.90 | 3.6951 (19) | 138 |
C6—H6A···Cl1iv | 0.99 | 2.84 | 3.655 (2) | 140 |
Symmetry codes: (i) −x−1/2, y+1/2, z; (ii) −x+1/2, y−1/2, z; (iii) x−1/2, y, −z+1/2; (iv) −x, −y, −z. |
Footnotes
‡Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX, USA.
Acknowledgements
The authors are grateful to the University of St Andrews and the Engineering and Physical Sciences Research Council (EPSRC, UK) for financial support.
References
Bart, J. C. J., Bassi, I. W. & Calcaterra, M. (1979). Acta Cryst. B35, 2646–2650. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bart, J. C. J., Bassi, I. W. & Calcaterra, M. (1980). Acta Cryst. B36, 421–424. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frenzen, G. & Coelhan, M. (1998). Private communication (refcode HITZOZ). CCDC, Cambridge, England. Google Scholar
Frenzen, G., Sippel, H. & Coelhan, M. (1999). Acta Cryst. C55, IUC9800079. CrossRef IUCr Journals Google Scholar
Kabalka, G. W., Wu, Z., Ju, Y. & Yao, M.-L. (2005). J. Org. Chem. 70, 10285–10291. Web of Science CSD CrossRef PubMed CAS Google Scholar
Karapetyan, A. A., Tamazyan, R. A., Mikaelyan, A. R., Grigoryan, A. M., Vardanyan, A. S. & Nikogosyan, L. Zh. (2008). J. Struct. Chem. 49, 965–968. Web of Science CrossRef CAS Google Scholar
Klaeboe, P., Klewe, B., Martinsen, K., Nielsen, C. J., Powell, D. L. & Stubbles, D. J. (1986). J. Mol. Struct. 140, 1–18. CSD CrossRef CAS Web of Science Google Scholar
Podsiadło, M. & Katrusiak, A. (2006). Acta Cryst. B62, 1071–1077. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weinges, K. & Spänig, R. (1968). Chem. Ber. 101, 3010–3017. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound shows a mixture of geometric arrangements of the C—Cl bonds, with two of them antiperiplanar to C—C bonds [Cl3—C5—C2—C3: 166.68 (11)°, Cl2—C4—C3—C2: 166.96 (11)°], and the other two antiperiplanar to C—H bonds [Cl1—C1—C2—H2: 178.6°, Cl4—C6—C3—H3: 175.9°]. This pattern of differing geometric arrangements has also been seen in related polychlorinated acylic alkanes (Frenzen et al., 1999; Frenzen & Coelhan, 1998; Bart et al., 1979, 1980; Karapetyan et al., 2008; Kabalka et al., 2005; Podsiadło & Katrusiak, 2006; Klaeboe et al., 1986), due to the necessity of minimizing steric repulsion in such extended structures. The arrangement of the C—Cl bonds gives rise to intramolecular C—H···Cl contacts for all four chlorines, at distances ranging from 2.72 to 2.80 Å. In addition, three of the four chlorine atoms also make intermolecular C—H···Cl contacts to adjacent molecules, at distances between 2.84 and 2.93 Å, resulting in the formation of a weakly interacting three-dimensional array.