metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­methyl­amino)­pyridinium] bis­­[4-(di­methyl­amino)­pyridine-κN1]tetra­kis­(thio­cyanato-κN)manganate(II)

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: swoehlert@ac.uni-kiel.de

(Received 15 November 2012; accepted 20 November 2012; online 24 November 2012)

In the crystal structure of the title compound, (C7H11N2)2[Mn(NCS)4(C7H10N2)2], the manganese(II) cations are coordinated by four N-bonded thio­cyanate anions and two N-bonded 4-(dimethyl­amino)­pyridine ligands into discrete complex dianions. For charge balance, two 4-(dimethylamino)pyridine counter cations are present, which do not coordinate to the metal cation. The asymmetric unit consists of one manganese(II) cation, four thio­cyanate anions and two 4-(dimethyl­amino)­pyridine ligands, as well as two protonated 4-(dimethyl­amino)­pyridinium cations. The discrete complex anions are connected to the non-coordinating pyridinium cations by weak N—H⋯S hydrogen-bonding inter­actions.

Related literature

For general background, see: Boeckmann & Näther (2011[Boeckmann, J. & Näther, C. (2011). Dalton Trans. 39, 11019-11026.], 2012[Boeckmann, J. & Näther, C. (2012). Polyhedron, 31 587-595.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)2[Mn(NCS)4(C7H10N2)2]

  • Mr = 777.96

  • Triclinic, [P \overline 1]

  • a = 11.7307 (8) Å

  • b = 11.9010 (9) Å

  • c = 15.4224 (12) Å

  • α = 102.520 (9)°

  • β = 96.794 (9)°

  • γ = 107.400 (8)°

  • V = 1966.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 180 K

  • 0.18 × 0.11 × 0.05 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.873, Tmax = 0.968

  • 24452 measured reflections

  • 9338 independent reflections

  • 6752 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.121

  • S = 1.02

  • 9338 reflections

  • 450 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N1 2.1928 (17)
Mn1—N2 2.2014 (19)
Mn1—N3 2.2468 (19)
Mn1—N4 2.2535 (18)
Mn1—N20 2.2561 (16)
Mn1—N10 2.2659 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N30—H30⋯S4 0.88 2.36 3.217 (2) 165
N40—H40A⋯S3i 0.88 2.35 3.213 (3) 166
Symmetry code: (i) x+1, y+1, z+1.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: XCIF in SHELXTL.

Supporting information


Comment top

The structure determination was performed during a project on the synthesis, thermal and magnetic properties of coordination compounds based on transition metal thiocyanates and neutral N-donor co-ligands (Boeckmann & Näther, 2011 & 2012). In order to investigate the influence of the co-ligand, N,N'-dimethylaminopyridine was reacted with manganese(II) thiocyanate which resulted in the formation of crystals of the title compound that were identified by single-crystal X-ray diffraction.

In the crystal structure of the title compound each manganese(II) cation is coordinated by four N-bonded thiocyanato anions and two N-bonded dimethylaminopyridine ligands (Fig. 1). The MnN6 octahedra are slightly distorted with distances in the range of 2.1928 (19) Å to 2.2659 (16) Å (Table 1). The angles arround the manganese(II) cations are ranging from 87.73 (6)° to 92.86 (7) ° and 173.95 (6) ° to 178.78 (7) ° (Table 1). There are additional protonated dimethylaminopyridine ligands that does not coordinate to the metal cations, but which are linked to the complex cations by weak intermolecular N–H···S hydrogen bonding, which are ranging from 3.213 (3) Å (N40-H40A···S3[1 + x, 1 + y, 1 + z]) to 3.217 (2) Å (N30-H30···S4, see Fig. 2).

Related literature top

For general background, see: Boeckmann & Näther (2011, 2012).

Experimental top

MnSO4xH2O, Ba(NCS)2x3H2O and N,N'-dimethylaminopyridine were obtained from Sigma Aldrich. 0.15 mmol (26 mg) Mn(NCS)2 and 0.3 mmol (58.3 mg) dimethylaminopyridine were reacted with 1 mL ethanol in a snap cap vial. After three days yellow colored block-shaped single crystals of the title compound were obtained.

Refinement top

All C-H and N-H H atoms were located in difference map but were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropic with Uiso(H) = 1.2 Ueq(C, N) (1.5 for the methyl H atoms) using a riding model with Caromatic = 0.95 Å, CmethylH = 0.98 Å and N—H = 0.88 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the crystallographic b-axis. Intermolecular hydrogen bonding is shown as dashed lines.
Bis[4-(dimethylamino)pyridinium] bis[4-(dimethylamino)pyridine- κN1]tetrakis(thiocyanato-κN)manganate(II) top
Crystal data top
(C7H11N2)2[Mn(NCS)4(C7H10N2)2]Z = 2
Mr = 777.96F(000) = 814
Triclinic, P1Dx = 1.314 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.7307 (8) ÅCell parameters from 24452 reflections
b = 11.9010 (9) Åθ = 2.6–28.0°
c = 15.4224 (12) ŵ = 0.59 mm1
α = 102.520 (9)°T = 180 K
β = 96.794 (9)°Block, yellow
γ = 107.400 (8)°0.18 × 0.11 × 0.05 mm
V = 1966.6 (3) Å3
Data collection top
Stoe IPDS-1
diffractometer
9338 independent reflections
Radiation source: fine-focus sealed tube6752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi scanθmax = 28.0°, θmin = 2.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1515
Tmin = 0.873, Tmax = 0.968k = 1515
24452 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.0822P]
where P = (Fo2 + 2Fc2)/3
9338 reflections(Δ/σ)max = 0.001
450 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
(C7H11N2)2[Mn(NCS)4(C7H10N2)2]γ = 107.400 (8)°
Mr = 777.96V = 1966.6 (3) Å3
Triclinic, P1Z = 2
a = 11.7307 (8) ÅMo Kα radiation
b = 11.9010 (9) ŵ = 0.59 mm1
c = 15.4224 (12) ÅT = 180 K
α = 102.520 (9)°0.18 × 0.11 × 0.05 mm
β = 96.794 (9)°
Data collection top
Stoe IPDS-1
diffractometer
9338 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
6752 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.968Rint = 0.041
24452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.80 e Å3
9338 reflectionsΔρmin = 0.72 e Å3
450 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.68016 (2)0.43208 (2)0.733534 (19)0.03223 (9)
N10.58727 (17)0.35462 (17)0.83317 (13)0.0465 (4)
C10.5433 (2)0.29723 (19)0.87948 (16)0.0449 (5)
S10.48122 (9)0.21875 (8)0.94635 (7)0.0889 (3)
N20.81931 (17)0.57958 (16)0.84005 (13)0.0479 (4)
C20.90686 (19)0.65777 (17)0.87884 (14)0.0387 (4)
S21.03117 (6)0.76864 (5)0.93376 (6)0.0679 (2)
N30.54216 (18)0.28333 (16)0.62122 (14)0.0516 (5)
C30.45842 (18)0.19649 (17)0.59757 (13)0.0363 (4)
S30.33917 (6)0.07240 (6)0.56332 (5)0.0677 (2)
N40.77439 (18)0.50766 (18)0.62913 (14)0.0507 (5)
C40.84494 (19)0.58781 (17)0.61404 (13)0.0364 (4)
S40.94638 (7)0.70095 (6)0.59289 (5)0.0673 (2)
N100.79695 (14)0.31067 (13)0.72983 (11)0.0344 (3)
C100.81667 (19)0.25345 (17)0.65092 (14)0.0392 (4)
H100.77930.26490.59690.047*
C110.8868 (2)0.17989 (17)0.64293 (15)0.0429 (5)
H110.89690.14220.58470.052*
C120.94409 (18)0.15981 (16)0.72082 (16)0.0416 (5)
C130.92381 (19)0.21962 (18)0.80340 (15)0.0418 (5)
H130.95980.21030.85870.050*
C140.85175 (18)0.29156 (17)0.80394 (14)0.0379 (4)
H140.83980.33070.86100.045*
N111.01300 (19)0.08574 (18)0.71490 (18)0.0611 (6)
C151.0336 (3)0.0294 (2)0.6272 (3)0.0813 (10)
H15A0.95580.02660.58910.122*
H15B1.08940.01610.63560.122*
H15C1.06940.09300.59770.122*
C161.0718 (3)0.0642 (3)0.7951 (3)0.0855 (11)
H16A1.14490.13480.82500.128*
H16B1.09490.00890.77750.128*
H16C1.01530.05220.83690.128*
N200.56112 (15)0.54793 (14)0.72115 (11)0.0345 (3)
C200.51483 (18)0.55514 (17)0.63922 (13)0.0369 (4)
H200.53620.51180.58790.044*
C210.43956 (19)0.61995 (17)0.62432 (13)0.0365 (4)
H210.41070.62090.56440.044*
C220.40472 (17)0.68564 (16)0.69838 (13)0.0346 (4)
C230.45337 (18)0.67870 (16)0.78447 (13)0.0359 (4)
H230.43430.72100.83740.043*
C240.52809 (17)0.61082 (16)0.79141 (13)0.0348 (4)
H240.55900.60790.85040.042*
N210.32914 (17)0.74991 (16)0.68615 (13)0.0444 (4)
C250.2838 (2)0.7546 (2)0.59538 (18)0.0538 (6)
H25A0.35270.79020.56820.081*
H25B0.23120.80510.59890.081*
H25C0.23710.67180.55800.081*
C260.2942 (2)0.8181 (2)0.76234 (19)0.0584 (6)
H26A0.25350.76230.79620.088*
H26B0.23840.85710.74010.088*
H26C0.36700.88080.80220.088*
N300.84902 (18)0.59839 (17)0.37737 (13)0.0502 (5)
H300.86630.61300.43670.060*
C300.9012 (2)0.5296 (2)0.32567 (17)0.0483 (5)
H30A0.95580.49720.35390.058*
C310.87713 (18)0.50555 (17)0.23413 (15)0.0392 (4)
H310.91380.45570.19870.047*
C320.79728 (17)0.55486 (15)0.19124 (13)0.0333 (4)
C330.74295 (19)0.62532 (17)0.24890 (15)0.0405 (4)
H330.68690.65850.22360.049*
C340.7712 (2)0.64492 (19)0.33973 (16)0.0474 (5)
H340.73510.69270.37760.057*
N310.77449 (17)0.53660 (16)0.10194 (12)0.0436 (4)
C350.8320 (3)0.4662 (2)0.04314 (17)0.0598 (6)
H35A0.80090.38030.04380.090*
H35B0.92050.49840.06500.090*
H35C0.81330.47270.01880.090*
C360.6889 (3)0.5836 (2)0.05802 (17)0.0583 (6)
H36A0.70670.66970.08920.087*
H36B0.60560.53660.06060.087*
H36C0.69660.57610.00540.087*
N401.3442 (2)1.0729 (2)1.35554 (18)0.0741 (7)
H40A1.35691.07861.41400.089*
C401.3919 (2)1.0029 (2)1.3001 (2)0.0652 (8)
H401.43940.96111.32490.078*
C411.37352 (19)0.99125 (19)1.21042 (19)0.0495 (6)
H411.40830.94191.17260.059*
C421.30213 (17)1.05255 (16)1.17213 (17)0.0414 (5)
C431.2558 (2)1.12694 (19)1.23391 (19)0.0509 (6)
H431.20931.17171.21200.061*
C441.2772 (3)1.1342 (2)1.3222 (2)0.0644 (7)
H441.24481.18341.36240.077*
N411.28055 (16)1.04136 (15)1.08378 (14)0.0445 (4)
C451.3279 (2)0.9643 (2)1.02188 (19)0.0555 (6)
H45A1.41710.99351.03820.083*
H45B1.30270.96750.95980.083*
H45C1.29590.87991.02590.083*
C461.2060 (2)1.1027 (2)1.0441 (2)0.0581 (6)
H46A1.12331.07321.05560.087*
H46B1.20301.08530.97860.087*
H46C1.24161.19111.07140.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02959 (15)0.02651 (13)0.03901 (16)0.00659 (10)0.00554 (11)0.01014 (11)
N10.0466 (10)0.0481 (10)0.0521 (11)0.0159 (8)0.0183 (9)0.0232 (8)
C10.0484 (12)0.0459 (11)0.0602 (13)0.0322 (10)0.0241 (11)0.0243 (10)
S10.1152 (7)0.0995 (6)0.1337 (7)0.0841 (6)0.0926 (6)0.0925 (6)
N20.0442 (10)0.0363 (9)0.0529 (11)0.0093 (8)0.0018 (9)0.0028 (8)
C20.0388 (11)0.0325 (9)0.0478 (11)0.0203 (8)0.0054 (9)0.0069 (8)
S20.0375 (3)0.0424 (3)0.1037 (6)0.0146 (2)0.0138 (3)0.0082 (3)
N30.0442 (10)0.0387 (9)0.0582 (12)0.0076 (8)0.0057 (9)0.0025 (8)
C30.0367 (10)0.0362 (9)0.0368 (10)0.0177 (8)0.0022 (8)0.0065 (8)
S30.0525 (4)0.0541 (3)0.0742 (4)0.0096 (3)0.0026 (3)0.0156 (3)
N40.0523 (11)0.0505 (10)0.0601 (12)0.0184 (9)0.0235 (10)0.0282 (9)
C40.0417 (11)0.0404 (10)0.0347 (10)0.0215 (8)0.0103 (8)0.0131 (8)
S40.0672 (4)0.0586 (4)0.0569 (4)0.0107 (3)0.0068 (3)0.0244 (3)
N100.0323 (8)0.0317 (7)0.0374 (8)0.0098 (6)0.0050 (7)0.0079 (6)
C100.0426 (11)0.0352 (9)0.0369 (10)0.0114 (8)0.0050 (8)0.0077 (8)
C110.0421 (11)0.0331 (9)0.0491 (12)0.0098 (8)0.0129 (9)0.0036 (8)
C120.0291 (10)0.0269 (8)0.0661 (14)0.0057 (7)0.0088 (9)0.0121 (9)
C130.0361 (11)0.0368 (9)0.0487 (12)0.0086 (8)0.0000 (9)0.0135 (9)
C140.0369 (10)0.0353 (9)0.0369 (10)0.0088 (8)0.0042 (8)0.0069 (8)
N110.0457 (11)0.0421 (10)0.1033 (18)0.0220 (9)0.0201 (12)0.0215 (11)
C150.0727 (19)0.0453 (13)0.139 (3)0.0292 (13)0.054 (2)0.0190 (16)
C160.0543 (17)0.0700 (18)0.142 (3)0.0330 (14)0.0018 (18)0.041 (2)
N200.0338 (8)0.0320 (7)0.0382 (8)0.0111 (6)0.0060 (7)0.0107 (6)
C200.0408 (11)0.0368 (9)0.0343 (9)0.0159 (8)0.0083 (8)0.0070 (7)
C210.0402 (11)0.0379 (9)0.0340 (9)0.0160 (8)0.0068 (8)0.0109 (8)
C220.0323 (10)0.0278 (8)0.0435 (10)0.0082 (7)0.0100 (8)0.0103 (7)
C230.0382 (10)0.0307 (8)0.0371 (10)0.0084 (7)0.0127 (8)0.0071 (7)
C240.0349 (10)0.0330 (9)0.0333 (9)0.0064 (7)0.0053 (8)0.0103 (7)
N210.0481 (10)0.0421 (9)0.0509 (10)0.0260 (8)0.0120 (8)0.0115 (8)
C250.0541 (14)0.0552 (13)0.0665 (15)0.0310 (11)0.0122 (12)0.0274 (12)
C260.0582 (15)0.0530 (13)0.0718 (17)0.0335 (12)0.0189 (13)0.0078 (12)
N300.0524 (11)0.0491 (10)0.0413 (10)0.0029 (9)0.0119 (9)0.0147 (8)
C300.0394 (11)0.0479 (11)0.0606 (14)0.0107 (9)0.0073 (10)0.0273 (11)
C310.0345 (10)0.0361 (9)0.0534 (12)0.0169 (8)0.0105 (9)0.0169 (8)
C320.0302 (9)0.0258 (8)0.0453 (11)0.0112 (7)0.0079 (8)0.0096 (7)
C330.0387 (11)0.0315 (9)0.0534 (12)0.0157 (8)0.0130 (9)0.0080 (8)
C340.0473 (12)0.0365 (10)0.0551 (13)0.0085 (9)0.0217 (10)0.0071 (9)
N310.0505 (11)0.0422 (9)0.0446 (10)0.0286 (8)0.0063 (8)0.0079 (7)
C350.0777 (18)0.0674 (15)0.0462 (13)0.0473 (14)0.0131 (12)0.0064 (11)
C360.0701 (17)0.0613 (14)0.0520 (13)0.0410 (13)0.0021 (12)0.0130 (11)
N400.0617 (15)0.0691 (15)0.0688 (15)0.0134 (12)0.0079 (12)0.0243 (13)
C400.0426 (13)0.0569 (15)0.090 (2)0.0009 (11)0.0024 (13)0.0387 (15)
C410.0324 (11)0.0368 (10)0.0816 (17)0.0105 (8)0.0084 (11)0.0233 (11)
C420.0263 (9)0.0272 (8)0.0725 (15)0.0081 (7)0.0120 (9)0.0171 (9)
C430.0392 (12)0.0380 (10)0.0768 (17)0.0117 (9)0.0205 (11)0.0146 (10)
C440.0524 (15)0.0523 (14)0.0772 (19)0.0009 (11)0.0238 (14)0.0119 (13)
N410.0376 (9)0.0363 (8)0.0659 (12)0.0194 (7)0.0112 (9)0.0161 (8)
C450.0474 (13)0.0452 (12)0.0766 (17)0.0202 (10)0.0191 (12)0.0115 (11)
C460.0525 (14)0.0541 (13)0.0782 (17)0.0295 (11)0.0067 (13)0.0257 (12)
Geometric parameters (Å, º) top
Mn1—N12.1928 (17)C25—H25A0.9800
Mn1—N22.2014 (19)C25—H25B0.9800
Mn1—N32.2468 (19)C25—H25C0.9800
Mn1—N42.2535 (18)C26—H26A0.9800
Mn1—N202.2561 (16)C26—H26B0.9800
Mn1—N102.2659 (16)C26—H26C0.9800
N1—C11.153 (3)N30—C341.339 (3)
C1—S11.629 (2)N30—C301.346 (3)
N2—C21.149 (3)N30—H300.8800
C2—S21.630 (2)C30—C311.355 (3)
N3—C31.145 (3)C30—H30A0.9500
C3—S31.633 (2)C31—C321.418 (3)
N4—C41.148 (3)C31—H310.9500
C4—S41.631 (2)C32—N311.328 (3)
N10—C141.341 (2)C32—C331.425 (3)
N10—C101.342 (3)C33—C341.352 (3)
C10—C111.366 (3)C33—H330.9500
C10—H100.9500C34—H340.9500
C11—C121.408 (3)N31—C361.456 (3)
C11—H110.9500N31—C351.461 (3)
C12—N111.359 (3)C35—H35A0.9800
C12—C131.402 (3)C35—H35B0.9800
C13—C141.371 (3)C35—H35C0.9800
C13—H130.9500C36—H36A0.9800
C14—H140.9500C36—H36B0.9800
N11—C161.454 (4)C36—H36C0.9800
N11—C151.456 (4)N40—C401.349 (4)
C15—H15A0.9800N40—C441.350 (4)
C15—H15B0.9800N40—H40A0.8800
C15—H15C0.9800C40—C411.345 (4)
C16—H16A0.9800C40—H400.9500
C16—H16B0.9800C41—C421.420 (3)
C16—H16C0.9800C41—H410.9500
N20—C241.344 (3)C42—N411.326 (3)
N20—C201.346 (2)C42—C431.425 (3)
C20—C211.365 (3)C43—C441.335 (4)
C20—H200.9500C43—H430.9500
C21—C221.413 (3)C44—H440.9500
C21—H210.9500N41—C451.453 (3)
C22—N211.355 (2)N41—C461.457 (3)
C22—C231.411 (3)C45—H45A0.9800
C23—C241.368 (3)C45—H45B0.9800
C23—H230.9500C45—H45C0.9800
C24—H240.9500C46—H46A0.9800
N21—C261.452 (3)C46—H46B0.9800
N21—C251.457 (3)C46—H46C0.9800
N1—Mn1—N292.28 (7)N21—C25—H25B109.5
N1—Mn1—N389.70 (8)H25A—C25—H25B109.5
N2—Mn1—N3177.98 (7)N21—C25—H25C109.5
N1—Mn1—N4178.78 (7)H25A—C25—H25C109.5
N2—Mn1—N488.76 (8)H25B—C25—H25C109.5
N3—Mn1—N489.26 (8)N21—C26—H26A109.5
N1—Mn1—N2092.86 (6)N21—C26—H26B109.5
N2—Mn1—N2092.57 (7)H26A—C26—H26B109.5
N3—Mn1—N2087.73 (7)N21—C26—H26C109.5
N4—Mn1—N2087.73 (6)H26A—C26—H26C109.5
N1—Mn1—N1091.48 (6)H26B—C26—H26C109.5
N2—Mn1—N1091.46 (7)C34—N30—C30120.9 (2)
N3—Mn1—N1088.08 (7)C34—N30—H30119.6
N4—Mn1—N1087.86 (6)C30—N30—H30119.6
N20—Mn1—N10173.95 (6)N30—C30—C31121.2 (2)
C1—N1—Mn1168.73 (18)N30—C30—H30A119.4
N1—C1—S1178.8 (2)C31—C30—H30A119.4
C2—N2—Mn1163.48 (19)C30—C31—C32120.0 (2)
N2—C2—S2179.9 (3)C30—C31—H31120.0
C3—N3—Mn1150.20 (18)C32—C31—H31120.0
N3—C3—S3179.7 (2)N31—C32—C31121.73 (18)
C4—N4—Mn1147.24 (19)N31—C32—C33121.70 (18)
N4—C4—S4179.3 (2)C31—C32—C33116.57 (19)
C14—N10—C10115.37 (17)C34—C33—C32120.0 (2)
C14—N10—Mn1123.78 (13)C34—C33—H33120.0
C10—N10—Mn1120.85 (13)C32—C33—H33120.0
N10—C10—C11124.47 (19)N30—C34—C33121.4 (2)
N10—C10—H10117.8N30—C34—H34119.3
C11—C10—H10117.8C33—C34—H34119.3
C10—C11—C12120.1 (2)C32—N31—C36121.46 (18)
C10—C11—H11120.0C32—N31—C35121.58 (17)
C12—C11—H11120.0C36—N31—C35116.95 (19)
N11—C12—C13123.0 (2)N31—C35—H35A109.5
N11—C12—C11121.4 (2)N31—C35—H35B109.5
C13—C12—C11115.61 (18)H35A—C35—H35B109.5
C14—C13—C12119.70 (19)N31—C35—H35C109.5
C14—C13—H13120.2H35A—C35—H35C109.5
C12—C13—H13120.2H35B—C35—H35C109.5
N10—C14—C13124.79 (19)N31—C36—H36A109.5
N10—C14—H14117.6N31—C36—H36B109.5
C13—C14—H14117.6H36A—C36—H36B109.5
C12—N11—C16121.6 (3)N31—C36—H36C109.5
C12—N11—C15120.2 (2)H36A—C36—H36C109.5
C16—N11—C15118.2 (2)H36B—C36—H36C109.5
N11—C15—H15A109.5C40—N40—C44120.7 (3)
N11—C15—H15B109.5C40—N40—H40A119.7
H15A—C15—H15B109.5C44—N40—H40A119.7
N11—C15—H15C109.5C41—C40—N40121.3 (3)
H15A—C15—H15C109.5C41—C40—H40119.4
H15B—C15—H15C109.5N40—C40—H40119.4
N11—C16—H16A109.5C40—C41—C42120.1 (2)
N11—C16—H16B109.5C40—C41—H41120.0
H16A—C16—H16B109.5C42—C41—H41120.0
N11—C16—H16C109.5N41—C42—C41121.6 (2)
H16A—C16—H16C109.5N41—C42—C43122.07 (19)
H16B—C16—H16C109.5C41—C42—C43116.3 (2)
C24—N20—C20115.08 (16)C44—C43—C42120.5 (2)
C24—N20—Mn1124.47 (13)C44—C43—H43119.7
C20—N20—Mn1120.43 (13)C42—C43—H43119.7
N20—C20—C21124.96 (18)C43—C44—N40121.1 (3)
N20—C20—H20117.5C43—C44—H44119.4
C21—C20—H20117.5N40—C44—H44119.4
C20—C21—C22119.79 (18)C42—N41—C45121.17 (18)
C20—C21—H21120.1C42—N41—C46121.77 (19)
C22—C21—H21120.1C45—N41—C46117.0 (2)
N21—C22—C23123.08 (18)N41—C45—H45A109.5
N21—C22—C21121.45 (18)N41—C45—H45B109.5
C23—C22—C21115.47 (17)H45A—C45—H45B109.5
C24—C23—C22119.75 (18)N41—C45—H45C109.5
C24—C23—H23120.1H45A—C45—H45C109.5
C22—C23—H23120.1H45B—C45—H45C109.5
N20—C24—C23124.95 (18)N41—C46—H46A109.5
N20—C24—H24117.5N41—C46—H46B109.5
C23—C24—H24117.5H46A—C46—H46B109.5
C22—N21—C26121.37 (19)N41—C46—H46C109.5
C22—N21—C25120.15 (18)H46A—C46—H46C109.5
C26—N21—C25118.46 (18)H46B—C46—H46C109.5
N21—C25—H25A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N30—H30···S40.882.363.217 (2)165
N40—H40A···S3i0.882.353.213 (3)166
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C7H11N2)2[Mn(NCS)4(C7H10N2)2]
Mr777.96
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)11.7307 (8), 11.9010 (9), 15.4224 (12)
α, β, γ (°)102.520 (9), 96.794 (9), 107.400 (8)
V3)1966.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.18 × 0.11 × 0.05
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.873, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
24452, 9338, 6752
Rint0.041
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.02
No. of reflections9338
No. of parameters450
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.72

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2012), XCIF in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—N12.1928 (17)Mn1—N42.2535 (18)
Mn1—N22.2014 (19)Mn1—N202.2561 (16)
Mn1—N32.2468 (19)Mn1—N102.2659 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N30—H30···S40.882.363.217 (2)165
N40—H40A···S3i0.882.353.213 (3)166
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr Wolfgang Bensch for access to his experimental facility.

References

First citationBoeckmann, J. & Näther, C. (2011). Dalton Trans. 39, 11019–11026.  Web of Science CSD CrossRef Google Scholar
First citationBoeckmann, J. & Näther, C. (2012). Polyhedron, 31 587–595.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds