metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-diiso­propyl­hydoxylaminato)-κ2O:N;κ2O:O-bis­­[(diiso­propyl­hydoxylaminato-κO)beryllium]

aFachbereich für Materialwissenschaften und Physik, Paris-Lodron Universität Salzburg, 5020 Salzburg, Austria, bDepartment of Chemistry, Asansol Girls' College, Asansol 713 304, West Bengal, India, cInstitut für Anorganische Chemie, Johannes-Kepler-Universität Linz, Altenbergerstrasse 69, 4040 Linz, Austria, and dLehrstuhl für Anorganische Chemie und Strukturchemie, Universität Bielefeld, 33615 Bielefeld, Germany
*Correspondence e-mail: raphael.berger@sbg.ac.at

(Received 22 October 2012; accepted 5 November 2012; online 10 November 2012)

The title compound, [Be2(C6H14NO)4], was prepared from a solution of BeCl2 in diethyl ether and two equivalents of O-lithia­ted N,N-diisopropyl­hydoxyl­amine. The mol­ecular structure is composed of a dinuclear unit forming a central five-membered planar Be—O—Be—O—N ring (sum of inter­nal angles = 540.0°; r.m.s. deviation from planarity = 0.0087 Å). Both Be atoms show the unusual coordination number of three, with one Be atom coordinated by three O atoms and the other by two O atoms and one N atom, both in distorted trigonal–planar environments. The Be—O distances are in the range 1.493 (5)–1.600 (5) Å and the Be—N distance is 1.741 (5) Å.

Related literature

For general background to metal compounds containing hydroxyl­amine ligands, see: Ullrich (2007[Ullrich, M. (2007). PhD thesis, Universität Münster, Germany.]). For further information on beryllium coordination compounds, see: Berger, Hartmann et al. (2001[Berger, R. J. F., Hartmann, M., Pyykkö, P., Sundholm, D. & Schmidbaur, H. (2001). Inorg. Chem. 40, 2270-2274.]); Berger, Schmidt et al. (2001[Berger, R. J. F., Schmidt, M. A., Jusélius, J., Sundholm, D., Sirsch, P. & Schmidbaur, H. (2001). Z. Naturforsch. Teil B, 56, 979-989.]); Dressel et al. (2003[Dressel, M. P., Nogai, S., Berger, R. J. F. & Schmidbaur, H. (2003). Z. Naturforsch. Teil B, 58, 173-182.]); Berger et al. (2011[Berger, R. J. F., Jana, S., Froehlich, R. & Mitzel, N. W. (2011). Z. Naturforsch. Teil B, 64, 1131-1135.]); for information about coordination compounds containing Be—N bonds, see: Dressel et al. (2003[Dressel, M. P., Nogai, S., Berger, R. J. F. & Schmidbaur, H. (2003). Z. Naturforsch. Teil B, 58, 173-182.]); Neumüller & Dehnicke (2010[Neumüller, B. & Dehnicke, K. (2010). Z. Anorg. Allg. Chem. 636, 515-517.]).

[Scheme 1]

Experimental

Crystal data
  • [Be2(C6H14NO)4]

  • Mr = 482.75

  • Triclinic, [P \overline 1]

  • a = 8.2156 (17) Å

  • b = 13.248 (3) Å

  • c = 14.317 (3) Å

  • α = 98.82 (2)°

  • β = 97.42 (2)°

  • γ = 102.42 (2)°

  • V = 1482.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 110 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Stoe IPDS diffractometer

  • 20278 measured reflections

  • 5220 independent reflections

  • 2359 reflections with I > 2σ(I)

  • Rint = 0.162

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.169

  • S = 0.98

  • 5220 reflections

  • 323 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: X-AREA (Stoe & Cie, 2012[Stoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2012[Stoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A large number of coordination compounds of organo-substituted hydoxylamines with electropositive elements M is known up to date (Ullrich, 2007). Depending on the tendency of M to form ionic, covalent, or coordinative bonds to O and N atoms of the hydroxyl amine moiety, and also depending on the valency and the size of M, a comparably large variety of structure motifs and compositions is found. N,N-diisopropylhydoxylamine is probably the sterically most hindered hydroxylamine which is accessible. In continuation of our studies on Be coordination compounds (Berger, Hartmann et al., 2001; Berger et al., 2011; Berger, Schmidt et al., 2001; Dressel et al., 2003; Neumüller & Dehnicke, 2010), it was of special interest to investigate the reaction products formed from Be2+ and deprotonated N,N-diisopopylhydoxylamine.

In the dinuclear unit of the title compound, Be2(C3H7NO)4, the Be2+ cations are bonded to O atoms and one N atom of the hydroxylamine moieties. The mononuclear subunit Be(ONiPr2)2 is connected via an additional Be—O bond to an identical subunit. In addition, a Be—N bond to one of the four hydroxylamine moieties is observed. In this way, each of the two Be2+ cations attains a threefold coordination. (Fig. 1) Such a coordination number is rarely found in Be-containing compounds and usually only in sterically demanding environments. Another striking feature of the molecular arrangement of the title compound is the planarity of the central Be—O—Be—O—N five-membered ring. This is underlined by the sum of 540.0° of the internal angles in the ring and a r.m.s. deviation from planarity of only 0.0087 Å. Despite the planarity, no crystallographically imposed symmetry is found in the molecular unit of Be2(C3H7NO)4.

Related literature top

For general background to metal compounds containing hydroxylamine ligands, see: Ullrich (2007). For further information on beryllium coordination compounds, see: Berger, Hartmann et al. (2001); Berger, Schmidt et al. (2001); Dressel et al. (2003); Berger et al. (2011); for information about coordination compounds containing Be—N bonds, see: Dressel et al. (2003); Neumüller & Dehnicke (2010).

Experimental top

A suspension of 1.282 g (4 mmol) Li(ONiPr2) in 15 ml of dry diethyl ether was slowly dropped to a solution of 159 mg BeCl2 (2 mmol) in 5 ml diethyl ether. The reaction mixture was stirred for 6 h at room temperature and filtered using a syringe equipped with a Whatmann glass filter. The clear solution was reduced in vacuo to about 15 ml and stored at 243 K for two weeks. Clear colorless block-shaped crystals were collected from the solution under an argon atmosphere. The material is extremely water- and moist-sensitive and must be handled under inert gas.

Refinement top

All H atoms were treated as riding with C—H distances of 0.97 (C—H), 0.98 (CH3), and Uiso(H) = 1.2 Ueq(C) [1.5 Ueq for methyl hydrogen atoms]. Riding methyl hydrogen atoms were allowed to rotate freely during refinement.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2012); cell refinement: X-AREA (Stoe & Cie, 2012); data reduction: X-RED32 (Stoe & Cie, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The dinuclear molecular unit of the title compound. Atoms are displayed with displacement ellipsoids at the 10% probability level. Hydrogen atoms have been omitted for clarity.
Bis(µ-diisopropylhydoxylaminato)- κ2O:N;κ2O:O- bis[(diisopropylhydoxylaminato-κO)beryllium] top
Crystal data top
[Be2(C6H14NO)4]Z = 2
Mr = 482.75F(000) = 536
Triclinic, P1Dx = 1.081 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2156 (17) ÅCell parameters from 5000 reflections
b = 13.248 (3) Åθ = 4.3–25.2°
c = 14.317 (3) ŵ = 0.07 mm1
α = 98.82 (2)°T = 110 K
β = 97.42 (2)°Block, colourless
γ = 102.42 (2)°0.20 × 0.10 × 0.05 mm
V = 1482.5 (5) Å3
Data collection top
Stoe IPDS
diffractometer
2359 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.162
Graphite monochromatorθmax = 25.8°, θmin = 4.2°
rotation scansh = 109
20278 measured reflectionsk = 1616
5220 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0603P)2]
where P = (Fo2 + 2Fc2)/3
5220 reflections(Δ/σ)max < 0.001
323 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.22 e Å3
0 constraints
Crystal data top
[Be2(C6H14NO)4]γ = 102.42 (2)°
Mr = 482.75V = 1482.5 (5) Å3
Triclinic, P1Z = 2
a = 8.2156 (17) ÅMo Kα radiation
b = 13.248 (3) ŵ = 0.07 mm1
c = 14.317 (3) ÅT = 110 K
α = 98.82 (2)°0.20 × 0.10 × 0.05 mm
β = 97.42 (2)°
Data collection top
Stoe IPDS
diffractometer
2359 reflections with I > 2σ(I)
20278 measured reflectionsRint = 0.162
5220 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 0.98Δρmax = 0.17 e Å3
5220 reflectionsΔρmin = 0.22 e Å3
323 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0493 (3)0.11429 (16)0.64521 (17)0.0425 (6)
N10.1242 (3)0.1998 (2)0.6006 (2)0.0406 (7)
Be10.2326 (6)0.3041 (3)0.6921 (3)0.0413 (11)
O20.0366 (3)0.07170 (16)0.82450 (17)0.0454 (6)
N20.0419 (3)0.03765 (19)0.7809 (2)0.0415 (7)
Be20.0876 (5)0.1400 (3)0.7543 (3)0.0399 (11)
O30.1982 (3)0.25866 (16)0.78337 (17)0.0415 (6)
N30.2877 (4)0.3196 (2)0.8786 (2)0.0437 (7)
O40.3156 (3)0.39645 (16)0.65618 (18)0.0449 (6)
N40.3860 (3)0.50261 (19)0.7113 (2)0.0408 (7)
C110.2354 (4)0.1547 (3)0.5371 (3)0.0446 (9)
H110.16730.08660.49670.054*
C120.3817 (5)0.1326 (3)0.6004 (3)0.0560 (10)
H12A0.44900.09770.56030.084*
H12B0.33760.08690.64370.084*
H12C0.45290.19910.63820.084*
C130.3003 (6)0.2276 (3)0.4717 (3)0.0601 (11)
H13A0.20590.23200.42440.090*
H13B0.38350.20030.43860.090*
H13C0.35370.29770.50970.090*
C140.0187 (4)0.2287 (3)0.5431 (3)0.0468 (9)
H140.03120.28700.51090.056*
C150.1278 (5)0.2706 (3)0.6101 (3)0.0577 (11)
H15A0.18620.21330.63860.087*
H15B0.21140.29900.57390.087*
H15C0.05630.32640.66100.087*
C160.1257 (5)0.1398 (3)0.4662 (3)0.0623 (12)
H16A0.05450.11520.42220.094*
H16B0.21440.16480.43050.094*
H16C0.17780.08180.49590.094*
C210.0464 (5)0.1004 (3)0.8373 (3)0.0476 (9)
H210.03600.08190.90640.057*
C220.0306 (5)0.2169 (3)0.8010 (3)0.0647 (12)
H22A0.14470.23520.81670.097*
H22B0.03970.25770.83160.097*
H22C0.03650.23300.73140.097*
C230.2317 (5)0.0756 (3)0.8273 (3)0.0619 (11)
H23A0.24150.08730.75920.093*
H23B0.28890.12150.85980.093*
H23C0.28440.00190.85650.093*
C240.2226 (4)0.0542 (3)0.7891 (3)0.0484 (10)
H240.27630.13040.76330.058*
C250.3057 (5)0.0085 (3)0.7246 (3)0.0576 (11)
H25A0.27110.08340.75370.086*
H25B0.42890.01570.71700.086*
H25C0.27050.00190.66170.086*
C260.2600 (5)0.0305 (3)0.8900 (3)0.0624 (11)
H26A0.21840.07790.92830.094*
H26B0.38230.04090.88780.094*
H26C0.20340.04250.91930.094*
C310.1634 (5)0.3670 (3)0.9256 (3)0.0508 (10)
H310.22470.40630.99020.061*
C320.1153 (5)0.4483 (3)0.8714 (3)0.0613 (11)
H32A0.21710.49110.85520.092*
H32B0.06130.49360.91140.092*
H32C0.03640.41290.81240.092*
C330.0087 (6)0.2913 (3)0.9430 (4)0.0710 (13)
H33A0.06260.25610.88150.106*
H33B0.05540.33020.98210.106*
H33C0.04410.23860.97680.106*
C340.3584 (5)0.2466 (3)0.9307 (3)0.0508 (10)
H340.26580.18550.93500.061*
C350.4895 (5)0.2079 (3)0.8798 (3)0.0597 (11)
H35A0.43690.17080.81470.090*
H35B0.53590.15980.91510.090*
H35C0.58060.26790.87650.090*
C360.4425 (6)0.3052 (4)1.0308 (3)0.0769 (14)
H36A0.51290.37371.02670.115*
H36B0.51320.26411.06060.115*
H36C0.35550.31581.06960.115*
C410.3229 (4)0.5723 (3)0.6515 (3)0.0467 (9)
H410.35820.55990.58720.056*
C420.1321 (5)0.5490 (3)0.6387 (3)0.0613 (11)
H42A0.08420.47640.60480.092*
H42B0.09140.59740.60130.092*
H42C0.09690.55810.70170.092*
C430.3965 (5)0.6860 (3)0.6994 (3)0.0624 (12)
H43A0.37520.69610.76560.094*
H43B0.34330.73160.66420.094*
H43C0.51860.70390.69940.094*
C440.5723 (4)0.5197 (3)0.7237 (3)0.0470 (9)
H440.62100.59370.75840.056*
C450.6278 (5)0.4488 (3)0.7884 (3)0.0603 (11)
H45A0.56820.45130.84340.090*
H45B0.75000.47280.81110.090*
H45C0.60130.37640.75260.090*
C460.6461 (5)0.5079 (3)0.6317 (3)0.0604 (11)
H46A0.59450.43800.59290.091*
H46B0.76860.51650.64750.091*
H46C0.62300.56180.59550.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0456 (13)0.0334 (12)0.0449 (16)0.0015 (10)0.0067 (11)0.0084 (10)
N10.0435 (15)0.0342 (14)0.0440 (19)0.0069 (12)0.0066 (13)0.0109 (12)
Be10.040 (2)0.037 (2)0.042 (3)0.0016 (19)0.009 (2)0.0029 (19)
O20.0464 (14)0.0352 (12)0.0473 (16)0.0003 (10)0.0035 (11)0.0022 (10)
N20.0387 (15)0.0319 (14)0.049 (2)0.0029 (12)0.0026 (14)0.0058 (13)
Be20.038 (2)0.038 (2)0.041 (3)0.0036 (18)0.005 (2)0.0078 (19)
O30.0405 (12)0.0366 (12)0.0399 (15)0.0030 (10)0.0006 (10)0.0006 (10)
N30.0471 (17)0.0424 (16)0.0347 (18)0.0055 (13)0.0002 (14)0.0011 (12)
O40.0483 (13)0.0320 (12)0.0477 (16)0.0022 (10)0.0048 (11)0.0003 (10)
N40.0420 (15)0.0273 (14)0.0484 (19)0.0031 (11)0.0020 (13)0.0050 (12)
C110.049 (2)0.0362 (18)0.045 (2)0.0063 (15)0.0083 (17)0.0022 (15)
C120.052 (2)0.053 (2)0.060 (3)0.0120 (18)0.0070 (19)0.0014 (18)
C130.075 (3)0.050 (2)0.055 (3)0.008 (2)0.021 (2)0.0089 (18)
C140.048 (2)0.0366 (18)0.051 (2)0.0068 (15)0.0053 (18)0.0097 (16)
C150.047 (2)0.054 (2)0.071 (3)0.0150 (18)0.005 (2)0.010 (2)
C160.065 (3)0.051 (2)0.062 (3)0.0111 (19)0.012 (2)0.0035 (19)
C210.051 (2)0.0422 (19)0.047 (2)0.0076 (16)0.0034 (18)0.0115 (16)
C220.069 (3)0.045 (2)0.075 (3)0.0069 (19)0.003 (2)0.012 (2)
C230.050 (2)0.059 (2)0.076 (3)0.0136 (19)0.008 (2)0.010 (2)
C240.0353 (19)0.047 (2)0.058 (3)0.0014 (15)0.0062 (18)0.0097 (17)
C250.048 (2)0.062 (2)0.064 (3)0.0139 (18)0.004 (2)0.015 (2)
C260.054 (2)0.072 (3)0.066 (3)0.012 (2)0.020 (2)0.020 (2)
C310.055 (2)0.049 (2)0.043 (2)0.0100 (17)0.0112 (18)0.0044 (17)
C320.057 (2)0.057 (2)0.068 (3)0.0160 (19)0.013 (2)0.003 (2)
C330.073 (3)0.063 (3)0.079 (4)0.014 (2)0.038 (3)0.004 (2)
C340.055 (2)0.052 (2)0.042 (2)0.0074 (18)0.0027 (18)0.0120 (17)
C350.055 (2)0.059 (2)0.065 (3)0.0181 (19)0.001 (2)0.016 (2)
C360.090 (3)0.074 (3)0.054 (3)0.016 (2)0.018 (2)0.001 (2)
C410.050 (2)0.0396 (19)0.050 (2)0.0095 (16)0.0088 (18)0.0101 (16)
C420.048 (2)0.056 (2)0.078 (3)0.0118 (18)0.002 (2)0.018 (2)
C430.064 (3)0.038 (2)0.078 (3)0.0074 (18)0.000 (2)0.0071 (19)
C440.0338 (18)0.0428 (19)0.059 (3)0.0017 (15)0.0042 (17)0.0068 (17)
C450.045 (2)0.067 (3)0.066 (3)0.0125 (19)0.002 (2)0.015 (2)
C460.050 (2)0.060 (2)0.075 (3)0.0095 (19)0.021 (2)0.018 (2)
Geometric parameters (Å, º) top
O1—N11.447 (3)C24—C261.516 (6)
O1—Be21.522 (5)C24—C251.525 (5)
N1—C141.498 (4)C24—H241.0000
N1—C111.517 (5)C25—H25A0.9800
N1—Be11.741 (5)C25—H25B0.9800
Be1—O41.467 (5)C25—H25C0.9800
Be1—O31.554 (5)C26—H26A0.9800
Be1—Be22.587 (6)C26—H26B0.9800
O2—N21.457 (3)C26—H26C0.9800
O2—Be21.493 (5)C31—C321.509 (6)
N2—C241.476 (4)C31—C331.514 (5)
N2—C211.478 (4)C31—H311.0000
Be2—O31.600 (5)C32—H32A0.9800
O3—N31.483 (3)C32—H32B0.9800
N3—C341.476 (5)C32—H32C0.9800
N3—C311.488 (5)C33—H33A0.9800
O4—N41.459 (3)C33—H33B0.9800
N4—C411.479 (4)C33—H33C0.9800
N4—C441.481 (4)C34—C351.510 (6)
C11—C131.509 (5)C34—C361.518 (5)
C11—C121.517 (5)C34—H341.0000
C11—H111.0000C35—H35A0.9800
C12—H12A0.9800C35—H35B0.9800
C12—H12B0.9800C35—H35C0.9800
C12—H12C0.9800C36—H36A0.9800
C13—H13A0.9800C36—H36B0.9800
C13—H13B0.9800C36—H36C0.9800
C13—H13C0.9800C41—C421.512 (5)
C14—C161.511 (5)C41—C431.514 (5)
C14—C151.517 (6)C41—H411.0000
C14—H141.0000C42—H42A0.9800
C15—H15A0.9800C42—H42B0.9800
C15—H15B0.9800C42—H42C0.9800
C15—H15C0.9800C43—H43A0.9800
C16—H16A0.9800C43—H43B0.9800
C16—H16B0.9800C43—H43C0.9800
C16—H16C0.9800C44—C451.513 (5)
C21—C221.517 (5)C44—C461.520 (6)
C21—C231.517 (5)C44—H441.0000
C21—H211.0000C45—H45A0.9800
C22—H22A0.9800C45—H45B0.9800
C22—H22B0.9800C45—H45C0.9800
C22—H22C0.9800C46—H46A0.9800
C23—H23A0.9800C46—H46B0.9800
C23—H23B0.9800C46—H46C0.9800
C23—H23C0.9800
N1—O1—Be2113.4 (2)C26—C24—C25110.5 (3)
O1—N1—C14106.6 (2)N2—C24—H24107.0
O1—N1—C11105.0 (2)C26—C24—H24107.0
C14—N1—C11111.8 (3)C25—C24—H24107.0
O1—N1—Be1107.4 (3)C24—C25—H25A109.5
C14—N1—Be1110.8 (3)C24—C25—H25B109.5
C11—N1—Be1114.6 (3)H25A—C25—H25B109.5
O4—Be1—O3144.9 (3)C24—C25—H25C109.5
O4—Be1—N1112.9 (3)H25A—C25—H25C109.5
O3—Be1—N1102.2 (3)H25B—C25—H25C109.5
O4—Be1—Be2179.4 (3)C24—C26—H26A109.5
O3—Be1—Be235.46 (16)C24—C26—H26B109.5
N1—Be1—Be266.72 (19)H26A—C26—H26B109.5
N2—O2—Be2113.9 (3)C24—C26—H26C109.5
O2—N2—C24106.3 (3)H26A—C26—H26C109.5
O2—N2—C21105.3 (2)H26B—C26—H26C109.5
C24—N2—C21112.7 (3)N3—C31—C32109.3 (3)
O2—Be2—O1129.0 (3)N3—C31—C33116.6 (3)
O2—Be2—O3124.3 (3)C32—C31—C33111.5 (4)
O1—Be2—O3106.7 (3)N3—C31—H31106.2
O2—Be2—Be1158.5 (3)C32—C31—H31106.2
O1—Be2—Be172.4 (2)C33—C31—H31106.2
O3—Be2—Be134.30 (16)C31—C32—H32A109.5
N3—O3—Be1119.2 (2)C31—C32—H32B109.5
N3—O3—Be2129.8 (3)H32A—C32—H32B109.5
Be1—O3—Be2110.2 (3)C31—C32—H32C109.5
C34—N3—O3107.3 (2)H32A—C32—H32C109.5
C34—N3—C31114.6 (3)H32B—C32—H32C109.5
O3—N3—C31107.2 (2)C31—C33—H33A109.5
N4—O4—Be1126.9 (3)C31—C33—H33B109.5
O4—N4—C41104.9 (2)H33A—C33—H33B109.5
O4—N4—C44106.6 (3)C31—C33—H33C109.5
C41—N4—C44112.3 (3)H33A—C33—H33C109.5
C13—C11—N1112.1 (3)H33B—C33—H33C109.5
C13—C11—C12110.4 (3)N3—C34—C35110.1 (3)
N1—C11—C12108.7 (3)N3—C34—C36108.6 (3)
C13—C11—H11108.5C35—C34—C36108.8 (4)
N1—C11—H11108.5N3—C34—H34109.8
C12—C11—H11108.5C35—C34—H34109.8
C11—C12—H12A109.5C36—C34—H34109.8
C11—C12—H12B109.5C34—C35—H35A109.5
H12A—C12—H12B109.5C34—C35—H35B109.5
C11—C12—H12C109.5H35A—C35—H35B109.5
H12A—C12—H12C109.5C34—C35—H35C109.5
H12B—C12—H12C109.5H35A—C35—H35C109.5
C11—C13—H13A109.5H35B—C35—H35C109.5
C11—C13—H13B109.5C34—C36—H36A109.5
H13A—C13—H13B109.5C34—C36—H36B109.5
C11—C13—H13C109.5H36A—C36—H36B109.5
H13A—C13—H13C109.5C34—C36—H36C109.5
H13B—C13—H13C109.5H36A—C36—H36C109.5
N1—C14—C16113.9 (3)H36B—C36—H36C109.5
N1—C14—C15109.4 (3)N4—C41—C42109.9 (3)
C16—C14—C15110.3 (3)N4—C41—C43109.6 (3)
N1—C14—H14107.7C42—C41—C43109.5 (3)
C16—C14—H14107.7N4—C41—H41109.3
C15—C14—H14107.7C42—C41—H41109.3
C14—C15—H15A109.5C43—C41—H41109.3
C14—C15—H15B109.5C41—C42—H42A109.5
H15A—C15—H15B109.5C41—C42—H42B109.5
C14—C15—H15C109.5H42A—C42—H42B109.5
H15A—C15—H15C109.5C41—C42—H42C109.5
H15B—C15—H15C109.5H42A—C42—H42C109.5
C14—C16—H16A109.5H42B—C42—H42C109.5
C14—C16—H16B109.5C41—C43—H43A109.5
H16A—C16—H16B109.5C41—C43—H43B109.5
C14—C16—H16C109.5H43A—C43—H43B109.5
H16A—C16—H16C109.5C41—C43—H43C109.5
H16B—C16—H16C109.5H43A—C43—H43C109.5
N2—C21—C22110.1 (3)H43B—C43—H43C109.5
N2—C21—C23109.0 (3)N4—C44—C45109.2 (3)
C22—C21—C23109.3 (3)N4—C44—C46115.8 (3)
N2—C21—H21109.4C45—C44—C46110.9 (3)
C22—C21—H21109.4N4—C44—H44106.8
C23—C21—H21109.4C45—C44—H44106.8
C21—C22—H22A109.5C46—C44—H44106.8
C21—C22—H22B109.5C44—C45—H45A109.5
H22A—C22—H22B109.5C44—C45—H45B109.5
C21—C22—H22C109.5H45A—C45—H45B109.5
H22A—C22—H22C109.5C44—C45—H45C109.5
H22B—C22—H22C109.5H45A—C45—H45C109.5
C21—C23—H23A109.5H45B—C45—H45C109.5
C21—C23—H23B109.5C44—C46—H46A109.5
H23A—C23—H23B109.5C44—C46—H46B109.5
C21—C23—H23C109.5H46A—C46—H46B109.5
H23A—C23—H23C109.5C44—C46—H46C109.5
H23B—C23—H23C109.5H46A—C46—H46C109.5
N2—C24—C26115.6 (3)H46B—C46—H46C109.5
N2—C24—C25109.3 (3)

Experimental details

Crystal data
Chemical formula[Be2(C6H14NO)4]
Mr482.75
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)8.2156 (17), 13.248 (3), 14.317 (3)
α, β, γ (°)98.82 (2), 97.42 (2), 102.42 (2)
V3)1482.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20278, 5220, 2359
Rint0.162
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.169, 0.98
No. of reflections5220
No. of parameters323
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.22

Computer programs: X-AREA (Stoe & Cie, 2012), X-RED32 (Stoe & Cie, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

Professor Nicola Hüsing is thanked for generous support.

References

First citationBerger, R. J. F., Hartmann, M., Pyykkö, P., Sundholm, D. & Schmidbaur, H. (2001). Inorg. Chem. 40, 2270–2274.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBerger, R. J. F., Jana, S., Froehlich, R. & Mitzel, N. W. (2011). Z. Naturforsch. Teil B, 64, 1131–1135.  CrossRef Google Scholar
First citationBerger, R. J. F., Schmidt, M. A., Jusélius, J., Sundholm, D., Sirsch, P. & Schmidbaur, H. (2001). Z. Naturforsch. Teil B, 56, 979–989.  CAS Google Scholar
First citationDressel, M. P., Nogai, S., Berger, R. J. F. & Schmidbaur, H. (2003). Z. Naturforsch. Teil B, 58, 173–182.  CAS Google Scholar
First citationNeumüller, B. & Dehnicke, K. (2010). Z. Anorg. Allg. Chem. 636, 515–517.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUllrich, M. (2007). PhD thesis, Universität Münster, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds