metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(9-allyl-6-carb­­oxy-9H-carbazole-3-carboxyl­ato-κ2O3,O3′)di­aqua­zinc

aEnvironmental Engineering Department, Xiamen University of Technology, Xiamen 361024, People's Republic of China
*Correspondence e-mail: chemlidl@163.com

(Received 29 October 2012; accepted 2 November 2012; online 10 November 2012)

In the title compound, [Zn(C17H12NO4)2(H2O)2], the ZnII atom is located on a twofold rotation axis and is six-coordinated by four carboxyl­ate O atoms from two chelating 9-allyl-6-carb­oxy-9H-carbazole-3-carboxyl­ate ligands and two O atoms from two water mol­ecules. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into a layer structure parallel to (-101).

Related literature

For the design and properties of complexes with supra­molecular metal-organic framework structures, see: Li et al. (2011[Li, H.-J., Gao, Z.-Q. & Gu, J.-Z. (2011). Acta Cryst. E67, m919.]); Yang et al. (2007[Yang, X.-P., Jones, R. A., Rivers, J. H. & Lai, R. P. (2007). Dalton Trans. pp. 3936-3942.]). For related structures, see: Wang et al. (2010[Wang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 10, 534-540.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C17H12NO4)2(H2O)2]

  • Mr = 689.95

  • Monoclinic, C 2/c

  • a = 30.8562 (18) Å

  • b = 5.0491 (3) Å

  • c = 21.8915 (13) Å

  • β = 119.403 (1)°

  • V = 2971.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 173 K

  • 0.22 × 0.16 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.828, Tmax = 0.885

  • 7758 measured reflections

  • 2942 independent reflections

  • 2390 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.02

  • 2942 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.4040 (15)
Zn1—O2 2.0392 (15)
Zn1—O1W 1.9824 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O4i 0.84 1.81 2.654 (2) 177
O1W—H1B⋯O2ii 0.85 1.88 2.728 (2) 170
O3—H3A⋯O1i 0.87 1.77 2.634 (2) 173
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (ii) [-x+1, y+1, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystal engineering based on metal-organic frameworks (MOFs) continues to attract considerable interest not only because of their intriguing variety of architectures but also for their potential functional properties, such as magnetism, nonlinear optics, hydrogen storage and catalysis (Li et al., 2011; Yang et al., 2007). Multifunctional ligands can link metal ions into one-, two- or three-dimensional structures. In order to extend the investigations in this field, we designed and synthesized the title zinc(II) compound and report here its structure.

The asymmetric unit of the title complex (Fig. 1) contains a ZnII atom, one 9-allyl-9H-carbazole-6-carboxy-3-carboxylate ligand and one coordinated water molecule. The ZnII atom, lying on a twofold rotation axis, is six-coordinated by four O atoms from two carboxylate ligands and two water molecules in an irregular geometry. The bond distances (Table 1) and angles are normal (Wang et al., 2010). In the crystal structure, O—H···O hydrogen bonds (Table 2) link the complex molecules into a layer structure parellel to (-1 0 1) (Fig. 2).

Related literature top

For the design and properties of complexes with supramolecular metal-organic framework structures, see: Li et al. (2011); Yang et al. (2007). For related structures, see: Wang et al. (2010).

Experimental top

The synthesis was performed under hydrothermal conditions. A mixture of 9-allyl-9H-carbazole-3,6-dicarboxylic acid (0.2 mmol, 0.062 g), Zn(NO3)2.6H2O (0.1 mmol, 0.030 g) and H2O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 433 K in 2 h and maintained at 433 K for 72 h. Hereafter the mixture was cooled to 298 K, and colorless crystals of the title compound were obtained (yield: 59%).

Refinement top

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 and 0.99 Å and with Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were located in a difference Fourier map and refined as riding, with Uiso(H) = 1.5Ueq(O). Reflection (2 0 0) was affected by the beamstop shadow and excluded from the refinement by an OMIT instruction.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1 - x, y, 3/2 - z.]
[Figure 2] Fig. 2. View of the layer structure in the title compound, built by hydrogen bonds (dashed lines).
Bis(9-allyl-6-carboxy-9H-carbazole-3-carboxylato- κ2O3,O3')diaquazinc top
Crystal data top
[Zn(C17H12NO4)2(H2O)2]F(000) = 1424
Mr = 689.95Dx = 1.542 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3306 reflections
a = 30.8562 (18) Åθ = 2.7–26.1°
b = 5.0491 (3) ŵ = 0.89 mm1
c = 21.8915 (13) ÅT = 173 K
β = 119.403 (1)°Block, colourless
V = 2971.3 (3) Å30.22 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2942 independent reflections
Radiation source: fine-focus sealed tube2390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3837
Tmin = 0.828, Tmax = 0.885k = 46
7758 measured reflectionsl = 2720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
2942 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Zn(C17H12NO4)2(H2O)2]V = 2971.3 (3) Å3
Mr = 689.95Z = 4
Monoclinic, C2/cMo Kα radiation
a = 30.8562 (18) ŵ = 0.89 mm1
b = 5.0491 (3) ÅT = 173 K
c = 21.8915 (13) Å0.22 × 0.16 × 0.14 mm
β = 119.403 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2942 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2390 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.885Rint = 0.033
7758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
2942 reflectionsΔρmin = 0.26 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50001.62460 (7)0.75000.02411 (14)
C10.45216 (8)1.3295 (4)0.64103 (11)0.0209 (5)
C20.43305 (8)1.1274 (4)0.58455 (11)0.0208 (5)
C30.38251 (8)1.0739 (4)0.54621 (11)0.0216 (5)
H30.35961.17050.55470.026*
C40.36580 (8)0.8774 (4)0.49528 (11)0.0214 (5)
C50.31714 (8)0.7713 (5)0.44657 (11)0.0225 (5)
C60.26914 (9)0.8305 (5)0.43223 (12)0.0254 (5)
H60.26330.96720.45710.030*
C70.22985 (8)0.6862 (5)0.38084 (12)0.0266 (5)
C80.23887 (9)0.4838 (5)0.34407 (13)0.0330 (6)
H80.21150.38610.30950.040*
C90.28585 (9)0.4234 (5)0.35656 (13)0.0316 (6)
H90.29150.28850.33100.038*
C100.32518 (9)0.5698 (5)0.40878 (11)0.0251 (5)
C110.40064 (8)0.7341 (5)0.48402 (11)0.0218 (5)
C120.45129 (8)0.7873 (5)0.52155 (11)0.0255 (5)
H120.47430.69110.51320.031*
C130.46686 (8)0.9849 (5)0.57137 (11)0.0245 (5)
H130.50131.02600.59750.029*
C140.17785 (9)0.7384 (5)0.36266 (12)0.0297 (6)
C150.39846 (9)0.3622 (5)0.40603 (12)0.0281 (5)
H15A0.37960.19380.39460.034*
H15B0.43270.32520.44410.034*
C160.40095 (10)0.4511 (6)0.34362 (13)0.0386 (7)
H160.41900.34230.32850.046*
C170.38062 (11)0.6661 (7)0.30711 (15)0.0517 (8)
H17A0.36220.78120.32020.062*
H17B0.38430.70690.26750.062*
N10.37548 (7)0.5493 (4)0.43157 (9)0.0238 (4)
O10.42355 (6)1.4699 (3)0.65268 (8)0.0284 (4)
O20.49925 (5)1.3547 (3)0.68019 (8)0.0235 (4)
O30.17182 (6)0.9470 (4)0.39349 (9)0.0400 (5)
H3A0.13970.96210.37610.060*
O40.14358 (6)0.6002 (4)0.32174 (10)0.0418 (5)
O1W0.45497 (6)1.8957 (3)0.75397 (8)0.0285 (4)
H1A0.42371.90180.72910.043*
H1B0.46642.04190.77550.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0264 (2)0.0185 (2)0.0267 (2)0.0000.01250 (18)0.000
C10.0207 (12)0.0198 (12)0.0214 (11)0.0020 (9)0.0097 (9)0.0046 (9)
C20.0213 (12)0.0211 (12)0.0170 (10)0.0001 (9)0.0072 (9)0.0013 (9)
C30.0182 (11)0.0258 (13)0.0203 (11)0.0023 (9)0.0091 (9)0.0006 (9)
C40.0192 (11)0.0231 (12)0.0203 (11)0.0007 (10)0.0085 (9)0.0003 (9)
C50.0199 (12)0.0260 (13)0.0200 (11)0.0011 (10)0.0085 (9)0.0025 (10)
C60.0234 (12)0.0278 (13)0.0249 (12)0.0009 (10)0.0118 (10)0.0037 (10)
C70.0193 (12)0.0304 (14)0.0275 (12)0.0006 (10)0.0095 (10)0.0024 (10)
C80.0241 (13)0.0347 (15)0.0333 (13)0.0041 (12)0.0087 (11)0.0099 (12)
C90.0267 (13)0.0325 (15)0.0316 (13)0.0008 (11)0.0112 (11)0.0095 (11)
C100.0254 (13)0.0258 (13)0.0231 (12)0.0021 (10)0.0111 (10)0.0015 (9)
C110.0224 (12)0.0214 (12)0.0199 (11)0.0032 (10)0.0092 (9)0.0031 (9)
C120.0224 (12)0.0303 (13)0.0240 (11)0.0052 (10)0.0115 (10)0.0001 (10)
C130.0175 (11)0.0293 (13)0.0233 (11)0.0010 (10)0.0072 (9)0.0016 (10)
C140.0243 (13)0.0325 (14)0.0298 (13)0.0010 (11)0.0115 (11)0.0028 (11)
C150.0287 (13)0.0251 (13)0.0299 (12)0.0058 (11)0.0140 (11)0.0020 (10)
C160.0380 (16)0.0498 (18)0.0353 (14)0.0066 (14)0.0236 (13)0.0029 (13)
C170.053 (2)0.063 (2)0.0472 (17)0.0068 (16)0.0314 (16)0.0143 (16)
N10.0209 (10)0.0261 (11)0.0233 (10)0.0026 (8)0.0100 (8)0.0044 (8)
O10.0211 (9)0.0290 (9)0.0296 (9)0.0026 (7)0.0083 (7)0.0079 (7)
O20.0150 (8)0.0241 (9)0.0250 (8)0.0015 (7)0.0047 (7)0.0010 (7)
O30.0206 (9)0.0479 (12)0.0461 (11)0.0008 (8)0.0122 (8)0.0178 (9)
O40.0200 (9)0.0454 (12)0.0514 (11)0.0048 (8)0.0109 (8)0.0197 (9)
O1W0.0164 (8)0.0239 (9)0.0367 (9)0.0017 (7)0.0065 (7)0.0062 (7)
Geometric parameters (Å, º) top
Zn1—O12.4040 (15)C9—H90.9500
Zn1—O22.0392 (15)C10—N11.381 (3)
Zn1—O1W1.9824 (16)C11—N11.385 (3)
C1—O11.252 (3)C11—C121.389 (3)
C1—O21.281 (3)C12—C131.379 (3)
C1—C21.484 (3)C12—H120.9500
C2—C31.387 (3)C13—H130.9500
C2—C131.409 (3)C14—O41.216 (3)
C3—C41.389 (3)C14—O31.313 (3)
C3—H30.9500C15—N11.448 (3)
C4—C111.414 (3)C15—C161.475 (3)
C4—C51.452 (3)C15—H15A0.9900
C5—C61.387 (3)C15—H15B0.9900
C5—C101.408 (3)C16—C171.311 (4)
C6—C71.388 (3)C16—H160.9500
C6—H60.9500C17—H17A0.9500
C7—C81.410 (3)C17—H17B0.9500
C7—C141.475 (3)O3—H3A0.8721
C8—C91.371 (3)O1W—H1A0.8438
C8—H80.9500O1W—H1B0.8534
C9—C101.401 (3)
O1W—Zn1—O1Wi92.67 (10)C5—C6—H6120.6
O1W—Zn1—O2138.07 (6)C7—C6—H6120.6
O1Wi—Zn1—O2100.30 (6)C6—C7—C8120.3 (2)
O1W—Zn1—O2i100.30 (6)C6—C7—C14121.8 (2)
O1Wi—Zn1—O2i138.07 (6)C8—C7—C14117.9 (2)
O2—Zn1—O2i96.14 (9)C9—C8—C7122.2 (2)
O1W—Zn1—O1i126.12 (6)C9—C8—H8118.9
O1Wi—Zn1—O1i81.91 (6)C7—C8—H8118.9
O2—Zn1—O1i95.28 (6)C8—C9—C10116.9 (2)
O2i—Zn1—O1i58.24 (6)C8—C9—H9121.5
O1W—Zn1—O181.91 (6)C10—C9—H9121.5
O1Wi—Zn1—O1126.12 (6)N1—C10—C9128.6 (2)
O2—Zn1—O158.24 (6)N1—C10—C5109.44 (19)
O2i—Zn1—O195.28 (6)C9—C10—C5121.9 (2)
O1i—Zn1—O1142.07 (8)N1—C11—C12129.1 (2)
O1W—Zn1—C1i117.02 (7)N1—C11—C4108.95 (19)
O1Wi—Zn1—C1i110.17 (7)C12—C11—C4121.9 (2)
O2—Zn1—C1i95.62 (6)C13—C12—C11117.5 (2)
O2i—Zn1—C1i29.40 (6)C13—C12—H12121.3
O1i—Zn1—C1i28.87 (6)C11—C12—H12121.3
O1—Zn1—C1i119.98 (7)C12—C13—C2121.7 (2)
O1W—Zn1—C1110.17 (7)C12—C13—H13119.1
O1Wi—Zn1—C1117.01 (7)C2—C13—H13119.1
O2—Zn1—C129.39 (6)O4—C14—O3123.2 (2)
O2i—Zn1—C195.62 (7)O4—C14—C7122.3 (2)
O1i—Zn1—C1119.98 (6)O3—C14—C7114.5 (2)
O1—Zn1—C128.87 (6)N1—C15—C16114.6 (2)
C1i—Zn1—C1109.29 (10)N1—C15—H15A108.6
O1—C1—O2119.3 (2)C16—C15—H15A108.6
O1—C1—C2121.8 (2)N1—C15—H15B108.6
O2—C1—C2118.8 (2)C16—C15—H15B108.6
O1—C1—Zn167.95 (12)H15A—C15—H15B107.6
O2—C1—Zn151.41 (10)C17—C16—C15126.1 (3)
C2—C1—Zn1169.20 (16)C17—C16—H16116.9
C3—C2—C13120.1 (2)C15—C16—H16116.9
C3—C2—C1120.5 (2)C16—C17—H17A120.0
C13—C2—C1119.4 (2)C16—C17—H17B120.0
C2—C3—C4119.3 (2)H17A—C17—H17B120.0
C2—C3—H3120.4C10—N1—C11108.79 (18)
C4—C3—H3120.4C10—N1—C15125.86 (19)
C3—C4—C11119.4 (2)C11—N1—C15125.34 (19)
C3—C4—C5134.1 (2)C1—O1—Zn183.19 (13)
C11—C4—C5106.49 (19)C1—O2—Zn199.20 (13)
C6—C5—C10119.9 (2)C14—O3—H3A105.3
C6—C5—C4133.7 (2)Zn1—O1W—H1A126.9
C10—C5—C4106.33 (19)Zn1—O1W—H1B120.8
C5—C6—C7118.7 (2)H1A—O1W—H1B110.9
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4ii0.841.812.654 (2)177
O1W—H1B···O2iii0.851.882.728 (2)170
O3—H3A···O1ii0.871.772.634 (2)173
Symmetry codes: (ii) x+1/2, y+5/2, z+1; (iii) x+1, y+1, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C17H12NO4)2(H2O)2]
Mr689.95
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)30.8562 (18), 5.0491 (3), 21.8915 (13)
β (°) 119.403 (1)
V3)2971.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.22 × 0.16 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.828, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
7758, 2942, 2390
Rint0.033
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.02
No. of reflections2942
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), XP in SHELXTL and Mercury (Macrae et al., 2006).

Selected bond lengths (Å) top
Zn1—O12.4040 (15)Zn1—O1W1.9824 (16)
Zn1—O22.0392 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4i0.841.812.654 (2)177
O1W—H1B···O2ii0.851.882.728 (2)170
O3—H3A···O1i0.871.772.634 (2)173
Symmetry codes: (i) x+1/2, y+5/2, z+1; (ii) x+1, y+1, z+3/2.
 

Acknowledgements

This work was supported by the Scientific Research Foundation for Introduced Talents of Xiamen University of Technology (grant No. YKJ10003R).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H.-J., Gao, Z.-Q. & Gu, J.-Z. (2011). Acta Cryst. E67, m919.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 10, 534–540.  Web of Science CrossRef CAS Google Scholar
First citationYang, X.-P., Jones, R. A., Rivers, J. H. & Lai, R. P. (2007). Dalton Trans. pp. 3936–3942.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds