organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3266-o3267

Bis(adeninium) bis­­(hydrogensulfate) sulfate

aUnité de Recherche Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bCristallographie, Résonance Magnétique et Modélisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy CEDEX, France
*Correspondence e-mail: Lamiabendjeddou@yahoo.fr

(Received 16 October 2012; accepted 29 October 2012; online 3 November 2012)

The title compound, 2C5H7N52+·2HSO4·SO42−, was synthesized from adenine and sulfuric acid. The asymmetric unit contains two diprotonated adeninium cations, two bis­ulfate anions and one sulfate anion. The crystal structure is stabilized by classical N—H⋯O and O—H⋯O hydrogen bonds, and weak C—H⋯O and C—H⋯N hydrogen bonds, generating a three-dimensional network.

Related literature

For background to the title compound, see: Biradha et al. (2010[Biradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937-942.]); Guenifa et al. (2009[Guenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264-o2265.]); Zeghouan et al. (2012[Zeghouan, O., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2012). Acta Cryst. E68, o2959-o2960.]). For related structures, see: Bendjeddou et al. (2003[Bendjeddou, L., Cherouana, A., Dahaoui, S., Benali-Cherif, N. & Lecomte, C. (2003). Acta Cryst. E59, o649-o651.]); Fun et al. (2011[Fun, H.-K., Goh, J. H., Maity, A. C. & Goswami, S. (2011). Acta Cryst. E67, o427.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H7N5+·2HSO4·SO42−

  • Mr = 564.54

  • Monoclinic, C 2/c

  • a = 26.370 (5) Å

  • b = 8.970 (2) Å

  • c = 20.350 (4) Å

  • β = 126.184 (10)°

  • V = 3885.2 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 120 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 5681 measured reflections

  • 5681 independent reflections

  • 3989 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.131

  • S = 1.07

  • 5681 reflections

  • 352 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.09 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4i 0.84 (2) 1.74 (2) 2.580 (2) 174 (3)
O11—H11⋯O1ii 0.91 (3) 1.56 (2) 2.457 (2) 166 (4)
N1A—H1A⋯O2ii 0.912 (18) 1.92 (2) 2.760 (3) 151 (3)
N1B—H1B⋯O7 0.880 (18) 2.28 (2) 3.027 (3) 142 (2)
N1B—H1B⋯O10 0.880 (18) 2.18 (2) 2.870 (3) 136 (2)
N2A—H21A⋯O3iii 0.89 (2) 1.96 (2) 2.796 (3) 156 (2)
N2A—H22A⋯O2ii 0.911 (18) 2.17 (2) 2.884 (3) 135 (2)
N2A—H22A⋯O9iii 0.911 (18) 2.22 (2) 2.814 (3) 122 (2)
N2B—H21B⋯O10 0.885 (18) 2.01 (3) 2.760 (3) 142 (3)
N2B—H22B⋯O12iv 0.91 (2) 1.94 (2) 2.817 (3) 162 (2)
N7A—H7A⋯O3iii 0.888 (17) 1.96 (2) 2.757 (2) 149 (2)
N7B—H7B⋯O1v 0.916 (17) 2.28 (2) 2.858 (3) 121 (2)
N7B—H7B⋯O12iv 0.916 (17) 1.97 (2) 2.763 (3) 145 (2)
N9A—H9A⋯O8vi 0.89 (2) 1.95 (2) 2.767 (3) 152.3 (18)
N9B—H9B⋯O7vii 0.87 (2) 1.920 (19) 2.775 (3) 166 (2)
C2A—H2A⋯O6viii 0.93 2.21 2.913 (3) 131
C2A—H2A⋯N3Bvi 0.93 2.49 3.189 (3) 132
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z; (v) -x, -y+2, -z; (vi) [x, -y+1, z-{\script{1\over 2}}]; (vii) x, y+1, z; (viii) [x, -y, z-{\script{1\over 2}}].

Data collection: KappaCCD Reference Manual (Nonius, 1998[Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST97 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POVRay (Persistence of Vision Team, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ .]).

Supporting information


Comment top

Adenine is a purine derivative nucleobase. It is one of the most widely-used nucleobase in biochemistry (Biradha et al., 2010). It is an integral part of DNA, RNA and ATP. As a nucleobase, adenine exhibits a tendency to self associate with the help of Watson-Crick and Hoogsteen hydrogen bonds. We present in this paper the molecular structure of compound (I) which was isolated during our investigations on D—H···A hydrogen bonds in organic-inorganic hybrid systems, including amino acids and nitrogenous bases with various inorganic acids (Guenifa et al., 2009; Zeghouan et al., 2012).

The asymmetric unit of the title compound is formed by two diprotonated adeninium cations, two bisulfate and one sulfate anions (Fig. 1). Recently, similar structures containing adeninium cations have been reported. Among examples, can be named the following ones: Adeninium diperchlorate monohydrate (Bendjeddou et al., 2003), and Adeninium perchlorate (Fun et al., 2011). In the structure of (I), the ions are held together with intermolecular N—H···O, O—H···O, C—H···O and C—H···N hydrogen bonds, forming three-dimensional hydrogen-bonded network.

In the sulfate anion, S1 atom is linked to four equivalents short bonds, which confirm the absence of proton in this anion. The presence of H atom in O5 and O11 atoms of the bisulfate anions is confirmed from the asymmetric S—O bond distances. This ascertain the bisulfate nature of the anion and generate two strong independent O—H···O hydrogen bonds which form a D22(7) finite chains (Bernstein et al., 1995), in three-dimensional network (Fig. 2).

In the crystal packing, the adeninium cations are linked by pairs of C—H···N hydrogen bond involving the H2A and N3B atoms of cations into inversion dimers, generating a characteristic D(3) motif (Fig. 2).

Moreover, adeninium cations and bisulfate and sulfate anions are linked by moderates N—H···O and weaks C—H···O hydrogen-bonds forming an alternating noncentrosymmetric rings in two-dimensional network which can be described by the graph-set motif R12(5), R44(16) and R12(7) which run parallel to the [010] direction (Fig. 3).

The combination of the four types of intermolecular N—H···O, O—H···O, C—H···O and C—H···N hydrogen bonds gives rise to different graph-set motifs and generates a complicated three-dimensional network.

Related literature top

For background to the title compound, see: Biradha et al. (2010); Guenifa et al. (2009); Zeghouan et al. (2012). For related structures, see: Bendjeddou et al. (2003); Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound is prepared by reaction of an aqueous solution containing the adenine and the sulfuric acid. The solution was maintained in 293 K under agitation during twenty minutes. Colourless crystals were appeared by evaporation of the solution at room temperature over the course of a few weeks.

Refinement top

The aromatic H atoms were placed at calculated positions respectively with C—H fixed at 0.93 Å (Afix 43). All H atom attached to N or O were initially located by difference maps with restraint of the N—H bond length to 0.90 (2) Å (DFIX), and U fixed to be 1.2 times that of the N; and O—H bond length to 0.85 (2) Å (DFIX) for hydroxyl group and U fixed to be 1.5 times that of the O5 and O11 atoms .

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure, showing the formation of D(3) and D22(7) hydrogen-bonding motifs. [Symmetry codes: (@) x - 1/2, y + 1/2, z - 1; (β) x - 1/2, y + 3/2, z - 1; (α) x - 1/2, -y + 3/2, z - 3/2].
[Figure 3] Fig. 3. Part of the crystal structure, showing the aggregation of R12(5), R44(16) and R12(7) hydrogen-bonding motifs. [Symmetry codes: (#) x - 1/2, y - 1/2, z; (°) x - 1/2, y + 1/2, z; (^) -x + 1, y, -z + 3/2].
Bis(adeninium) bis(hydrogensulfate) sulfate top
Crystal data top
2C5H7N5+·2HSO4·SO42F(000) = 2320
Mr = 564.54Dx = 1.93 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5681 reflections
a = 26.370 (5) Åθ = 3–30.0°
b = 8.970 (2) ŵ = 0.48 mm1
c = 20.350 (4) ÅT = 120 K
β = 126.184 (10)°Needle, colourless
V = 3885.2 (15) Å30.3 × 0.3 × 0.2 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3989 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 30.0°, θmin = 3.0°
ω scansh = 037
5681 measured reflectionsk = 012
5681 independent reflectionsl = 2823
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0749P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max = 0.001
S = 1.07Δρmax = 1.09 e Å3
5681 reflectionsΔρmin = 0.60 e Å3
352 parameters
Crystal data top
2C5H7N5+·2HSO4·SO42V = 3885.2 (15) Å3
Mr = 564.54Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.370 (5) ŵ = 0.48 mm1
b = 8.970 (2) ÅT = 120 K
c = 20.350 (4) Å0.3 × 0.3 × 0.2 mm
β = 126.184 (10)°
Data collection top
Nonius KappaCCD
diffractometer
3989 reflections with I > 2σ(I)
5681 measured reflectionsRint = 0.000
5681 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04312 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.09 e Å3
5681 reflectionsΔρmin = 0.60 e Å3
352 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.20719 (9)0.0944 (2)0.05345 (11)0.0164 (5)
N2A0.27322 (9)0.0677 (2)0.19479 (12)0.0196 (6)
N3A0.18368 (9)0.3217 (2)0.01909 (11)0.0177 (5)
N7A0.28666 (9)0.4136 (2)0.19011 (11)0.0161 (5)
N9A0.23914 (9)0.5305 (2)0.07420 (11)0.0171 (5)
C2A0.17772 (10)0.1776 (3)0.01588 (13)0.0177 (6)
C4A0.22262 (10)0.3823 (2)0.05632 (13)0.0145 (6)
C5A0.25287 (10)0.3085 (2)0.12903 (13)0.0149 (6)
C6A0.24601 (10)0.1527 (2)0.12997 (13)0.0153 (6)
C8A0.27706 (10)0.5455 (2)0.15458 (14)0.0172 (6)
N1B0.05771 (9)0.5676 (2)0.20961 (12)0.0179 (5)
N2B0.01182 (9)0.5628 (2)0.06749 (12)0.0172 (5)
N3B0.08777 (9)0.7852 (2)0.29107 (12)0.0206 (6)
N7B0.02158 (9)0.9017 (2)0.08688 (12)0.0168 (5)
N9B0.03572 (9)1.0065 (2)0.20639 (12)0.0196 (6)
C2B0.09047 (11)0.6417 (3)0.28198 (14)0.0203 (7)
C4B0.04770 (10)0.8566 (3)0.21910 (13)0.0164 (6)
C5B0.01143 (10)0.7901 (2)0.14346 (13)0.0154 (6)
C6B0.01706 (10)0.6360 (2)0.13545 (13)0.0154 (6)
C8B0.00578 (10)1.0302 (3)0.12637 (13)0.0179 (6)
S20.12525 (3)0.26071 (6)0.38069 (3)0.0165 (2)
O50.08129 (8)0.35729 (19)0.39253 (10)0.0234 (5)
O60.12578 (9)0.1108 (2)0.40732 (12)0.0339 (6)
O70.09306 (9)0.2668 (2)0.29303 (11)0.0294 (6)
O80.18679 (8)0.3294 (2)0.42607 (11)0.0332 (6)
S30.11514 (3)0.24895 (6)0.13708 (3)0.0156 (2)
O90.17374 (8)0.3204 (2)0.20016 (10)0.0253 (5)
O100.05962 (7)0.30655 (18)0.12953 (10)0.0202 (5)
O110.12193 (8)0.08329 (18)0.16194 (10)0.0213 (5)
O120.10420 (8)0.24888 (17)0.05736 (9)0.0179 (4)
S10.13614 (3)0.77672 (6)0.08987 (3)0.0152 (2)
O10.09098 (8)0.90674 (18)0.05182 (10)0.0216 (5)
O20.19547 (7)0.81613 (18)0.10101 (10)0.0204 (5)
O30.14779 (8)0.74736 (17)0.16871 (9)0.0191 (5)
O40.10611 (7)0.64802 (18)0.03559 (9)0.0201 (5)
H1A0.2012 (12)0.0058 (19)0.0530 (15)0.0240*
H2A0.151100.127800.065100.0210*
H7A0.3078 (11)0.393 (3)0.2428 (10)0.0240*
H8A0.294400.635000.182000.0210*
H9A0.2268 (12)0.602 (2)0.0373 (13)0.0240*
H21A0.2959 (11)0.105 (3)0.2450 (11)0.0240*
H22A0.2669 (12)0.0326 (19)0.1924 (15)0.0240*
H1B0.0625 (12)0.4704 (19)0.2105 (16)0.0240*
H2B0.117000.585600.328900.0240*
H7B0.0488 (10)0.891 (3)0.0315 (10)0.0240*
H8B0.021201.123000.102100.0210*
H9B0.0541 (11)1.081 (2)0.2402 (13)0.0240*
H21B0.0057 (12)0.4657 (19)0.0680 (16)0.0240*
H22B0.0407 (10)0.611 (3)0.0202 (12)0.0240*
H50.0918 (12)0.357 (3)0.4403 (11)0.0300*
H110.1146 (13)0.026 (3)0.1202 (13)0.0300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0185 (9)0.0135 (9)0.0155 (9)0.0025 (7)0.0091 (8)0.0015 (7)
N2A0.0237 (10)0.0134 (9)0.0181 (10)0.0018 (8)0.0103 (9)0.0027 (8)
N3A0.0184 (9)0.0176 (9)0.0161 (9)0.0003 (8)0.0096 (8)0.0000 (7)
N7A0.0170 (9)0.0137 (9)0.0151 (9)0.0006 (7)0.0081 (8)0.0010 (7)
N9A0.0192 (9)0.0114 (9)0.0176 (9)0.0011 (7)0.0092 (8)0.0022 (7)
C2A0.0167 (10)0.0194 (11)0.0158 (11)0.0008 (9)0.0089 (9)0.0038 (8)
C4A0.0153 (10)0.0132 (10)0.0150 (10)0.0004 (8)0.0090 (9)0.0019 (8)
C5A0.0155 (10)0.0135 (10)0.0140 (10)0.0015 (8)0.0078 (9)0.0014 (8)
C6A0.0157 (10)0.0135 (10)0.0169 (11)0.0006 (8)0.0098 (9)0.0011 (8)
C8A0.0169 (10)0.0131 (10)0.0206 (11)0.0006 (8)0.0106 (10)0.0011 (8)
N1B0.0173 (9)0.0137 (9)0.0185 (10)0.0014 (7)0.0083 (8)0.0004 (7)
N2B0.0200 (9)0.0117 (9)0.0166 (9)0.0004 (7)0.0090 (8)0.0016 (7)
N3B0.0204 (10)0.0216 (10)0.0159 (9)0.0004 (8)0.0085 (8)0.0001 (8)
N7B0.0160 (9)0.0132 (9)0.0178 (10)0.0007 (7)0.0081 (8)0.0006 (7)
N9B0.0195 (10)0.0148 (9)0.0217 (10)0.0024 (8)0.0106 (9)0.0054 (8)
C2B0.0183 (11)0.0223 (12)0.0175 (11)0.0008 (9)0.0090 (10)0.0019 (9)
C4B0.0160 (10)0.0168 (11)0.0172 (11)0.0009 (8)0.0102 (9)0.0033 (8)
C5B0.0142 (10)0.0140 (10)0.0173 (10)0.0011 (8)0.0090 (9)0.0002 (8)
C6B0.0155 (10)0.0143 (10)0.0182 (11)0.0002 (8)0.0110 (9)0.0021 (8)
C8B0.0168 (10)0.0170 (11)0.0210 (11)0.0003 (9)0.0118 (10)0.0005 (9)
S20.0199 (3)0.0132 (3)0.0163 (3)0.0007 (2)0.0107 (2)0.0011 (2)
O50.0289 (9)0.0221 (9)0.0216 (9)0.0104 (7)0.0162 (8)0.0040 (7)
O60.0460 (12)0.0167 (9)0.0509 (12)0.0040 (8)0.0351 (11)0.0044 (8)
O70.0392 (11)0.0308 (10)0.0184 (9)0.0032 (8)0.0171 (8)0.0005 (7)
O80.0261 (9)0.0396 (11)0.0318 (10)0.0102 (8)0.0160 (9)0.0156 (9)
S30.0160 (3)0.0147 (3)0.0138 (3)0.0010 (2)0.0076 (2)0.0010 (2)
O90.0218 (8)0.0263 (9)0.0206 (9)0.0052 (7)0.0086 (7)0.0057 (7)
O100.0217 (8)0.0174 (8)0.0230 (8)0.0054 (7)0.0141 (7)0.0024 (7)
O110.0288 (9)0.0144 (8)0.0202 (9)0.0053 (7)0.0142 (8)0.0019 (6)
O120.0215 (8)0.0173 (8)0.0137 (7)0.0002 (6)0.0098 (7)0.0006 (6)
S10.0166 (3)0.0123 (2)0.0142 (3)0.0005 (2)0.0078 (2)0.0011 (2)
O10.0240 (8)0.0167 (8)0.0180 (8)0.0063 (7)0.0091 (7)0.0021 (6)
O20.0212 (8)0.0141 (8)0.0258 (9)0.0035 (6)0.0139 (7)0.0023 (7)
O30.0252 (8)0.0175 (8)0.0132 (8)0.0008 (6)0.0105 (7)0.0007 (6)
O40.0246 (8)0.0145 (8)0.0208 (8)0.0061 (7)0.0132 (7)0.0058 (6)
Geometric parameters (Å, º) top
S2—O71.4553 (19)N2A—H22A0.911 (18)
S2—O81.448 (2)N7A—H7A0.888 (17)
S2—O51.576 (2)N9A—H9A0.89 (2)
S2—O61.447 (2)N1B—C6B1.376 (3)
S3—O101.473 (2)N1B—C2B1.362 (3)
S3—O91.451 (2)N2B—C6B1.296 (3)
S3—O121.4705 (18)N3B—C2B1.308 (3)
S3—O111.5457 (17)N3B—C4B1.358 (3)
S1—O31.4683 (18)N7B—C5B1.379 (3)
S1—O21.485 (2)N7B—C8B1.324 (3)
S1—O11.513 (2)N9B—C8B1.338 (3)
S1—O41.4653 (17)N9B—C4B1.371 (3)
O5—H50.84 (2)N1B—H1B0.880 (18)
O11—H110.91 (3)N2B—H22B0.91 (2)
N1A—C2A1.363 (3)N2B—H21B0.885 (18)
N1A—C6A1.365 (3)N7B—H7B0.916 (17)
N2A—C6A1.311 (3)N9B—H9B0.87 (2)
N3A—C4A1.358 (3)C4A—C5A1.368 (3)
N3A—C2A1.308 (3)C5A—C6A1.411 (3)
N7A—C8A1.331 (3)C2A—H2A0.9300
N7A—C5A1.386 (3)C8A—H8A0.9300
N9A—C4A1.379 (3)C4B—C5B1.379 (3)
N9A—C8A1.328 (3)C5B—C6B1.410 (3)
N1A—H1A0.912 (18)C2B—H2B0.9300
N2A—H21A0.89 (2)C8B—H8B0.9300
O7—S2—O8112.88 (14)C2B—N1B—H1B118.0 (17)
O5—S2—O7102.56 (12)H21B—N2B—H22B121 (2)
O5—S2—O8108.50 (11)C6B—N2B—H21B119.9 (17)
O5—S2—O6107.40 (14)C6B—N2B—H22B119.1 (16)
O6—S2—O8113.41 (13)C8B—N7B—H7B125.1 (17)
O6—S2—O7111.33 (11)C5B—N7B—H7B126.9 (17)
O9—S3—O12112.90 (13)C8B—N9B—H9B120.8 (13)
O9—S3—O11106.15 (11)C4B—N9B—H9B130.1 (14)
O9—S3—O10114.29 (11)N1A—C2A—N3A125.5 (2)
O11—S3—O12105.67 (10)N3A—C4A—C5A126.71 (18)
O10—S3—O11106.70 (12)N9A—C4A—C5A106.83 (18)
O10—S3—O12110.47 (11)N3A—C4A—N9A126.46 (19)
O1—S1—O4108.04 (10)C4A—C5A—C6A119.78 (19)
O3—S1—O4110.72 (10)N7A—C5A—C6A132.96 (19)
O1—S1—O2109.55 (11)N7A—C5A—C4A107.26 (16)
O1—S1—O3106.93 (12)N1A—C6A—C5A112.32 (18)
O2—S1—O4110.76 (12)N1A—C6A—N2A121.42 (18)
O2—S1—O3110.73 (11)N2A—C6A—C5A126.3 (2)
S2—O5—H5114 (2)N7A—C8A—N9A110.04 (18)
S3—O11—H11108.5 (17)N3A—C2A—H2A117.00
C2A—N1A—C6A123.81 (19)N1A—C2A—H2A117.00
C2A—N3A—C4A111.84 (18)N7A—C8A—H8A125.00
C5A—N7A—C8A107.59 (18)N9A—C8A—H8A125.00
C4A—N9A—C8A108.28 (17)N1B—C2B—N3B125.5 (2)
C6A—N1A—H1A113.5 (16)N9B—C4B—C5B106.44 (19)
C2A—N1A—H1A122.7 (16)N3B—C4B—C5B125.8 (2)
H21A—N2A—H22A114 (2)N3B—C4B—N9B127.7 (2)
C6A—N2A—H22A123.1 (16)C4B—C5B—C6B120.1 (2)
C6A—N2A—H21A122.3 (17)N7B—C5B—C4B107.33 (18)
C5A—N7A—H7A123.7 (17)N7B—C5B—C6B132.3 (2)
C8A—N7A—H7A128.6 (17)N1B—C6B—N2B122.07 (18)
C4A—N9A—H9A124.8 (13)N2B—C6B—C5B125.8 (2)
C8A—N9A—H9A126.9 (13)N1B—C6B—C5B112.17 (18)
C2B—N1B—C6B123.68 (19)N7B—C8B—N9B109.8 (2)
C2B—N3B—C4B112.6 (2)N3B—C2B—H2B117.00
C5B—N7B—C8B107.93 (19)N1B—C2B—H2B117.00
C4B—N9B—C8B108.5 (2)N9B—C8B—H8B125.00
C6B—N1B—H1B118.3 (17)N7B—C8B—H8B125.00
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4i0.84 (2)1.74 (2)2.580 (2)174 (3)
O11—H11···O1ii0.91 (3)1.56 (2)2.457 (2)166 (4)
N1A—H1A···O2ii0.912 (18)1.92 (2)2.760 (3)151 (3)
N1A—H1A···O6iii0.912 (18)2.58 (2)3.050 (3)112.5 (18)
N1B—H1B···O70.880 (18)2.28 (2)3.027 (3)142 (2)
N1B—H1B···O100.880 (18)2.18 (2)2.870 (3)136 (2)
N2A—H21A···O3iv0.89 (2)1.96 (2)2.796 (3)156 (2)
N2A—H22A···O2ii0.911 (18)2.17 (2)2.884 (3)135 (2)
N2A—H22A···O9iv0.911 (18)2.22 (2)2.814 (3)122 (2)
N2B—H21B···O100.885 (18)2.01 (3)2.760 (3)142 (3)
N2B—H21B···O4v0.885 (18)2.43 (3)2.829 (3)108 (2)
N2B—H22B···O12v0.91 (2)1.94 (2)2.817 (3)162 (2)
N7A—H7A···O3iv0.888 (17)1.96 (2)2.757 (2)149 (2)
N7A—H7A···O11vi0.888 (17)2.42 (2)2.937 (3)117 (2)
N7B—H7B···O1vii0.916 (17)2.28 (2)2.858 (3)121 (2)
N7B—H7B···O12v0.916 (17)1.97 (2)2.763 (3)145 (2)
N9A—H9A···O8viii0.89 (2)1.95 (2)2.767 (3)152.3 (18)
N9B—H9B···O7ix0.87 (2)1.920 (19)2.775 (3)166 (2)
C2A—H2A···O6iii0.932.212.913 (3)131
C2A—H2A···N3Bviii0.932.493.189 (3)132
C8B—H8B···O10ix0.932.482.999 (3)115
C8B—H8B···O1vii0.932.542.983 (3)109
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y1, z; (iii) x, y, z1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y+1, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y+2, z; (viii) x, y+1, z1/2; (ix) x, y+1, z.

Experimental details

Crystal data
Chemical formula2C5H7N5+·2HSO4·SO42
Mr564.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)26.370 (5), 8.970 (2), 20.350 (4)
β (°) 126.184 (10)
V3)3885.2 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5681, 5681, 3989
Rint0.000
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.07
No. of reflections5681
No. of parameters352
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.09, 0.60

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4i0.84 (2)1.74 (2)2.580 (2)174 (3)
O11—H11···O1ii0.91 (3)1.56 (2)2.457 (2)166 (4)
N1A—H1A···O2ii0.912 (18)1.92 (2)2.760 (3)151 (3)
N1B—H1B···O70.880 (18)2.28 (2)3.027 (3)142 (2)
N1B—H1B···O100.880 (18)2.18 (2)2.870 (3)136 (2)
N2A—H21A···O3iii0.89 (2)1.96 (2)2.796 (3)156 (2)
N2A—H22A···O2ii0.911 (18)2.17 (2)2.884 (3)135 (2)
N2A—H22A···O9iii0.911 (18)2.22 (2)2.814 (3)122 (2)
N2B—H21B···O100.885 (18)2.01 (3)2.760 (3)142 (3)
N2B—H22B···O12iv0.91 (2)1.94 (2)2.817 (3)162 (2)
N7A—H7A···O3iii0.888 (17)1.96 (2)2.757 (2)149 (2)
N7B—H7B···O1v0.916 (17)2.28 (2)2.858 (3)121 (2)
N7B—H7B···O12iv0.916 (17)1.97 (2)2.763 (3)145 (2)
N9A—H9A···O8vi0.89 (2)1.95 (2)2.767 (3)152.3 (18)
N9B—H9B···O7vii0.87 (2)1.920 (19)2.775 (3)166 (2)
C2A—H2A···O6viii0.932.212.913 (3)131
C2A—H2A···N3Bvi0.932.493.189 (3)132
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z; (v) x, y+2, z; (vi) x, y+1, z1/2; (vii) x, y+1, z; (viii) x, y, z1/2.
 

Acknowledgements

Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.

References

First citationBendjeddou, L., Cherouana, A., Dahaoui, S., Benali-Cherif, N. & Lecomte, C. (2003). Acta Cryst. E59, o649–o651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937–942.  Web of Science CrossRef CAS Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Maity, A. C. & Goswami, S. (2011). Acta Cryst. E67, o427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264–o2265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPersistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeghouan, O., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2012). Acta Cryst. E68, o2959–o2960.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3266-o3267
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds