metal-organic compounds
(3-Acetyl-5-carboxylato-4-methyl-1H-pyrazol-1-ido-κ2N1,O5)aqua[(pyridin-2-yl)methanamine-κ2N,N′]copper(II)
aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska Str. 64, 01601 Kiev, Ukraine, bFaculty of Chemistry, University of Wrocław, F. Joliot-Curie Str. 14, 50-383, Wrocław, Poland, and cDepartment of Chemistry, Kyiv National University of Construction and Architecture, Povitroflotsky Avenue 31, 03680 Kiev, Ukraine
*Correspondence e-mail: malinachem@mail.ru
In the title compound, [Cu(C7H6N2O3)(C6H8N2)(H2O)], the CuII ion is in a distorted square-pyramidal N3O2 environment formed by two bidentate chelating ligands in the equatorial coordination sites and one water molecule in the apical direction. In the crystal, O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds link the complex molecules into a three-dimensional supramolecular network.
Related literature
For applications of related pyrazoles, see: Sachse et al. (2008); Penkova et al. (2009). For synthetic and structural studies of 3,5-disubstituted 1H-pyrazoles and their metal complexes, see: Malinkin et al. (2011, 2012). For related structures, see: Fritsky et al. (2004); Kanderal et al. (2005); Krämer & Fritsky (2000); Moroz et al. (2010); Sliva et al. (1997); Wörl et al. (2005a,b).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2000); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812044959/xu5636sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812044959/xu5636Isup2.hkl
To the solution of [Cu4(KA)4(H2O)4] x 4H2O (Malinkin et al., 2011) (0.100 g, 0.078 mmol) in methanol (8 ml), 2-aminomethylpyridine (0.042 g, 0.391 mmol) was added. The reaction mixture was stirred upon ambient temperature for 10 minutes. Blue crystals suitable for X-ray diffraction were formed upon slow diffusion of diethyl ester into methanolic solution in 24 h (yield 0.028 g, 20%). Elemental analysis calc. (%) for C13H18CuN4O4: C 43.63; H 5.07; N 15.66; found: C 44.11; H 5.40; N 15.43.
The OH and NH hydrogen atoms were located from the difference Fourier map, and their positional and isotropic thermal parameters were included into the further stages of
The C—H hydrogen atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.95–0.97 Å, and Uiso = 1.2–1.5 Ueq(parent atom).Data collection: COLLECT (Nonius, 2000); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A view of the title compound, with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. | |
Fig. 2. Crystal packing of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in H-bonds are omitted for clarity. Symmetry codes: (i) -1 + x, -1 + y, z; (ii) 1 - x, 1 - y, -z; (iii) -x, -y, -z; (iv) -1 + x, y, z. |
[Cu(C7H6N2O3)(C6H8N2)(H2O)] | Z = 2 |
Mr = 355.84 | F(000) = 366 |
Triclinic, P1 | Dx = 1.652 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3063 (2) Å | Cell parameters from 2567 reflections |
b = 8.3258 (5) Å | θ = 3.0–28.5° |
c = 13.1260 (7) Å | µ = 1.55 mm−1 |
α = 90.695 (6)° | T = 120 K |
β = 105.935 (4)° | Block, blue |
γ = 110.232 (4)° | 0.36 × 0.23 × 0.13 mm |
V = 715.32 (6) Å3 |
Nonius KappaCCD diffractometer | 5715 independent reflections |
Radiation source: fine-focus sealed tube | 4833 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.016 |
Detector resolution: 9 pixels mm-1 | θmax = 35.1°, θmin = 2.9° |
ϕ scans and ω scans with κ offset | h = −11→9 |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | k = −13→13 |
Tmin = 0.955, Tmax = 0.987 | l = −20→21 |
13527 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0477P)2] where P = (Fo2 + 2Fc2)/3 |
5715 reflections | (Δ/σ)max = 0.004 |
217 parameters | Δρmax = 0.72 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
[Cu(C7H6N2O3)(C6H8N2)(H2O)] | γ = 110.232 (4)° |
Mr = 355.84 | V = 715.32 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.3063 (2) Å | Mo Kα radiation |
b = 8.3258 (5) Å | µ = 1.55 mm−1 |
c = 13.1260 (7) Å | T = 120 K |
α = 90.695 (6)° | 0.36 × 0.23 × 0.13 mm |
β = 105.935 (4)° |
Nonius KappaCCD diffractometer | 5715 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 4833 reflections with I > 2σ(I) |
Tmin = 0.955, Tmax = 0.987 | Rint = 0.016 |
13527 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.074 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.72 e Å−3 |
5715 reflections | Δρmin = −0.32 e Å−3 |
217 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.545220 (19) | 0.299111 (15) | 0.020497 (9) | 0.01226 (4) | |
O1 | 0.74298 (12) | 0.49534 (9) | −0.02392 (6) | 0.01456 (14) | |
O2 | 0.85228 (12) | 0.57781 (10) | −0.16483 (6) | 0.01670 (15) | |
O3 | 0.22559 (13) | −0.03669 (11) | −0.47062 (6) | 0.01945 (16) | |
O4 | 0.79221 (13) | 0.17036 (10) | 0.06402 (6) | 0.01427 (14) | |
N1 | 0.45340 (14) | 0.21529 (11) | −0.13062 (7) | 0.01267 (15) | |
N2 | 0.30428 (14) | 0.08145 (11) | −0.19556 (7) | 0.01319 (16) | |
N3 | 0.63606 (14) | 0.39053 (11) | 0.17463 (7) | 0.01323 (15) | |
N4 | 0.29685 (15) | 0.14866 (12) | 0.05729 (7) | 0.01486 (16) | |
C1 | 0.73803 (15) | 0.47312 (13) | −0.12234 (8) | 0.01244 (17) | |
C2 | 0.57544 (15) | 0.31343 (12) | −0.18524 (8) | 0.01178 (17) | |
C3 | 0.50547 (16) | 0.24117 (13) | −0.29113 (8) | 0.01245 (17) | |
C4 | 0.33336 (16) | 0.09471 (13) | −0.29373 (8) | 0.01263 (17) | |
C5 | 0.19154 (17) | −0.03454 (13) | −0.38437 (8) | 0.01427 (18) | |
C6 | 0.00133 (18) | −0.16234 (15) | −0.36737 (9) | 0.0198 (2) | |
H6A | −0.0784 | −0.2390 | −0.4318 | 0.030* | |
H6B | −0.0776 | −0.1019 | −0.3486 | 0.030* | |
H6C | 0.0386 | −0.2276 | −0.3108 | 0.030* | |
C7 | 0.58880 (17) | 0.30559 (15) | −0.38093 (9) | 0.0172 (2) | |
H7A | 0.7016 | 0.4131 | −0.3560 | 0.026* | |
H7B | 0.4839 | 0.3224 | −0.4374 | 0.026* | |
H7C | 0.6345 | 0.2227 | −0.4070 | 0.026* | |
C8 | 0.79957 (17) | 0.53218 (14) | 0.22340 (9) | 0.01563 (18) | |
H8 | 0.8738 | 0.6015 | 0.1826 | 0.019* | |
C9 | 0.86018 (18) | 0.57730 (15) | 0.33271 (9) | 0.0189 (2) | |
H9 | 0.9714 | 0.6771 | 0.3649 | 0.023* | |
C10 | 0.75138 (19) | 0.47038 (16) | 0.39326 (9) | 0.0204 (2) | |
H10 | 0.7917 | 0.4959 | 0.4670 | 0.024* | |
C11 | 0.58221 (19) | 0.32535 (15) | 0.34283 (9) | 0.0187 (2) | |
H11 | 0.5067 | 0.2531 | 0.3821 | 0.022* | |
C12 | 0.52770 (17) | 0.28997 (14) | 0.23287 (8) | 0.01449 (18) | |
C13 | 0.34690 (17) | 0.13433 (14) | 0.17266 (9) | 0.01577 (19) | |
H13A | 0.3780 | 0.0310 | 0.1864 | 0.019* | |
H13B | 0.2302 | 0.1252 | 0.1970 | 0.019* | |
H1N4 | 0.236 (3) | 0.048 (2) | 0.0232 (14) | 0.025 (4)* | |
H2O4 | 0.773 (3) | 0.114 (2) | 0.1040 (14) | 0.024 (4)* | |
H2N4 | 0.207 (3) | 0.194 (3) | 0.0389 (16) | 0.040 (5)* | |
H1O4 | 0.895 (3) | 0.247 (3) | 0.0914 (17) | 0.041 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01549 (7) | 0.00997 (6) | 0.00858 (6) | 0.00179 (4) | 0.00302 (4) | −0.00059 (4) |
O1 | 0.0177 (4) | 0.0105 (3) | 0.0116 (3) | 0.0019 (3) | 0.0025 (3) | 0.0001 (2) |
O2 | 0.0156 (4) | 0.0145 (3) | 0.0161 (4) | 0.0008 (3) | 0.0045 (3) | 0.0034 (3) |
O3 | 0.0233 (4) | 0.0230 (4) | 0.0110 (3) | 0.0081 (3) | 0.0041 (3) | −0.0014 (3) |
O4 | 0.0171 (4) | 0.0098 (3) | 0.0128 (3) | 0.0018 (3) | 0.0037 (3) | 0.0014 (2) |
N1 | 0.0140 (4) | 0.0102 (4) | 0.0107 (4) | 0.0014 (3) | 0.0029 (3) | 0.0003 (3) |
N2 | 0.0157 (4) | 0.0109 (4) | 0.0094 (4) | 0.0016 (3) | 0.0023 (3) | −0.0001 (3) |
N3 | 0.0147 (4) | 0.0134 (4) | 0.0118 (4) | 0.0059 (3) | 0.0033 (3) | −0.0005 (3) |
N4 | 0.0167 (4) | 0.0139 (4) | 0.0116 (4) | 0.0033 (3) | 0.0037 (3) | −0.0019 (3) |
C1 | 0.0123 (4) | 0.0106 (4) | 0.0132 (4) | 0.0039 (3) | 0.0022 (3) | 0.0015 (3) |
C2 | 0.0128 (4) | 0.0099 (4) | 0.0110 (4) | 0.0026 (3) | 0.0030 (3) | 0.0010 (3) |
C3 | 0.0137 (4) | 0.0133 (4) | 0.0102 (4) | 0.0047 (3) | 0.0037 (3) | 0.0015 (3) |
C4 | 0.0155 (4) | 0.0120 (4) | 0.0097 (4) | 0.0041 (3) | 0.0036 (3) | 0.0014 (3) |
C5 | 0.0168 (5) | 0.0124 (4) | 0.0122 (4) | 0.0055 (3) | 0.0019 (4) | −0.0002 (3) |
C6 | 0.0207 (5) | 0.0167 (5) | 0.0146 (5) | 0.0008 (4) | 0.0015 (4) | −0.0017 (3) |
C7 | 0.0186 (5) | 0.0204 (5) | 0.0125 (4) | 0.0050 (4) | 0.0070 (4) | 0.0023 (3) |
C8 | 0.0142 (4) | 0.0163 (5) | 0.0149 (5) | 0.0055 (4) | 0.0021 (4) | −0.0029 (3) |
C9 | 0.0171 (5) | 0.0204 (5) | 0.0164 (5) | 0.0074 (4) | 0.0001 (4) | −0.0055 (4) |
C10 | 0.0227 (5) | 0.0260 (6) | 0.0117 (5) | 0.0112 (4) | 0.0012 (4) | −0.0034 (4) |
C11 | 0.0230 (5) | 0.0229 (5) | 0.0117 (5) | 0.0097 (4) | 0.0057 (4) | 0.0009 (4) |
C12 | 0.0182 (5) | 0.0156 (4) | 0.0119 (4) | 0.0087 (4) | 0.0047 (4) | 0.0005 (3) |
C13 | 0.0191 (5) | 0.0152 (4) | 0.0133 (4) | 0.0055 (4) | 0.0062 (4) | 0.0017 (3) |
Cu1—N1 | 1.9451 (9) | C3—C7 | 1.4937 (15) |
Cu1—N3 | 1.9973 (9) | C4—C5 | 1.4724 (15) |
Cu1—N4 | 2.0048 (10) | C5—C6 | 1.5055 (16) |
Cu1—O1 | 1.9874 (8) | C6—H6A | 0.9600 |
Cu1—O4 | 2.3492 (8) | C6—H6B | 0.9600 |
O1—C1 | 1.2917 (13) | C6—H6C | 0.9600 |
O2—C1 | 1.2376 (13) | C7—H7A | 0.9600 |
O3—C5 | 1.2252 (13) | C7—H7B | 0.9600 |
O4—H2O4 | 0.717 (18) | C7—H7C | 0.9600 |
O4—H1O4 | 0.78 (2) | C8—C9 | 1.3852 (15) |
N1—N2 | 1.3351 (12) | C8—H8 | 0.9300 |
N1—C2 | 1.3558 (13) | C9—C10 | 1.3895 (18) |
N2—C4 | 1.3622 (13) | C9—H9 | 0.9300 |
N3—C12 | 1.3422 (14) | C10—C11 | 1.3868 (17) |
N3—C8 | 1.3473 (14) | C10—H10 | 0.9300 |
N4—C13 | 1.4736 (14) | C11—C12 | 1.3862 (15) |
N4—H1N4 | 0.849 (17) | C11—H11 | 0.9300 |
N4—H2N4 | 0.84 (2) | C12—C13 | 1.5056 (15) |
C1—C2 | 1.4842 (14) | C13—H13A | 0.9700 |
C2—C3 | 1.3899 (14) | C13—H13B | 0.9700 |
C3—C4 | 1.4087 (14) | ||
N1—Cu1—O1 | 82.74 (3) | C3—C4—C5 | 129.26 (9) |
N1—Cu1—N3 | 178.33 (4) | O3—C5—C4 | 121.35 (10) |
O1—Cu1—N3 | 96.71 (3) | O3—C5—C6 | 121.30 (10) |
N1—Cu1—N4 | 97.67 (4) | C4—C5—C6 | 117.34 (9) |
O1—Cu1—N4 | 162.48 (4) | C5—C6—H6A | 109.5 |
N3—Cu1—N4 | 82.38 (4) | C5—C6—H6B | 109.5 |
N1—Cu1—O4 | 94.29 (3) | H6A—C6—H6B | 109.5 |
O1—Cu1—O4 | 88.99 (3) | C5—C6—H6C | 109.5 |
N3—Cu1—O4 | 87.27 (3) | H6A—C6—H6C | 109.5 |
N4—Cu1—O4 | 108.40 (4) | H6B—C6—H6C | 109.5 |
C1—O1—Cu1 | 113.96 (6) | C3—C7—H7A | 109.5 |
Cu1—O4—H2O4 | 109.7 (14) | C3—C7—H7B | 109.5 |
Cu1—O4—H1O4 | 104.8 (15) | H7A—C7—H7B | 109.5 |
H2O4—O4—H1O4 | 106 (2) | C3—C7—H7C | 109.5 |
N2—N1—C2 | 110.24 (8) | H7A—C7—H7C | 109.5 |
N2—N1—Cu1 | 136.81 (7) | H7B—C7—H7C | 109.5 |
C2—N1—Cu1 | 112.89 (7) | N3—C8—C9 | 121.77 (11) |
N1—N2—C4 | 106.46 (8) | N3—C8—H8 | 119.1 |
C12—N3—C8 | 119.53 (9) | C9—C8—H8 | 119.1 |
C12—N3—Cu1 | 114.19 (7) | C8—C9—C10 | 118.62 (11) |
C8—N3—Cu1 | 126.10 (8) | C8—C9—H9 | 120.7 |
C13—N4—Cu1 | 110.41 (7) | C10—C9—H9 | 120.7 |
C13—N4—H1N4 | 109.1 (12) | C9—C10—C11 | 119.49 (10) |
Cu1—N4—H1N4 | 116.1 (11) | C9—C10—H10 | 120.3 |
C13—N4—H2N4 | 110.5 (13) | C11—C10—H10 | 120.3 |
Cu1—N4—H2N4 | 107.6 (13) | C12—C11—C10 | 118.78 (11) |
H1N4—N4—H2N4 | 102.8 (17) | C12—C11—H11 | 120.6 |
O2—C1—O1 | 124.10 (9) | C10—C11—H11 | 120.6 |
O2—C1—C2 | 120.82 (9) | N3—C12—C11 | 121.76 (10) |
O1—C1—C2 | 115.01 (9) | N3—C12—C13 | 116.41 (9) |
N1—C2—C3 | 109.44 (9) | C11—C12—C13 | 121.81 (10) |
N1—C2—C1 | 114.77 (8) | N4—C13—C12 | 110.16 (9) |
C3—C2—C1 | 135.63 (9) | N4—C13—H13A | 109.6 |
C2—C3—C4 | 103.02 (9) | C12—C13—H13A | 109.6 |
C2—C3—C7 | 128.53 (10) | N4—C13—H13B | 109.6 |
C4—C3—C7 | 128.43 (9) | C12—C13—H13B | 109.6 |
N2—C4—C3 | 110.82 (9) | H13A—C13—H13B | 108.1 |
N2—C4—C5 | 119.92 (9) | ||
N1—Cu1—O1—C1 | −6.64 (7) | O2—C1—C2—N1 | −176.16 (10) |
N3—Cu1—O1—C1 | 174.95 (7) | O1—C1—C2—N1 | 1.03 (13) |
N4—Cu1—O1—C1 | −99.11 (13) | O2—C1—C2—C3 | −1.25 (19) |
O4—Cu1—O1—C1 | 87.82 (7) | O1—C1—C2—C3 | 175.94 (11) |
O1—Cu1—N1—N2 | −176.05 (11) | N1—C2—C3—C4 | 0.34 (11) |
N3—Cu1—N1—N2 | −105.3 (12) | C1—C2—C3—C4 | −174.76 (11) |
N4—Cu1—N1—N2 | −13.71 (11) | N1—C2—C3—C7 | 178.83 (10) |
O4—Cu1—N1—N2 | 95.53 (11) | C1—C2—C3—C7 | 3.7 (2) |
O1—Cu1—N1—C2 | 7.03 (7) | N1—N2—C4—C3 | −0.11 (12) |
N3—Cu1—N1—C2 | 77.8 (12) | N1—N2—C4—C5 | −179.58 (9) |
N4—Cu1—N1—C2 | 169.36 (7) | C2—C3—C4—N2 | −0.14 (12) |
O4—Cu1—N1—C2 | −81.40 (7) | C7—C3—C4—N2 | −178.64 (10) |
C2—N1—N2—C4 | 0.33 (12) | C2—C3—C4—C5 | 179.26 (10) |
Cu1—N1—N2—C4 | −176.65 (8) | C7—C3—C4—C5 | 0.77 (19) |
N1—Cu1—N3—C12 | 107.5 (12) | N2—C4—C5—O3 | −172.17 (10) |
O1—Cu1—N3—C12 | 178.03 (7) | C3—C4—C5—O3 | 8.47 (18) |
N4—Cu1—N3—C12 | 15.67 (8) | N2—C4—C5—C6 | 8.75 (15) |
O4—Cu1—N3—C12 | −93.31 (8) | C3—C4—C5—C6 | −170.61 (11) |
N1—Cu1—N3—C8 | −77.6 (12) | C12—N3—C8—C9 | 0.21 (16) |
O1—Cu1—N3—C8 | −7.01 (9) | Cu1—N3—C8—C9 | −174.50 (8) |
N4—Cu1—N3—C8 | −169.37 (9) | N3—C8—C9—C10 | 1.62 (17) |
O4—Cu1—N3—C8 | 81.65 (9) | C8—C9—C10—C11 | −2.07 (18) |
N1—Cu1—N4—C13 | 158.90 (7) | C9—C10—C11—C12 | 0.76 (18) |
O1—Cu1—N4—C13 | −110.94 (12) | C8—N3—C12—C11 | −1.61 (16) |
N3—Cu1—N4—C13 | −22.79 (7) | Cu1—N3—C12—C11 | 173.71 (8) |
O4—Cu1—N4—C13 | 61.76 (8) | C8—N3—C12—C13 | 179.85 (9) |
Cu1—O1—C1—O2 | −178.07 (8) | Cu1—N3—C12—C13 | −4.84 (12) |
Cu1—O1—C1—C2 | 4.84 (11) | C10—C11—C12—N3 | 1.12 (17) |
N2—N1—C2—C3 | −0.44 (12) | C10—C11—C12—C13 | 179.58 (10) |
Cu1—N1—C2—C3 | 177.32 (7) | Cu1—N4—C13—C12 | 25.68 (10) |
N2—N1—C2—C1 | 175.79 (8) | N3—C12—C13—N4 | −14.04 (13) |
Cu1—N1—C2—C1 | −6.45 (11) | C11—C12—C13—N4 | 167.42 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1O4···O2i | 0.78 (2) | 1.90 (2) | 2.6782 (11) | 176 (2) |
O4—H2O4···N2ii | 0.717 (18) | 2.049 (18) | 2.7581 (12) | 169.7 (19) |
N4—H1N4···O4ii | 0.849 (17) | 2.055 (17) | 2.8542 (12) | 156.6 (16) |
N4—H2N4···O1iii | 0.84 (2) | 2.50 (2) | 3.1017 (13) | 128.6 (16) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H6N2O3)(C6H8N2)(H2O)] |
Mr | 355.84 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 7.3063 (2), 8.3258 (5), 13.1260 (7) |
α, β, γ (°) | 90.695 (6), 105.935 (4), 110.232 (4) |
V (Å3) | 715.32 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.55 |
Crystal size (mm) | 0.36 × 0.23 × 0.13 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.955, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13527, 5715, 4833 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.810 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.074, 1.07 |
No. of reflections | 5715 |
No. of parameters | 217 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.72, −0.32 |
Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).
Cu1—N1 | 1.9451 (9) | Cu1—O1 | 1.9874 (8) |
Cu1—N3 | 1.9973 (9) | Cu1—O4 | 2.3492 (8) |
Cu1—N4 | 2.0048 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1O4···O2i | 0.78 (2) | 1.90 (2) | 2.6782 (11) | 176 (2) |
O4—H2O4···N2ii | 0.717 (18) | 2.049 (18) | 2.7581 (12) | 169.7 (19) |
N4—H1N4···O4ii | 0.849 (17) | 2.055 (17) | 2.8542 (12) | 156.6 (16) |
N4—H2N4···O1iii | 0.84 (2) | 2.50 (2) | 3.1017 (13) | 128.6 (16) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z. |
Acknowledgements
Financial support from the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.
References
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752. Web of Science CSD CrossRef CAS Google Scholar
Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. Web of Science CrossRef PubMed Google Scholar
Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510. Google Scholar
Malinkin, S., Golenya, I. A., Pavlenko, V. A., Haukka, M. & Iskenderov, T. S. (2011). Acta Cryst. E67, m1260–m1261. Web of Science CSD CrossRef IUCr Journals Google Scholar
Malinkin, S. O., Penkova, L., Moroz, Y. S., Bon, V., Gumienna-Kontecka, E., Pekhnyo, V. I., Meyer, F. & Fritsky, I. O. (2012). Polyhedron, 37, 77–84. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759–765. Google Scholar
Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27–29. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazole–derived ligands are widely used in molecular magnetism, bioinorganic modelling and supramolecular chemistry due to their bridging nature and possibility for easy functionalization (Sachse et al., 2008; Penkova et al., 2009). Although usually this family of ligands is used for preparation of polynuclear complexes and coordination polymers, the mononuclear complexes based on pyrazole ligands can also represent an evident interest, especially as building block for preparation of polynuclear species. Herein we report the molecular and crystal structures of the title compound (Fig. 1) obtained in the framework of our synthetic and structural study of unsymmetrical 3,5-disubstituted pyrazolate ligands (Malinkin et al., 2011, 2012).
The title compound, [Cu(C6H6N2O3)(C6H8N2)(H2O)] is a mononuclear mixed ligand complex, in which CuII ion is in distorted square-pyramidal environment formed by two bidentate (N, O) and (N, N) chelating ligands occupying four equatorial coordination sites and by the apically coordinated water molecule. While 2-aminomethylpyridine acts as a neutral ligand, the (3-acetyl-5-carboxylate)pyrazole ligand is a doubly charged acidoligand exhibiting its traditional (N, O)-chelating binding mode. The equatorial Cu—N and Cu—O bond lengths are in the range 1.9451 (9)–2.0048 (10) Å, whereas the apical Cu—O contact with water molecule is longer (2.3492 (8) Å). The coordination bond lengths Cu—N and Cu—O are typical for square-pyramidal Cu(II) complexes with the amine, deprotonated pyrazolate and carboxylate donors (Sliva et al., 1997; Kanderal et al., 2005). The bite angles around the central atom deviate from an ideal square-planar configuration [e.g. N1—Cu1—O2 = 82.74 (3)°], which is a consequence of the formation of five-membered chelate rings.
The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Krämer et al., 2000; Moroz et al., 2010). The C—C, C—N and N—N bond lengths in the pyrazole ring have their typical values (Sachse et al., 2008; Penkova et al., 2009). The C—O bond lengths in the deprotonated carboxylic groups differs significantly (1.2376 (13) and 1.2917 (13)) which is typical for monodentately coordinated carboxylates (Fritsky et al., 2004; Wörl et al., 2005a,b).
Numerous intermolecular O—H···O, N—H···O and O—H···N H-bonds in which the water molecules and the amine groups act as donors while the carboxylic groups, the water oxygen and the pyrazole nitrogen atoms act as acceptors unite the complex molecules in three-dimensional H-bonded network (Fig. 2).