metal-organic compounds
Bis(butane-1,4-diammonium) di-μ-oxido-bis[trifluoridooxidomolybdate(V)] monohydrate
aLUNAM Université, Université du Maine, UMR 6283 CNRS, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France, and bInstitut des Matériaux Jean Rouxel, UMR 6502 CNRS, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
*Correspondence e-mail: jerome.lhoste@univ-lemans.fr
The title compound, (C4H14N2)2[Mo2O4F6]·H2O, was obtained by solvothermal reaction at 443 K for 72 h from a mixture of MoO3, HF, 1,4-diaminobutane (dab), water and ethylene glycol. The structure consists of [Mo2O4F6]4− anionic dimers containing strongly distorted MoO3F3 octahedra (with twofold symmetry), diprotonated dab cations and water molecules (twofold symmetry) in the ratio 1:2:1. The cohesion of the three-dimensional structure is ensured through N—H⋯O, N—H⋯F and O—H⋯F interactions.
Related literature
For background to the physical-chemical properties of hybrid compounds, see: Nakajima et al. (2000). For related structures containing discrete entities, see: Mattes & Lux (1976); Mattes et al. (1980); Chakravorti & Bera (1983); Adil et al. (2007); Aldous & Lightfoot (2012).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536812046892/vn2059sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812046892/vn2059Isup2.hkl
The starting chemical reactants were molybdenum trioxide (MoO3), 1,4-diaminobutane, aqueous HF (48%), water and ethylenglycol in the molar ratio 1:20:55:278:103. The starting mixture was dissolved under solvothermal conditions at 170°C for 72 h. Single crystals were obtained after the evaporation of the solution at room temperature. Crystals suitable for X-ray diffraction were selected under a polarizing optical microscope.
Non-hydrogen atoms were refined with anisotropic thermal factors. H atoms attached to nitrogen atoms were freely refined but their isotropic atomic displacement parameter was constrained to Uiso(H) = 1.5 Ueq(N). Hydrogen atoms attached to carbon atoms were treated in riding motion, with Uiso(H) = 1.2 Ueq(C). The independent H atom of the water molecule was located in a difference Fourier map and was refined using a SHELXL DFIX option. Small, unresolved disorder affects the organic cation and consequently, the deepest and highest residual peaks in the final difference Fourier map are located close to carbon atoms. All attempts to decrease these densities using split positions failed.
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).Fig. 1. ORTEP view (Farrugia, 2012) of the water molecule, [H2dab]2+ cation and (Mo2O4F6)4- anion in [H2dab]2.(Mo2O4F6).H2O. Atomic displacement ellipsoids are shown at the 50% probability level. | |
Fig. 2. Environment of the water molecule in [H2dab]2.(Mo2O4F6).H2O. O—H···F and N—H···O bonds are shown as dashed lines. | |
Fig. 3. [100] view of the crystal packing of [H2dab]2.(Mo2O4F6).H2O. |
(C4H14N2)2[Mo2O4F6]·H2O | F(000) = 568 |
Mr = 568.24 | Dx = 1.925 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 79 reflections |
a = 8.010 (2) Å | θ = 5.2–61.1° |
b = 8.788 (2) Å | µ = 1.36 mm−1 |
c = 14.294 (4) Å | T = 296 K |
β = 103.019 (12)° | Platelets, orange |
V = 980.3 (4) Å3 | 0.15 × 0.13 × 0.03 mm |
Z = 2 |
Bruker APEXII diffractometer | 3240 independent reflections |
Radiation source: fine-focus sealed tube | 2690 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ω scans | θmax = 31.6°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −11→11 |
Tmin = 0.816, Tmax = 0.960 | k = −12→11 |
35088 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0354P)2 + 1.2558P] where P = (Fo2 + 2Fc2)/3 |
3240 reflections | (Δ/σ)max = 0.001 |
135 parameters | Δρmax = 1.40 e Å−3 |
1 restraint | Δρmin = −0.65 e Å−3 |
6 constraints |
(C4H14N2)2[Mo2O4F6]·H2O | V = 980.3 (4) Å3 |
Mr = 568.24 | Z = 2 |
Monoclinic, P2/c | Mo Kα radiation |
a = 8.010 (2) Å | µ = 1.36 mm−1 |
b = 8.788 (2) Å | T = 296 K |
c = 14.294 (4) Å | 0.15 × 0.13 × 0.03 mm |
β = 103.019 (12)° |
Bruker APEXII diffractometer | 3240 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2690 reflections with I > 2σ(I) |
Tmin = 0.816, Tmax = 0.960 | Rint = 0.036 |
35088 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 1 restraint |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 1.40 e Å−3 |
3240 reflections | Δρmin = −0.65 e Å−3 |
135 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.38192 (2) | 0.66084 (2) | 0.170323 (13) | 0.02167 (7) | |
F1 | 0.1200 (2) | 0.6202 (2) | 0.12852 (14) | 0.0432 (4) | |
F2 | 0.3822 (3) | 0.6257 (2) | 0.02778 (11) | 0.0444 (4) | |
F3 | 0.36226 (18) | 0.41536 (17) | 0.15869 (10) | 0.0271 (3) | |
O1 | 0.3694 (2) | 0.6283 (2) | 0.30531 (12) | 0.0262 (3) | |
O2 | 0.3558 (3) | 0.8525 (2) | 0.15440 (16) | 0.0408 (5) | |
N1 | 0.6794 (3) | 0.2936 (3) | 0.15759 (17) | 0.0307 (4) | |
H1D | 0.781 (5) | 0.345 (4) | 0.192 (3) | 0.046* | |
H1E | 0.586 (5) | 0.322 (4) | 0.173 (3) | 0.046* | |
H1F | 0.657 (5) | 0.319 (4) | 0.097 (3) | 0.046* | |
C1 | 0.7020 (4) | 0.1273 (3) | 0.1650 (2) | 0.0407 (7) | |
H1A | 0.5974 | 0.0763 | 0.1327 | 0.049* | |
H1B | 0.7292 | 0.0964 | 0.2318 | 0.049* | |
C2 | 0.8514 (4) | 0.0847 (4) | 0.1166 (3) | 0.0453 (7) | |
H2A | 0.8263 | 0.1237 | 0.0515 | 0.054* | |
H2B | 0.9559 | 0.1329 | 0.1515 | 0.054* | |
C3 | 0.8797 (4) | −0.0878 (4) | 0.1143 (3) | 0.0460 (7) | |
H3A | 0.8566 | −0.1331 | 0.1720 | 0.055* | |
H3B | 0.9985 | −0.1078 | 0.1138 | 0.055* | |
C4 | 0.7625 (4) | −0.1627 (3) | 0.0250 (2) | 0.0404 (6) | |
H4A | 0.6441 | −0.1347 | 0.0213 | 0.049* | |
H4B | 0.7943 | −0.1273 | −0.0329 | 0.049* | |
N2 | 0.7818 (3) | −0.3310 (2) | 0.03285 (17) | 0.0281 (4) | |
H2D | 0.894 (5) | −0.360 (4) | 0.059 (3) | 0.042* | |
H2E | 0.727 (4) | −0.377 (4) | −0.023 (3) | 0.042* | |
H2F | 0.738 (5) | −0.369 (4) | 0.081 (3) | 0.042* | |
O1W | 0.0000 | 0.4347 (4) | 0.2500 | 0.0432 (7) | |
H1W | 0.042 (5) | 0.496 (4) | 0.211 (2) | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.02193 (11) | 0.02317 (10) | 0.01799 (10) | 0.00157 (7) | 0.00045 (7) | 0.00148 (7) |
F1 | 0.0233 (8) | 0.0492 (10) | 0.0505 (11) | 0.0027 (7) | −0.0060 (7) | 0.0055 (8) |
F2 | 0.0602 (11) | 0.0522 (10) | 0.0182 (7) | −0.0035 (9) | 0.0038 (7) | 0.0042 (7) |
F3 | 0.0300 (7) | 0.0266 (7) | 0.0230 (7) | −0.0014 (5) | 0.0021 (6) | −0.0032 (5) |
O1 | 0.0220 (8) | 0.0346 (9) | 0.0225 (8) | 0.0015 (7) | 0.0060 (6) | −0.0032 (7) |
O2 | 0.0453 (12) | 0.0282 (9) | 0.0429 (12) | 0.0050 (8) | −0.0030 (9) | 0.0073 (8) |
N1 | 0.0350 (12) | 0.0347 (11) | 0.0232 (10) | 0.0056 (9) | 0.0084 (9) | 0.0011 (9) |
C1 | 0.0411 (16) | 0.0312 (13) | 0.0463 (17) | 0.0048 (11) | 0.0023 (13) | −0.0027 (11) |
C2 | 0.0421 (16) | 0.0372 (15) | 0.056 (2) | 0.0025 (13) | 0.0096 (14) | −0.0067 (13) |
C3 | 0.0419 (16) | 0.0393 (16) | 0.0517 (19) | 0.0032 (13) | −0.0001 (14) | −0.0096 (13) |
C4 | 0.0449 (16) | 0.0310 (13) | 0.0400 (16) | 0.0029 (11) | −0.0020 (13) | −0.0029 (11) |
N2 | 0.0239 (10) | 0.0318 (11) | 0.0273 (11) | −0.0008 (8) | 0.0029 (8) | −0.0024 (8) |
O1W | 0.0311 (15) | 0.0450 (17) | 0.0513 (19) | 0.000 | 0.0043 (13) | 0.000 |
Mo1—O1 | 1.9754 (18) | C1—H1B | 0.9700 |
Mo1—O1i | 1.9642 (18) | C2—C3 | 1.534 (4) |
Mo1—O2 | 1.7058 (19) | C2—H2A | 0.9700 |
Mo1—F1 | 2.0786 (17) | C2—H2B | 0.9700 |
Mo1—F2 | 2.0612 (17) | C3—C4 | 1.551 (4) |
Mo1—F3 | 2.1666 (15) | C3—H3A | 0.9700 |
Mo1—Mo1i | 2.6126 (7) | C3—H3B | 0.9700 |
O1—Mo1i | 1.9642 (18) | C4—N2 | 1.488 (3) |
N1—C1 | 1.473 (4) | C4—H4A | 0.9700 |
N1—H1D | 0.96 (4) | C4—H4B | 0.9700 |
N1—H1E | 0.87 (4) | N2—H2D | 0.93 (4) |
N1—H1F | 0.88 (4) | N2—H2E | 0.91 (4) |
C1—C2 | 1.557 (5) | N2—H2F | 0.91 (4) |
C1—H1A | 0.9700 | O1W—H1W | 0.895 (10) |
O2—Mo1—O1i | 104.84 (9) | N1—C1—H1A | 110.2 |
O2—Mo1—O1 | 103.97 (9) | C2—C1—H1A | 110.2 |
O1i—Mo1—O1 | 94.50 (7) | N1—C1—H1B | 110.2 |
O2—Mo1—F2 | 92.49 (9) | C2—C1—H1B | 110.2 |
O1i—Mo1—F2 | 85.79 (8) | H1A—C1—H1B | 108.5 |
O1—Mo1—F2 | 162.85 (8) | C3—C2—C1 | 112.3 (3) |
O2—Mo1—F1 | 92.62 (9) | C3—C2—H2A | 109.1 |
O1i—Mo1—F1 | 160.64 (8) | C1—C2—H2A | 109.1 |
O1—Mo1—F1 | 89.20 (7) | C3—C2—H2B | 109.1 |
F2—Mo1—F1 | 85.17 (8) | C1—C2—H2B | 109.1 |
O2—Mo1—F3 | 165.47 (8) | H2A—C2—H2B | 107.9 |
O1i—Mo1—F3 | 85.54 (6) | C2—C3—C4 | 111.8 (3) |
O1—Mo1—F3 | 84.97 (6) | C2—C3—H3A | 109.2 |
F2—Mo1—F3 | 77.95 (6) | C4—C3—H3A | 109.2 |
F1—Mo1—F3 | 75.85 (6) | C2—C3—H3B | 109.2 |
O2—Mo1—Mo1i | 99.17 (7) | C4—C3—H3B | 109.2 |
O1i—Mo1—Mo1i | 48.64 (5) | H3A—C3—H3B | 107.9 |
O1—Mo1—Mo1i | 48.28 (5) | N2—C4—C3 | 109.0 (2) |
F2—Mo1—Mo1i | 134.43 (6) | N2—C4—H4A | 109.9 |
F1—Mo1—Mo1i | 137.42 (6) | C3—C4—H4A | 109.9 |
F3—Mo1—Mo1i | 95.32 (4) | N2—C4—H4B | 109.9 |
Mo1i—O1—Mo1 | 83.08 (7) | C3—C4—H4B | 109.9 |
C1—N1—H1D | 111 (2) | H4A—C4—H4B | 108.3 |
C1—N1—H1E | 112 (2) | C4—N2—H2D | 112 (2) |
H1D—N1—H1E | 114 (3) | C4—N2—H2E | 111 (2) |
C1—N1—H1F | 109 (2) | H2D—N2—H2E | 117 (3) |
H1D—N1—H1F | 111 (3) | C4—N2—H2F | 112 (2) |
H1E—N1—H1F | 100 (3) | H2D—N2—H2F | 96 (3) |
N1—C1—C2 | 107.5 (3) | H2E—N2—H2F | 108 (3) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···O1Wii | 0.96 (4) | 1.93 (4) | 2.889 (3) | 172 (3) |
N1—H1E···F3 | 0.87 (4) | 1.94 (4) | 2.760 (3) | 158 (4) |
N1—H1F···F2iii | 0.88 (4) | 1.80 (4) | 2.679 (3) | 178 (4) |
N2—H2D···F1iv | 0.93 (4) | 1.87 (4) | 2.779 (3) | 167 (3) |
N2—H2E···F3v | 0.91 (4) | 1.94 (4) | 2.820 (3) | 161 (3) |
N2—H2F···O1vi | 0.91 (4) | 2.00 (4) | 2.865 (3) | 159 (3) |
O1W—H1W···F1 | 0.90 (1) | 1.82 (1) | 2.711 (3) | 178 (4) |
Symmetry codes: (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) x+1, y−1, z; (v) −x+1, −y, −z; (vi) −x+1, y−1, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C4H14N2)2[Mo2O4F6]·H2O |
Mr | 568.24 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 296 |
a, b, c (Å) | 8.010 (2), 8.788 (2), 14.294 (4) |
β (°) | 103.019 (12) |
V (Å3) | 980.3 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.36 |
Crystal size (mm) | 0.15 × 0.13 × 0.03 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.816, 0.960 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 35088, 3240, 2690 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.738 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.078, 1.05 |
No. of reflections | 3240 |
No. of parameters | 135 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.40, −0.65 |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1999), enCIFer (Allen et al., 2004).
Mo1—O1 | 1.9754 (18) | Mo1—F1 | 2.0786 (17) |
Mo1—O1i | 1.9642 (18) | Mo1—F2 | 2.0612 (17) |
Mo1—O2 | 1.7058 (19) | Mo1—F3 | 2.1666 (15) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···O1Wii | 0.96 (4) | 1.93 (4) | 2.889 (3) | 172 (3) |
N1—H1E···F3 | 0.87 (4) | 1.94 (4) | 2.760 (3) | 158 (4) |
N1—H1F···F2iii | 0.88 (4) | 1.80 (4) | 2.679 (3) | 178 (4) |
N2—H2D···F1iv | 0.93 (4) | 1.87 (4) | 2.779 (3) | 167 (3) |
N2—H2E···F3v | 0.91 (4) | 1.94 (4) | 2.820 (3) | 161 (3) |
N2—H2F···O1vi | 0.91 (4) | 2.00 (4) | 2.865 (3) | 159 (3) |
O1W—H1W···F1 | 0.895 (10) | 1.817 (10) | 2.711 (3) | 178 (4) |
Symmetry codes: (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) x+1, y−1, z; (v) −x+1, −y, −z; (vi) −x+1, y−1, −z+1/2. |
References
Adil, K., Marrot, J., Leblanc, M. & Maisonneuve, V. (2007). Acta Cryst. E63, m1511–m1513. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aldous, D. W. & Lightfoot, P. (2012). J. Fluorine Chem. 144, 108–113. Web of Science CSD CrossRef CAS Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chakravorti, M. C. & Bera, A. K. (1983). Transition Met. Chem. 8, 83–86. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mattes, R. & Lux, G. (1976). Z. Anorg. Allg. Chem. 424, 173–182. CrossRef CAS Web of Science Google Scholar
Mattes, R., Mennemann, K., Jäckel, N., Rieskamp, H. & Brockmeyer, H. J. (1980). J. Less-Common Met. 76, 199–212. CrossRef CAS Web of Science Google Scholar
Nakajima, T., Zemava, B. & Tressaud, A. (2000). In Advanced Inorganic Fluorides. Lausanne: Elsevier. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition-metal oxofluoride hybrids have been intensively studied due to their interesting magnetic, optical and electrochemical properties (Nakajima et al., 2000). This paper presents a new organic-inorganic hybrid compound with molybdenum (V) and 1,4-butanediamine. To date, few hybrid oxofluoromolybdates (V) are reported in the literature. [MoOF5]2- monomers, [Mo2O2F9]3- and [Mo2O4F6]4- dimers were obtained with ammonium by Mattes et al. (1976, 1980). Adil et al. (2007) reported the previous monomer with tren cations. Two other compounds, built up from [Mo2O4F4]2- dimers with bipyridinium or phenanthrolinium, were synthesized by Chakravorti et al. (1983). It must be noted that the same author obtained many alkali metal molybdenum (V) complexes; their structures involve [MoOF5]2-, [Mo2O4F4]2-, [Mo2O4F5]3- and [Mo2O4F6]4- anions. Recently, a novel tetrameric unit [Mo4O8F10]6- was observed in (NH4)6[Mo4O8F10] and K6[Mo4O8F10] (Aldous & Lightfoot, 2012).
The structure of a new oxofluoride molybdate [H2dab]2.(Mo2O4F6).H2O, synthesized in the MoO3-dab-HFaq-water-ethylenglycol system, is here described. It is built up from [Mo2O4F6]4- dimers, diprotonated (H2dab)2+ cations and water molecules (Fig. 1). The Mo2O4F6 unit is formed by two MoO3F3 octahedra connected by one O–O edge. The MoO3F3 octahedron is strongly distorted due to the presence of two types of Mo–O bonds: one short bond for the terminal O atom and two medium-ranged bonds for the bridging O atom (Table 1). The Mo–F and Mo–O distances are in good agreement with literature values (Mattes et al., 1980; Adil et al., 2007). Isolated water molecules are hydrogen bonded in a tetrahedral geometry with two –NH3 cations and two fluorine atoms (Fig. 2). The inorganic anions and organic cations are connected by intermolecular hydrogen bonds (Fig. 3 and Table 2), creating a two-dimensional network of hydrogen bonds parallel to (-102) between the inorganic anion sheets and organic cation layers.