inorganic compounds
The layered polyphosphide Ag3.73(4)Zn2.27(4)P16
aTechnische Universität München, Department Chemie, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
*Correspondence e-mail: tom.nilges@lrz.tum.de
The silver zinc hexadecaphosphide Ag3.73(4)Zn2.27(4)P16 is the first polyphosphide in the ternary system Ag/Zn/P. It was synthesized from stoichiometric mixtures of Ag, Zn and P in the molar ratio 4:2:16, using AgI as a mineralizing agent in a gas-phase-assisted reaction. Ag3.73(4)Zn2.27(4)P16 crystallizes in the Cu5InP16 structure type. The contains two Ag/Zn sites with mixed occupancies and four P sites. One of the Ag/Zn sites is located on a twofold rotation axis. The polyanionic [P16]-substructure consists of corrugated six-membered rings that are connected into a layer via the 1-, 2-, 4- and 5-positions of the rings by a bridging P atom in each case. The layers extend parallel to the bc plane and are stacked along the a axis. Both Ag/Zn sites are tetrahedrally coordinated by P atoms.
Related literature
For background to and structures of related polyphosphides, see: Bawohl & Nilges (2009); Dommann et al. (1989); Edmunds & Qurashi (1951); Lange et al. (2008); Möller & Jeitschko (1981); Olofsson (1965); Zanin et al. (2003). For background to the extinction correction, see: Becker & Coppens (1974).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2011); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petřiček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812045667/wm2694sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812045667/wm2694Isup2.hkl
Ag3.73 (4)Zn2.27 (4)P16 was prepared by reaction from the elements Ag (ChemPur, powder, 99.9%), Zn (Sigma-Aldrich, pices, 99.9%), and P (ChemPur, powder, 99.999%) in the stoichiometric ratio of 4:2:16 in a 500 mg batch. As mineralizing agent, 10 mg AgI (ChemPur, powder, 99.9%) per 500 mg total sample weight was added. The reaction was carried out in evacuated ampoules in a muffle furnace at 823 K during 14 days using a heating ratio of 70 K/h. The sample was cooled down slowly at a rate of 5 K/h. For X-ray powder phase analyses a fraction of the sample was ground. Phase purity has been substantiated. Single crystals of suitable size for a single-crystal
could be separated from the bulk phase. The sample was stable under atmospheric conditions for months.The mixed-occupied Ag/Zn sites are located on Wyckoff positions 4e and 8f. The
of the Ag and Zn content was constrained to an overall full occupancy according to the sum of the two elements, each of them located on the same coordinates and with the same displacement parameters. The ratio of the two elements has been refined unrestricted.Data collection: X-AREA (Stoe & Cie, 2011); cell
X-AREA (Stoe & Cie, 2011); data reduction: X-AREA (Stoe & Cie, 2011); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis 2007); program(s) used to refine structure: JANA2006 (Petřiček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).Ag3.73Zn2.27P16 | F(000) = 966 |
Mr = 1046.3 | Dx = 4.17 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 4528 reflections |
a = 11.492 (1) Å | θ = 2.8–30.5° |
b = 9.9604 (8) Å | µ = 9.05 mm−1 |
c = 7.7106 (9) Å | T = 293 K |
β = 109.585 (9)° | Isomorphic, black |
V = 831.5 (2) Å3 | 0.02 × 0.02 × 0.02 mm |
Z = 2 |
IPDS Stoe 2T diffractometer | 1265 independent reflections |
Radiation source: X-ray tube | 1135 reflections with I > 3σ(I) |
Plane graphite monochromator | Rint = 0.015 |
Detector resolution: 6.67 pixels mm-1 | θmax = 30.5°, θmin = 2.8° |
rotation method scans | h = −16→16 |
Absorption correction: numerical (X-AREA; Stoe & Cie, 2011) | k = −13→14 |
Tmin = 0.730, Tmax = 0.771 | l = −10→10 |
4398 measured reflections |
Refinement on F2 | 14 constraints |
R[F2 > 2σ(F2)] = 0.018 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2) |
wR(F2) = 0.042 | (Δ/σ)max = 0.038 |
S = 1.39 | Δρmax = 0.56 e Å−3 |
1265 reflections | Δρmin = −0.66 e Å−3 |
54 parameters | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 0.084 (5) |
Ag3.73Zn2.27P16 | V = 831.5 (2) Å3 |
Mr = 1046.3 | Z = 2 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.492 (1) Å | µ = 9.05 mm−1 |
b = 9.9604 (8) Å | T = 293 K |
c = 7.7106 (9) Å | 0.02 × 0.02 × 0.02 mm |
β = 109.585 (9)° |
IPDS Stoe 2T diffractometer | 1265 independent reflections |
Absorption correction: numerical (X-AREA; Stoe & Cie, 2011) | 1135 reflections with I > 3σ(I) |
Tmin = 0.730, Tmax = 0.771 | Rint = 0.015 |
4398 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 54 parameters |
wR(F2) = 0.042 | 0 restraints |
S = 1.39 | Δρmax = 0.56 e Å−3 |
1265 reflections | Δρmin = −0.66 e Å−3 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0 | 0.41699 (3) | 0.25 | 0.01075 (10) | 0.422 (6) |
Zn1 | 0 | 0.41699 (3) | 0.25 | 0.01075 (10) | 0.578 (6) |
Ag2 | −0.089927 (17) | 0.13768 (2) | −0.08750 (3) | 0.01608 (7) | 0.721 (7) |
Zn2 | −0.089927 (17) | 0.13768 (2) | −0.08750 (3) | 0.01608 (7) | 0.279 (7) |
P1 | −0.16624 (5) | 0.56752 (5) | 0.05996 (7) | 0.00731 (15) | |
P2 | −0.24029 (5) | 0.32264 (5) | −0.24701 (7) | 0.00785 (15) | |
P3 | 0.09157 (4) | 0.27552 (6) | 0.07194 (7) | 0.00827 (15) | |
P4 | −0.33325 (5) | 0.48032 (5) | −0.14361 (8) | 0.00915 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.01067 (15) | 0.01146 (16) | 0.01117 (17) | 0 | 0.00506 (10) | 0 |
Zn1 | 0.01067 (15) | 0.01146 (16) | 0.01117 (17) | 0 | 0.00506 (10) | 0 |
Ag2 | 0.01637 (11) | 0.01572 (12) | 0.01331 (12) | −0.00637 (6) | 0.00121 (7) | −0.00034 (6) |
Zn2 | 0.01637 (11) | 0.01572 (12) | 0.01331 (12) | −0.00637 (6) | 0.00121 (7) | −0.00034 (6) |
P1 | 0.0079 (2) | 0.0074 (2) | 0.0071 (2) | 0.00021 (16) | 0.00310 (17) | 0.00069 (17) |
P2 | 0.0090 (2) | 0.0076 (2) | 0.0072 (2) | −0.00064 (16) | 0.00309 (17) | −0.00022 (18) |
P3 | 0.0077 (2) | 0.0082 (2) | 0.0093 (3) | 0.00004 (16) | 0.00342 (18) | 0.00121 (17) |
P4 | 0.0096 (2) | 0.0104 (2) | 0.0080 (2) | −0.00069 (17) | 0.00363 (17) | −0.00171 (18) |
Ag1—P1 | 2.4836 (7) | Ag2—P4iii | 2.5280 (7) |
Ag1—P1i | 2.4836 (7) | P1—P2iv | 2.2328 (9) |
Ag1—P3 | 2.4385 (7) | P1—P3v | 2.1909 (9) |
Ag1—P3i | 2.4385 (7) | P1—P4 | 2.2095 (9) |
Ag2—P2 | 2.5432 (7) | P2—P3vi | 2.1976 (8) |
Ag2—P3 | 2.4551 (7) | P2—P4 | 2.1941 (9) |
Ag2—P4ii | 2.5115 (7) | ||
P1—Ag1—P1i | 105.73 (2) | Ag2—P2—P4 | 132.64 (3) |
P1—Ag1—P3 | 114.11 (2) | P1vii—P2—P3vi | 104.18 (3) |
P1—Ag1—P3i | 106.81 (2) | P1vii—P2—P4 | 103.43 (3) |
P1i—Ag1—P3 | 106.81 (2) | P3vi—P2—P4 | 96.77 (3) |
P1i—Ag1—P3i | 114.11 (2) | Ag1—P3—Ag2 | 98.66 (2) |
P3—Ag1—P3i | 109.40 (2) | Ag1—P3—Zn2 | 98.66 (2) |
P2—Ag2—P3 | 99.36 (2) | Ag1—P3—P1v | 99.15 (3) |
P2—Ag2—P4ii | 93.38 (2) | Ag1—P3—P2viii | 110.66 (3) |
P2—Ag2—P4iii | 109.66 (2) | Ag2—P3—P1v | 124.46 (3) |
P3—Ag2—P4ii | 140.08 (2) | Ag2—P3—P2viii | 119.19 (3) |
P3—Ag2—P4iii | 110.23 (2) | P1v—P3—P2viii | 102.39 (3) |
P4ii—Ag2—P4iii | 100.52 (2) | Ag2ix—P4—Ag2iii | 139.72 (3) |
Ag1—P1—P2iv | 106.99 (3) | Ag2ix—P4—Zn2iii | 139.72 (3) |
Ag1—P1—P3v | 111.18 (3) | Ag2ix—P4—P1 | 108.81 (3) |
Ag1—P1—P4 | 119.67 (3) | Ag2ix—P4—P2 | 103.06 (3) |
P2iv—P1—P3v | 104.82 (3) | Ag2iii—P4—Zn2ix | 139.72 (3) |
P2iv—P1—P4 | 103.40 (3) | Ag2iii—P4—P1 | 96.17 (3) |
P3v—P1—P4 | 109.44 (3) | Ag2iii—P4—P2 | 104.53 (3) |
Ag2—P2—P1vii | 109.17 (3) | P1—P4—P2 | 97.28 (3) |
Ag2—P2—P3vi | 107.16 (3) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x−1/2, y−1/2, −z−1/2; (iii) −x−1/2, −y+1/2, −z; (iv) x, −y+1, z+1/2; (v) −x, −y+1, −z; (vi) x−1/2, −y+1/2, z−1/2; (vii) x, −y+1, z−1/2; (viii) x+1/2, −y+1/2, z+1/2; (ix) −x−1/2, y+1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | Ag3.73Zn2.27P16 |
Mr | 1046.3 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.492 (1), 9.9604 (8), 7.7106 (9) |
β (°) | 109.585 (9) |
V (Å3) | 831.5 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 9.05 |
Crystal size (mm) | 0.02 × 0.02 × 0.02 |
Data collection | |
Diffractometer | IPDS Stoe 2T diffractometer |
Absorption correction | Numerical (X-AREA; Stoe & Cie, 2011) |
Tmin, Tmax | 0.730, 0.771 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 4398, 1265, 1135 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.713 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.042, 1.39 |
No. of reflections | 1265 |
No. of parameters | 54 |
Δρmax, Δρmin (e Å−3) | 0.56, −0.66 |
Computer programs: X-AREA (Stoe & Cie, 2011), SUPERFLIP (Palatinus & Chapuis 2007), JANA2006 (Petřiček et al., 2006), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010).
Acknowledgements
The authors thank the German Science Foundation (DFG) for the kind support of project NI1095/1–2.
References
Bawohl, M. & Nilges, T. (2009). Z. Anorg. Allg. Chem. 635, 667–673. Web of Science CrossRef CAS Google Scholar
Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147. CrossRef IUCr Journals Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dommann, A., Marsh, R. E. & Hulliger, F. (1989). J. Less-Common Met. 152, 1–6. CrossRef CAS Web of Science Google Scholar
Edmunds, I. G. & Qurashi, M. M. (1951). Acta Cryst. 4, 417–425. CrossRef CAS IUCr Journals Web of Science Google Scholar
Lange, S., Bawohl, M., Weihrich, R. & Nilges, T. (2008). Angew. Chem. Int. Ed. 47, 5654–5657. Web of Science CrossRef CAS Google Scholar
Möller, M. H. & Jeitschko, W. (1981). Inorg. Chem. 20, 828–833. Google Scholar
Olofsson, O. (1965). Acta Chem. Scand. 19, 229–241. CrossRef CAS Web of Science Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petřiček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic. Google Scholar
Stoe & Cie (2011). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zanin, I. E., Aleinikova, K. B. & Antipin, M. Yu. (2003). Kristallografiya, 48, 232–237. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Herein we report on Ag3.73 (4)Zn2.27 (4)P16 (silver zinc hexadecaphosphide), the first ternary compound in the system Ag/Zn/P. It crystallizes isostructurally to Cu5InP16 in space group C2/c (Lange et al., 2008). The asymmetric unit is built up by two mixed-occupied Ag/Zn sites and four P sites. Both Ag/Zn sites are tetrahedrally coordinated by four P atoms featuring bond lengths of 2.4386 (7) to 2.5432 (7) Å. The bond lengths of the (Ag1/Zn1) site to phosphorus range from 2.4386 (7) to 2.4836 (7) Å while slightly longer bond lengths of 2.4551 (7) to 2.5432 (7) Å are observed for (Ag2/Zn2). This finding is consistent with the higher amount of zinc on the (Ag1/Zn1) site leading to somewhat shorter bond lengths. For comparison, Zn—P bond length range from 2.36 to 2.40 Å in ZnP2 (Zanin et al., 2003) and ZnP4 (Dommann et al., 1989) while common Ag—P distances in polyphosphides are observed from 2.47 to 2.61 Å in Ag3P11 (Möller & Jeitschko, 1981) and 2.50 to 2.69 Å in AgP2 (Olofsson, 1965), respectively. Mixed-occupied Ag/Zn sites are not uncommon and are observed, for example, in intermetallic phases like Ag4.5Zn4.5 (or better AgZn; Edmunds & Qurashi, 1951). All P—P distances in Ag3.73 (4)Zn2.27 (4)P16, ranging from 2.1909 (9) to 2.2328 (9) Å, are within the expected range for polyphosphides (Bawohl & Nilges, 2009).