metal-organic compounds
Dipyridinium diaquabis(pyrazole-3,5-dicarboxylato-κ2N,O)cuprate(II) dihydrate
aState Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology, College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, People's Republic of China, and bUniversité Européenne de Bretagne, Université de Bretagne Occidentale, CS 93837, 29238 Brest Cedex 3, France
*Correspondence e-mail: siyoutao@hotmail.com
In the mononuclear title salt, (C5H6N)2[Cu(C5H2N2O4)2(H2O)2]·2H2O, the CuII ion is located on an inversion centre and is coordinated by two chelating pyrazole-3,5-dicarboxylate anions and two water molecules, forming a Jahn–Teller-distorted CuN2O4 octahedron. O—H⋯O and N—H⋯O hydrogen bonds are formed between water molecules, complex anions and the pyridine counter-cations, leading to the formation of layers parallel to (100). The layers are held together by weak C—H⋯O hydrogen bonds.
Related literature
For more information on ligands derived from pyrazole-3,5-dicarboxylic acid, see: King et al. (2004). For the bond-valence method, see: Brown (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Siemens, 1998); cell SAINT (Siemens, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812046508/wm2698sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812046508/wm2698Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812046508/wm2698Isup4.cdx
0.5 mmol H3dcp and 0.05 mmol CuCl were mixted in 10 ml H2O to give a suspension. After addition of 0.5 ml pyridine, the suspension turned to solution, which was then stirred for 4 h and filtered. After standing in ambient conditions for about 3 days, the filtrate yielded blue crystals suitable for X-ray diffraction.
The H atoms on N3, O5 and O6 were found in the difference
and the corresponding N—H bond length was set at 0.86 Å, the O—H bond length at 0.82 Å. Other H atoms were placed at idealized positions and allowed to ride on their parent atoms, with C—H and N—H bonds being 0.930 Å and 0.86 Å, respectively. For all H atoms, Uiso(H)=1.2Ueq(C, N or O).Data collection: SMART (Siemens, 1998); cell
SAINT (Siemens, 1998); data reduction: SAINT (Siemens, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, with atom labels and 20% probability displacement ellipsoids for all non-H atoms. [Symmetry code A: -x+1, -y+1, -z+1.] | |
Fig. 2. The packing diagram of the title compound, viewed down the b axis. Hydrogen bonding interactions are gived as dashed lines. |
(C5H6N)2[Cu(C5H2N2O4)2(H2O)2]·2H2O | F(000) = 622 |
Mr = 603.99 | Dx = 1.629 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1917 reflections |
a = 9.3531 (4) Å | θ = 2.2–25.0° |
b = 7.3521 (1) Å | µ = 0.96 mm−1 |
c = 17.9903 (7) Å | T = 273 K |
β = 95.600 (2)° | Prism, blue |
V = 1231.20 (7) Å3 | 0.34 × 0.18 × 0.06 mm |
Z = 2 |
Bruker SMART CCD diffractometer | 2106 independent reflections |
Radiation source: fine-focus sealed tube | 1802 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
phi and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→9 |
Tmin = 0.735, Tmax = 0.944 | k = −8→7 |
3386 measured reflections | l = −21→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.075 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.154 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.26 | w = 1/[σ2(Fo2) + (0.0117P)2 + 6.7689P] where P = (Fo2 + 2Fc2)/3 |
2106 reflections | (Δ/σ)max < 0.001 |
193 parameters | Δρmax = 0.50 e Å−3 |
5 restraints | Δρmin = −0.41 e Å−3 |
(C5H6N)2[Cu(C5H2N2O4)2(H2O)2]·2H2O | V = 1231.20 (7) Å3 |
Mr = 603.99 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.3531 (4) Å | µ = 0.96 mm−1 |
b = 7.3521 (1) Å | T = 273 K |
c = 17.9903 (7) Å | 0.34 × 0.18 × 0.06 mm |
β = 95.600 (2)° |
Bruker SMART CCD diffractometer | 2106 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1802 reflections with I > 2σ(I) |
Tmin = 0.735, Tmax = 0.944 | Rint = 0.038 |
3386 measured reflections |
R[F2 > 2σ(F2)] = 0.075 | 5 restraints |
wR(F2) = 0.154 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.26 | Δρmax = 0.50 e Å−3 |
2106 reflections | Δρmin = −0.41 e Å−3 |
193 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.0307 (3) | |
O1 | 0.3159 (5) | 1.0520 (5) | 0.7574 (2) | 0.0340 (10) | |
O3 | 0.7070 (4) | 0.9725 (6) | 0.5173 (2) | 0.0334 (10) | |
N1 | 0.3911 (5) | 0.6681 (6) | 0.6461 (2) | 0.0253 (11) | |
H1 | 0.3367 | 0.5826 | 0.6599 | 0.030* | |
O4 | 0.6331 (4) | 0.6957 (5) | 0.4799 (2) | 0.0303 (10) | |
N2 | 0.4725 (5) | 0.6559 (6) | 0.5890 (2) | 0.0250 (10) | |
C2 | 0.4060 (6) | 0.8331 (8) | 0.6791 (3) | 0.0238 (12) | |
O2 | 0.2622 (5) | 0.7604 (6) | 0.7754 (2) | 0.0405 (11) | |
C1 | 0.3205 (6) | 0.8838 (8) | 0.7425 (3) | 0.0265 (13) | |
C4 | 0.5402 (6) | 0.8162 (7) | 0.5856 (3) | 0.0220 (12) | |
O5 | 0.2915 (6) | 0.6726 (6) | 0.4319 (3) | 0.0425 (11) | |
H3A | 0.290 (8) | 0.779 (4) | 0.444 (4) | 0.051* | |
H3B | 0.287 (8) | 0.679 (10) | 0.3864 (12) | 0.051* | |
C5 | 0.6349 (6) | 0.8345 (7) | 0.5240 (3) | 0.0221 (12) | |
C3 | 0.5020 (6) | 0.9310 (8) | 0.6420 (3) | 0.0270 (13) | |
H2 | 0.5345 | 1.0487 | 0.6523 | 0.032* | |
O6 | 0.7456 (6) | 0.6665 (6) | 0.3457 (3) | 0.0482 (13) | |
H4A | 0.719 (8) | 0.703 (10) | 0.385 (2) | 0.058* | |
H4B | 0.709 (8) | 0.739 (9) | 0.315 (3) | 0.058* | |
N3 | 1.1229 (6) | 0.2882 (8) | 0.3354 (3) | 0.0381 (13) | |
H5 | 1.185 (6) | 0.350 (8) | 0.313 (3) | 0.046* | |
C9 | 1.0145 (7) | 0.0054 (11) | 0.3514 (4) | 0.0479 (17) | |
H9 | 1.0028 | −0.1166 | 0.3385 | 0.057* | |
C10 | 1.1080 (7) | 0.1140 (9) | 0.3174 (4) | 0.0408 (16) | |
H10 | 1.1615 | 0.0649 | 0.2814 | 0.049* | |
C7 | 0.9545 (8) | 0.2621 (13) | 0.4227 (4) | 0.056 (2) | |
H7 | 0.9016 | 0.3144 | 0.4583 | 0.067* | |
C8 | 0.9389 (7) | 0.0817 (11) | 0.4047 (4) | 0.0496 (19) | |
H8 | 0.8760 | 0.0102 | 0.4291 | 0.059* | |
C6 | 1.0501 (8) | 0.3639 (11) | 0.3870 (4) | 0.0512 (19) | |
H6 | 1.0637 | 0.4862 | 0.3989 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0437 (6) | 0.0249 (5) | 0.0268 (5) | −0.0106 (5) | 0.0198 (4) | −0.0103 (5) |
O1 | 0.042 (3) | 0.029 (2) | 0.033 (2) | 0.0026 (19) | 0.018 (2) | −0.0069 (18) |
O3 | 0.038 (2) | 0.031 (2) | 0.034 (2) | −0.009 (2) | 0.0175 (19) | −0.0081 (19) |
N1 | 0.030 (3) | 0.024 (2) | 0.024 (2) | −0.001 (2) | 0.013 (2) | −0.002 (2) |
O4 | 0.040 (2) | 0.027 (2) | 0.027 (2) | −0.0115 (18) | 0.0212 (19) | −0.0082 (17) |
N2 | 0.031 (3) | 0.024 (2) | 0.021 (2) | −0.001 (2) | 0.012 (2) | −0.001 (2) |
C2 | 0.027 (3) | 0.027 (3) | 0.018 (3) | 0.002 (2) | 0.004 (2) | −0.003 (2) |
O2 | 0.059 (3) | 0.034 (2) | 0.032 (2) | −0.004 (2) | 0.024 (2) | 0.002 (2) |
C1 | 0.027 (3) | 0.034 (3) | 0.020 (3) | 0.008 (3) | 0.004 (2) | −0.007 (3) |
C4 | 0.026 (3) | 0.021 (3) | 0.019 (3) | −0.004 (2) | 0.004 (2) | −0.005 (2) |
O5 | 0.068 (3) | 0.030 (2) | 0.030 (2) | −0.004 (2) | 0.006 (2) | −0.002 (2) |
C5 | 0.021 (3) | 0.025 (3) | 0.021 (3) | −0.001 (2) | 0.003 (2) | −0.001 (2) |
C3 | 0.028 (3) | 0.025 (3) | 0.029 (3) | −0.004 (2) | 0.009 (3) | −0.004 (2) |
O6 | 0.078 (4) | 0.030 (3) | 0.042 (3) | −0.004 (2) | 0.037 (3) | −0.005 (2) |
N3 | 0.037 (3) | 0.046 (3) | 0.033 (3) | −0.009 (3) | 0.012 (2) | 0.009 (3) |
C9 | 0.045 (4) | 0.049 (4) | 0.050 (4) | −0.009 (4) | 0.002 (3) | 0.012 (4) |
C10 | 0.042 (4) | 0.046 (4) | 0.035 (4) | 0.000 (3) | 0.008 (3) | 0.001 (3) |
C7 | 0.039 (4) | 0.092 (6) | 0.040 (4) | −0.002 (4) | 0.019 (3) | −0.016 (4) |
C8 | 0.037 (4) | 0.076 (5) | 0.035 (4) | −0.020 (4) | 0.000 (3) | 0.018 (4) |
C6 | 0.051 (4) | 0.051 (4) | 0.054 (4) | −0.006 (4) | 0.018 (4) | −0.013 (4) |
Cu1—O4 | 1.959 (4) | O5—H3A | 0.82 (2) |
Cu1—O4i | 1.959 (4) | O5—H3B | 0.82 (2) |
Cu1—N2 | 2.006 (4) | C3—H2 | 0.9300 |
Cu1—N2i | 2.006 (4) | O6—H4A | 0.82 (2) |
Cu1—O5 | 2.539 (5) | O6—H4B | 0.82 (2) |
Cu1—O5i | 2.539 (5) | N3—C10 | 1.325 (9) |
O1—C1 | 1.267 (7) | N3—C6 | 1.325 (8) |
O3—C5 | 1.230 (6) | N3—H5 | 0.87 (2) |
N1—N2 | 1.341 (6) | C9—C8 | 1.367 (10) |
N1—C2 | 1.351 (7) | C9—C10 | 1.371 (9) |
N1—H1 | 0.8600 | C9—H9 | 0.9300 |
O4—C5 | 1.292 (6) | C10—H10 | 0.9300 |
N2—C4 | 1.342 (7) | C7—C8 | 1.369 (11) |
C2—C3 | 1.374 (8) | C7—C6 | 1.373 (10) |
C2—C1 | 1.502 (7) | C7—H7 | 0.9300 |
O2—C1 | 1.239 (7) | C8—H8 | 0.9300 |
C4—C3 | 1.393 (7) | C6—H6 | 0.9300 |
C4—C5 | 1.491 (7) | ||
O4—Cu1—O4i | 179.999 (1) | H3A—O5—H3B | 102 (7) |
O4—Cu1—N2 | 81.99 (16) | O3—C5—O4 | 124.5 (5) |
O4i—Cu1—N2 | 98.01 (16) | O3—C5—C4 | 121.2 (5) |
O4—Cu1—N2i | 98.01 (16) | O4—C5—C4 | 114.3 (5) |
O4i—Cu1—N2i | 81.99 (16) | C2—C3—C4 | 105.2 (5) |
N2—Cu1—N2i | 179.999 (1) | C2—C3—H2 | 127.4 |
O4—Cu1—O5 | 90.92 (17) | C4—C3—H2 | 127.4 |
O4i—Cu1—O5 | 89.08 (17) | H4A—O6—H4B | 103 (7) |
N2—Cu1—O5 | 86.97 (17) | C10—N3—C6 | 121.9 (6) |
N2i—Cu1—O5 | 93.03 (17) | C10—N3—H5 | 117 (5) |
N2—N1—C2 | 110.8 (4) | C6—N3—H5 | 121 (5) |
N2—N1—H1 | 124.6 | C8—C9—C10 | 118.0 (7) |
C2—N1—H1 | 124.6 | C8—C9—H9 | 121.0 |
C5—O4—Cu1 | 116.0 (3) | C10—C9—H9 | 121.0 |
N1—N2—C4 | 106.3 (4) | N3—C10—C9 | 120.7 (7) |
N1—N2—Cu1 | 141.0 (4) | N3—C10—H10 | 119.6 |
C4—N2—Cu1 | 111.6 (3) | C9—C10—H10 | 119.6 |
N1—C2—C3 | 107.6 (5) | C8—C7—C6 | 118.5 (7) |
N1—C2—C1 | 121.1 (5) | C8—C7—H7 | 120.8 |
C3—C2—C1 | 131.3 (5) | C6—C7—H7 | 120.8 |
O2—C1—O1 | 126.0 (5) | C9—C8—C7 | 120.8 (7) |
O2—C1—C2 | 118.2 (5) | C9—C8—H8 | 119.6 |
O1—C1—C2 | 115.8 (5) | C7—C8—H8 | 119.6 |
N2—C4—C3 | 110.1 (5) | N3—C6—C7 | 120.1 (7) |
N2—C4—C5 | 115.5 (4) | N3—C6—H6 | 120.0 |
C3—C4—C5 | 134.4 (5) | C7—C6—H6 | 120.0 |
N2—Cu1—O4—C5 | −5.9 (4) | Cu1—N2—C4—C5 | −7.8 (6) |
N2i—Cu1—O4—C5 | 174.1 (4) | Cu1—O4—C5—O3 | −176.5 (4) |
C2—N1—N2—C4 | −0.1 (6) | Cu1—O4—C5—C4 | 3.3 (6) |
C2—N1—N2—Cu1 | −166.3 (5) | N2—C4—C5—O3 | −176.9 (5) |
O4—Cu1—N2—N1 | 173.2 (6) | C3—C4—C5—O3 | 4.2 (10) |
O4i—Cu1—N2—N1 | −6.8 (6) | N2—C4—C5—O4 | 3.3 (7) |
O4—Cu1—N2—C4 | 7.4 (4) | C3—C4—C5—O4 | −175.6 (6) |
O4i—Cu1—N2—C4 | −172.6 (4) | N1—C2—C3—C4 | 0.8 (6) |
N2—N1—C2—C3 | −0.5 (6) | C1—C2—C3—C4 | −176.5 (6) |
N2—N1—C2—C1 | 177.2 (5) | N2—C4—C3—C2 | −0.9 (7) |
N1—C2—C1—O2 | 16.6 (8) | C5—C4—C3—C2 | 178.0 (6) |
C3—C2—C1—O2 | −166.4 (6) | C6—N3—C10—C9 | 0.7 (11) |
N1—C2—C1—O1 | −163.7 (5) | C8—C9—C10—N3 | −0.8 (10) |
C3—C2—C1—O1 | 13.3 (9) | C10—C9—C8—C7 | 1.1 (11) |
N1—N2—C4—C3 | 0.6 (6) | C6—C7—C8—C9 | −1.3 (11) |
Cu1—N2—C4—C3 | 171.3 (4) | C10—N3—C6—C7 | −0.9 (11) |
N1—N2—C4—C5 | −178.5 (5) | C8—C7—C6—N3 | 1.1 (12) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O6i | 0.86 | 1.99 | 2.783 (6) | 154 |
O5—H3A···O3ii | 0.81 (4) | 1.95 (4) | 2.764 (6) | 175 (8) |
O5—H3B···O2iii | 0.82 (2) | 2.04 (3) | 2.845 (6) | 170 (7) |
O6—H4A···O4 | 0.82 (5) | 1.96 (5) | 2.735 (7) | 159 (7) |
O6—H4B···O1ii | 0.82 (6) | 2.01 (6) | 2.801 (6) | 162 (7) |
N3—H5···O1iv | 0.87 (6) | 1.81 (6) | 2.665 (7) | 171 (6) |
C6—H6···O5v | 0.93 | 2.55 | 3.247 (9) | 132 |
C8—H8···O3vi | 0.93 | 2.36 | 3.211 (8) | 151 |
C10—H10···O2vii | 0.93 | 2.58 | 3.231 (8) | 128 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, −y+3/2, z−1/2; (iv) x+1, −y+3/2, z−1/2; (v) x+1, y, z; (vi) x, y−1, z; (vii) x+1, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | (C5H6N)2[Cu(C5H2N2O4)2(H2O)2]·2H2O |
Mr | 603.99 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 273 |
a, b, c (Å) | 9.3531 (4), 7.3521 (1), 17.9903 (7) |
β (°) | 95.600 (2) |
V (Å3) | 1231.20 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.96 |
Crystal size (mm) | 0.34 × 0.18 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.735, 0.944 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3386, 2106, 1802 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.075, 0.154, 1.26 |
No. of reflections | 2106 |
No. of parameters | 193 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −0.41 |
Computer programs: SMART (Siemens, 1998), SAINT (Siemens, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 2012), publCIF (Westrip, 2010).
Cu1—O4 | 1.959 (4) | Cu1—O5 | 2.539 (5) |
Cu1—N2 | 2.006 (4) | ||
O4—Cu1—N2 | 81.99 (16) | N2—Cu1—O5 | 86.97 (17) |
O4—Cu1—O5 | 90.92 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O6i | 0.860 | 1.986 | 2.783 (6) | 154 |
O5—H3A···O3ii | 0.81 (4) | 1.95 (4) | 2.764 (6) | 175 (8) |
O5—H3B···O2iii | 0.82 (2) | 2.04 (3) | 2.845 (6) | 170 (7) |
O6—H4A···O4 | 0.82 (5) | 1.96 (5) | 2.735 (7) | 159 (7) |
O6—H4B···O1ii | 0.82 (6) | 2.01 (6) | 2.801 (6) | 162 (7) |
N3—H5···O1iv | 0.87 (6) | 1.81 (6) | 2.665 (7) | 171 (6) |
C6—H6···O5v | 0.93 | 2.55 | 3.247 (9) | 132 |
C8—H8···O3vi | 0.93 | 2.36 | 3.211 (8) | 151 |
C10—H10···O2vii | 0.93 | 2.58 | 3.231 (8) | 128 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, −y+3/2, z−1/2; (iv) x+1, −y+3/2, z−1/2; (v) x+1, y, z; (vi) x, y−1, z; (vii) x+1, −y+1/2, z−1/2. |
Acknowledgements
The author thanks the Centre Nationale de la Recherche Scientique (CNRS) for financial support.
References
Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
King, P., Clérac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 852–861. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1998). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazole-3,5-dicarboxylic acid (H3dcp) is a versatile ligand with six potential coordinating sites, namely two N atoms of the pyrazole ring and four O atoms of the carboxyl groups. Together with π—π interactions between neighbouring pyrazole rings, the coordination mode of H3dcp can lead to different possibilities for creating supramolecular structures (King et al., 2004). When trying to synthesize a copper-containing coordination compound involving H3dcp, the title compound, (C5H6N)+2[Cu(C5H2N2O4)2(H2O)2]2-.2H2O, was obtained.
The CuII ion sits on an inversion center. One fully deprotonated pyrazole-3,5-dicarboxylic acid, one coordinating water molecule, one lattice water molecule and one pyridinium cation are also present in the asymmetric unit. The other half of the metal-containing moiety is generated by the inversion centre. Each pyrazole-3,5-dicarboxylate anion chelates the metal by one N atom and one O atom in the equatorial plane of an octahedron whereas the axial ligands are provided from water molecules at considerably longer distances (Fig. 1), in agreement with the tetragonal Jahn-Teller distortion (Table 1).
The BVS calculation (Brown, 2002) of the Cu ion gave a value of 1.88 valence units, which indicates that the Cu ion is divalent. Because pyrazole-3,5-dicarboxylic acid is a rather strong acid, the terminal non-coordinating carboxyl group also loses its proton to make the solvent pyridine molecules protonated. Besides four protonated pyridine molecules, four lattice water molecules are present in one unit cell as solvent molecules.
Classical O—H···O and N—H···O hydrogen bonding occurs between water molecules, pyridinium cations and complex anions to form a layer in (100), in which N1, N3, O5, O6 act as donor atoms, and O1, O2, O3, O4, O6 are acceptors (Table 2). The packing of adjacent layers along [100] is accomplished through non-classical weak C—H···O contacts, with the donor belonging to pyridine and acceptor being O atoms of the non-coordinating carboxylate groups.