metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1497-m1498

Dipyridinium di­aqua­bis­­(pyrazole-3,5-di­carboxyl­ato-κ2N,O)cuprate(II) dihydrate

aState Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology, College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, People's Republic of China, and bUniversité Européenne de Bretagne, Université de Bretagne Occidentale, CS 93837, 29238 Brest Cedex 3, France
*Correspondence e-mail: siyoutao@hotmail.com

(Received 30 October 2012; accepted 10 November 2012; online 17 November 2012)

In the mononuclear title salt, (C5H6N)2[Cu(C5H2N2O4)2(H2O)2]·2H2O, the CuII ion is located on an inversion centre and is coordinated by two chelating pyrazole-3,5-dicarboxyl­ate anions and two water mol­ecules, forming a Jahn–Teller-distorted CuN2O4 octa­hedron. O—H⋯O and N—H⋯O hydrogen bonds are formed between water mol­ecules, complex anions and the pyridine counter-cations, leading to the formation of layers parallel to (100). The layers are held together by weak C—H⋯O hydrogen bonds.

Related literature

For more information on ligands derived from pyrazole-3,5-dicarb­oxy­lic acid, see: King et al. (2004[King, P., Clérac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 852-861.]). For the bond-valence method, see: Brown (2002[Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6N)2[Cu(C5H2N2O4)2(H2O)2]·2H2O

  • Mr = 603.99

  • Monoclinic, P 21 /c

  • a = 9.3531 (4) Å

  • b = 7.3521 (1) Å

  • c = 17.9903 (7) Å

  • β = 95.600 (2)°

  • V = 1231.20 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 273 K

  • 0.34 × 0.18 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.735, Tmax = 0.944

  • 3386 measured reflections

  • 2106 independent reflections

  • 1802 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.154

  • S = 1.26

  • 2106 reflections

  • 193 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O4 1.959 (4)
Cu1—N2 2.006 (4)
Cu1—O5 2.539 (5)
O4—Cu1—N2 81.99 (16)
O4—Cu1—O5 90.92 (17)
N2—Cu1—O5 86.97 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 1.99 2.783 (6) 154
O5—H3A⋯O3ii 0.81 (4) 1.95 (4) 2.764 (6) 175 (8)
O5—H3B⋯O2iii 0.82 (2) 2.04 (3) 2.845 (6) 170 (7)
O6—H4A⋯O4 0.82 (5) 1.96 (5) 2.735 (7) 159 (7)
O6—H4B⋯O1ii 0.82 (6) 2.01 (6) 2.801 (6) 162 (7)
N3—H5⋯O1iv 0.87 (6) 1.81 (6) 2.665 (7) 171 (6)
C6—H6⋯O5v 0.93 2.55 3.247 (9) 132
C8—H8⋯O3vi 0.93 2.36 3.211 (8) 151
C10—H10⋯O2vii 0.93 2.58 3.231 (8) 128
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x+1, y, z; (vi) x, y-1, z; (vii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1998[Siemens (1998). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1998[Siemens (1998). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazole-3,5-dicarboxylic acid (H3dcp) is a versatile ligand with six potential coordinating sites, namely two N atoms of the pyrazole ring and four O atoms of the carboxyl groups. Together with ππ interactions between neighbouring pyrazole rings, the coordination mode of H3dcp can lead to different possibilities for creating supramolecular structures (King et al., 2004). When trying to synthesize a copper-containing coordination compound involving H3dcp, the title compound, (C5H6N)+2[Cu(C5H2N2O4)2(H2O)2]2-.2H2O, was obtained.

The CuII ion sits on an inversion center. One fully deprotonated pyrazole-3,5-dicarboxylic acid, one coordinating water molecule, one lattice water molecule and one pyridinium cation are also present in the asymmetric unit. The other half of the metal-containing moiety is generated by the inversion centre. Each pyrazole-3,5-dicarboxylate anion chelates the metal by one N atom and one O atom in the equatorial plane of an octahedron whereas the axial ligands are provided from water molecules at considerably longer distances (Fig. 1), in agreement with the tetragonal Jahn-Teller distortion (Table 1).

The BVS calculation (Brown, 2002) of the Cu ion gave a value of 1.88 valence units, which indicates that the Cu ion is divalent. Because pyrazole-3,5-dicarboxylic acid is a rather strong acid, the terminal non-coordinating carboxyl group also loses its proton to make the solvent pyridine molecules protonated. Besides four protonated pyridine molecules, four lattice water molecules are present in one unit cell as solvent molecules.

Classical O—H···O and N—H···O hydrogen bonding occurs between water molecules, pyridinium cations and complex anions to form a layer in (100), in which N1, N3, O5, O6 act as donor atoms, and O1, O2, O3, O4, O6 are acceptors (Table 2). The packing of adjacent layers along [100] is accomplished through non-classical weak C—H···O contacts, with the donor belonging to pyridine and acceptor being O atoms of the non-coordinating carboxylate groups.

Related literature top

For more information on ligands derived from pyrazole-3,5-dicarboxylic acid, see: King et al. (2004). For the bond-valence method, see: Brown (2002).

Experimental top

0.5 mmol H3dcp and 0.05 mmol CuCl were mixted in 10 ml H2O to give a suspension. After addition of 0.5 ml pyridine, the suspension turned to solution, which was then stirred for 4 h and filtered. After standing in ambient conditions for about 3 days, the filtrate yielded blue crystals suitable for X-ray diffraction.

Refinement top

The H atoms on N3, O5 and O6 were found in the difference electron density map, and the corresponding N—H bond length was set at 0.86 Å, the O—H bond length at 0.82 Å. Other H atoms were placed at idealized positions and allowed to ride on their parent atoms, with C—H and N—H bonds being 0.930 Å and 0.86 Å, respectively. For all H atoms, Uiso(H)=1.2Ueq(C, N or O).

Computing details top

Data collection: SMART (Siemens, 1998); cell refinement: SAINT (Siemens, 1998); data reduction: SAINT (Siemens, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 20% probability displacement ellipsoids for all non-H atoms. [Symmetry code A: -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the b axis. Hydrogen bonding interactions are gived as dashed lines.
Dipyridinium diaquabis(pyrazole-3,5-dicarboxylato-κ2N,O)cuprate(II) dihydrate top
Crystal data top
(C5H6N)2[Cu(C5H2N2O4)2(H2O)2]·2H2OF(000) = 622
Mr = 603.99Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1917 reflections
a = 9.3531 (4) Åθ = 2.2–25.0°
b = 7.3521 (1) ŵ = 0.96 mm1
c = 17.9903 (7) ÅT = 273 K
β = 95.600 (2)°Prism, blue
V = 1231.20 (7) Å30.34 × 0.18 × 0.06 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2106 independent reflections
Radiation source: fine-focus sealed tube1802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 119
Tmin = 0.735, Tmax = 0.944k = 87
3386 measured reflectionsl = 2110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.0117P)2 + 6.7689P]
where P = (Fo2 + 2Fc2)/3
2106 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.50 e Å3
5 restraintsΔρmin = 0.41 e Å3
Crystal data top
(C5H6N)2[Cu(C5H2N2O4)2(H2O)2]·2H2OV = 1231.20 (7) Å3
Mr = 603.99Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.3531 (4) ŵ = 0.96 mm1
b = 7.3521 (1) ÅT = 273 K
c = 17.9903 (7) Å0.34 × 0.18 × 0.06 mm
β = 95.600 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2106 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1802 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.944Rint = 0.038
3386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0755 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.26Δρmax = 0.50 e Å3
2106 reflectionsΔρmin = 0.41 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0307 (3)
O10.3159 (5)1.0520 (5)0.7574 (2)0.0340 (10)
O30.7070 (4)0.9725 (6)0.5173 (2)0.0334 (10)
N10.3911 (5)0.6681 (6)0.6461 (2)0.0253 (11)
H10.33670.58260.65990.030*
O40.6331 (4)0.6957 (5)0.4799 (2)0.0303 (10)
N20.4725 (5)0.6559 (6)0.5890 (2)0.0250 (10)
C20.4060 (6)0.8331 (8)0.6791 (3)0.0238 (12)
O20.2622 (5)0.7604 (6)0.7754 (2)0.0405 (11)
C10.3205 (6)0.8838 (8)0.7425 (3)0.0265 (13)
C40.5402 (6)0.8162 (7)0.5856 (3)0.0220 (12)
O50.2915 (6)0.6726 (6)0.4319 (3)0.0425 (11)
H3A0.290 (8)0.779 (4)0.444 (4)0.051*
H3B0.287 (8)0.679 (10)0.3864 (12)0.051*
C50.6349 (6)0.8345 (7)0.5240 (3)0.0221 (12)
C30.5020 (6)0.9310 (8)0.6420 (3)0.0270 (13)
H20.53451.04870.65230.032*
O60.7456 (6)0.6665 (6)0.3457 (3)0.0482 (13)
H4A0.719 (8)0.703 (10)0.385 (2)0.058*
H4B0.709 (8)0.739 (9)0.315 (3)0.058*
N31.1229 (6)0.2882 (8)0.3354 (3)0.0381 (13)
H51.185 (6)0.350 (8)0.313 (3)0.046*
C91.0145 (7)0.0054 (11)0.3514 (4)0.0479 (17)
H91.00280.11660.33850.057*
C101.1080 (7)0.1140 (9)0.3174 (4)0.0408 (16)
H101.16150.06490.28140.049*
C70.9545 (8)0.2621 (13)0.4227 (4)0.056 (2)
H70.90160.31440.45830.067*
C80.9389 (7)0.0817 (11)0.4047 (4)0.0496 (19)
H80.87600.01020.42910.059*
C61.0501 (8)0.3639 (11)0.3870 (4)0.0512 (19)
H61.06370.48620.39890.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0437 (6)0.0249 (5)0.0268 (5)0.0106 (5)0.0198 (4)0.0103 (5)
O10.042 (3)0.029 (2)0.033 (2)0.0026 (19)0.018 (2)0.0069 (18)
O30.038 (2)0.031 (2)0.034 (2)0.009 (2)0.0175 (19)0.0081 (19)
N10.030 (3)0.024 (2)0.024 (2)0.001 (2)0.013 (2)0.002 (2)
O40.040 (2)0.027 (2)0.027 (2)0.0115 (18)0.0212 (19)0.0082 (17)
N20.031 (3)0.024 (2)0.021 (2)0.001 (2)0.012 (2)0.001 (2)
C20.027 (3)0.027 (3)0.018 (3)0.002 (2)0.004 (2)0.003 (2)
O20.059 (3)0.034 (2)0.032 (2)0.004 (2)0.024 (2)0.002 (2)
C10.027 (3)0.034 (3)0.020 (3)0.008 (3)0.004 (2)0.007 (3)
C40.026 (3)0.021 (3)0.019 (3)0.004 (2)0.004 (2)0.005 (2)
O50.068 (3)0.030 (2)0.030 (2)0.004 (2)0.006 (2)0.002 (2)
C50.021 (3)0.025 (3)0.021 (3)0.001 (2)0.003 (2)0.001 (2)
C30.028 (3)0.025 (3)0.029 (3)0.004 (2)0.009 (3)0.004 (2)
O60.078 (4)0.030 (3)0.042 (3)0.004 (2)0.037 (3)0.005 (2)
N30.037 (3)0.046 (3)0.033 (3)0.009 (3)0.012 (2)0.009 (3)
C90.045 (4)0.049 (4)0.050 (4)0.009 (4)0.002 (3)0.012 (4)
C100.042 (4)0.046 (4)0.035 (4)0.000 (3)0.008 (3)0.001 (3)
C70.039 (4)0.092 (6)0.040 (4)0.002 (4)0.019 (3)0.016 (4)
C80.037 (4)0.076 (5)0.035 (4)0.020 (4)0.000 (3)0.018 (4)
C60.051 (4)0.051 (4)0.054 (4)0.006 (4)0.018 (4)0.013 (4)
Geometric parameters (Å, º) top
Cu1—O41.959 (4)O5—H3A0.82 (2)
Cu1—O4i1.959 (4)O5—H3B0.82 (2)
Cu1—N22.006 (4)C3—H20.9300
Cu1—N2i2.006 (4)O6—H4A0.82 (2)
Cu1—O52.539 (5)O6—H4B0.82 (2)
Cu1—O5i2.539 (5)N3—C101.325 (9)
O1—C11.267 (7)N3—C61.325 (8)
O3—C51.230 (6)N3—H50.87 (2)
N1—N21.341 (6)C9—C81.367 (10)
N1—C21.351 (7)C9—C101.371 (9)
N1—H10.8600C9—H90.9300
O4—C51.292 (6)C10—H100.9300
N2—C41.342 (7)C7—C81.369 (11)
C2—C31.374 (8)C7—C61.373 (10)
C2—C11.502 (7)C7—H70.9300
O2—C11.239 (7)C8—H80.9300
C4—C31.393 (7)C6—H60.9300
C4—C51.491 (7)
O4—Cu1—O4i179.999 (1)H3A—O5—H3B102 (7)
O4—Cu1—N281.99 (16)O3—C5—O4124.5 (5)
O4i—Cu1—N298.01 (16)O3—C5—C4121.2 (5)
O4—Cu1—N2i98.01 (16)O4—C5—C4114.3 (5)
O4i—Cu1—N2i81.99 (16)C2—C3—C4105.2 (5)
N2—Cu1—N2i179.999 (1)C2—C3—H2127.4
O4—Cu1—O590.92 (17)C4—C3—H2127.4
O4i—Cu1—O589.08 (17)H4A—O6—H4B103 (7)
N2—Cu1—O586.97 (17)C10—N3—C6121.9 (6)
N2i—Cu1—O593.03 (17)C10—N3—H5117 (5)
N2—N1—C2110.8 (4)C6—N3—H5121 (5)
N2—N1—H1124.6C8—C9—C10118.0 (7)
C2—N1—H1124.6C8—C9—H9121.0
C5—O4—Cu1116.0 (3)C10—C9—H9121.0
N1—N2—C4106.3 (4)N3—C10—C9120.7 (7)
N1—N2—Cu1141.0 (4)N3—C10—H10119.6
C4—N2—Cu1111.6 (3)C9—C10—H10119.6
N1—C2—C3107.6 (5)C8—C7—C6118.5 (7)
N1—C2—C1121.1 (5)C8—C7—H7120.8
C3—C2—C1131.3 (5)C6—C7—H7120.8
O2—C1—O1126.0 (5)C9—C8—C7120.8 (7)
O2—C1—C2118.2 (5)C9—C8—H8119.6
O1—C1—C2115.8 (5)C7—C8—H8119.6
N2—C4—C3110.1 (5)N3—C6—C7120.1 (7)
N2—C4—C5115.5 (4)N3—C6—H6120.0
C3—C4—C5134.4 (5)C7—C6—H6120.0
N2—Cu1—O4—C55.9 (4)Cu1—N2—C4—C57.8 (6)
N2i—Cu1—O4—C5174.1 (4)Cu1—O4—C5—O3176.5 (4)
C2—N1—N2—C40.1 (6)Cu1—O4—C5—C43.3 (6)
C2—N1—N2—Cu1166.3 (5)N2—C4—C5—O3176.9 (5)
O4—Cu1—N2—N1173.2 (6)C3—C4—C5—O34.2 (10)
O4i—Cu1—N2—N16.8 (6)N2—C4—C5—O43.3 (7)
O4—Cu1—N2—C47.4 (4)C3—C4—C5—O4175.6 (6)
O4i—Cu1—N2—C4172.6 (4)N1—C2—C3—C40.8 (6)
N2—N1—C2—C30.5 (6)C1—C2—C3—C4176.5 (6)
N2—N1—C2—C1177.2 (5)N2—C4—C3—C20.9 (7)
N1—C2—C1—O216.6 (8)C5—C4—C3—C2178.0 (6)
C3—C2—C1—O2166.4 (6)C6—N3—C10—C90.7 (11)
N1—C2—C1—O1163.7 (5)C8—C9—C10—N30.8 (10)
C3—C2—C1—O113.3 (9)C10—C9—C8—C71.1 (11)
N1—N2—C4—C30.6 (6)C6—C7—C8—C91.3 (11)
Cu1—N2—C4—C3171.3 (4)C10—N3—C6—C70.9 (11)
N1—N2—C4—C5178.5 (5)C8—C7—C6—N31.1 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.861.992.783 (6)154
O5—H3A···O3ii0.81 (4)1.95 (4)2.764 (6)175 (8)
O5—H3B···O2iii0.82 (2)2.04 (3)2.845 (6)170 (7)
O6—H4A···O40.82 (5)1.96 (5)2.735 (7)159 (7)
O6—H4B···O1ii0.82 (6)2.01 (6)2.801 (6)162 (7)
N3—H5···O1iv0.87 (6)1.81 (6)2.665 (7)171 (6)
C6—H6···O5v0.932.553.247 (9)132
C8—H8···O3vi0.932.363.211 (8)151
C10—H10···O2vii0.932.583.231 (8)128
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2; (iv) x+1, y+3/2, z1/2; (v) x+1, y, z; (vi) x, y1, z; (vii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C5H6N)2[Cu(C5H2N2O4)2(H2O)2]·2H2O
Mr603.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)9.3531 (4), 7.3521 (1), 17.9903 (7)
β (°) 95.600 (2)
V3)1231.20 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.34 × 0.18 × 0.06
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.735, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
3386, 2106, 1802
Rint0.038
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.154, 1.26
No. of reflections2106
No. of parameters193
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.41

Computer programs: SMART (Siemens, 1998), SAINT (Siemens, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 2012), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cu1—O41.959 (4)Cu1—O52.539 (5)
Cu1—N22.006 (4)
O4—Cu1—N281.99 (16)N2—Cu1—O586.97 (17)
O4—Cu1—O590.92 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.8601.9862.783 (6)154
O5—H3A···O3ii0.81 (4)1.95 (4)2.764 (6)175 (8)
O5—H3B···O2iii0.82 (2)2.04 (3)2.845 (6)170 (7)
O6—H4A···O40.82 (5)1.96 (5)2.735 (7)159 (7)
O6—H4B···O1ii0.82 (6)2.01 (6)2.801 (6)162 (7)
N3—H5···O1iv0.87 (6)1.81 (6)2.665 (7)171 (6)
C6—H6···O5v0.932.553.247 (9)132
C8—H8···O3vi0.932.363.211 (8)151
C10—H10···O2vii0.932.583.231 (8)128
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2; (iv) x+1, y+3/2, z1/2; (v) x+1, y, z; (vi) x, y1, z; (vii) x+1, y+1/2, z1/2.
 

Acknowledgements

The author thanks the Centre Nationale de la Recherche Scientique (CNRS) for financial support.

References

First citationBrown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKing, P., Clérac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 852–861.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1998). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1497-m1498
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds