metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1448-m1449

Tri­chlorido(5,5′-di­methyl-2,2′-bi­pyridine-κ2N,N′)(di­methyl­formamide-κO)indium(III) hemihydrate

aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran, and bDepartment of Petroleum Engineering, Omidieh Branch, Islamic Azad University, Omidieh, Iran
*Correspondence e-mail: sadif_shirvan1@yahoo.com

(Received 26 October 2012; accepted 29 October 2012; online 3 November 2012)

The asymmetric unit of the title compound, [InCl3(C12H12N2)(C3H7NO)]·0.5H2O, contains two independent InIII complex mol­ecules with similar structures and one lattice water mol­ecule. In each complex mol­ecule, the InIII atom is six-coordinated in a distorted octa­hedral geometry, formed by two N atoms from the chelating 5,5′-dimethyl-2,2′-bipyridine ligand, one O atom from a dimethyl­formamide and three facial Cl atoms. In the crystal, the lattice water mol­ecule is linked to the complex mol­ecules via O—H⋯Cl hydrogen bonds. Further weak C—H⋯Cl and C—H⋯O hydrogen bonds result in the formation of a three-dimensional structure.

Related literature

For related structures, see: Albada et al. (2004[Albada, G. A., Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733-3742.]); Alizadeh et al. (2010[Alizadeh, R., Amani, V., Farshady, A. A. & Khavasi, H. R. (2010). J. Coord. Chem. 63, 2122-2131.]); Amani et al. (2007[Amani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257-4262.], 2009[Amani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026-3030.]); Kalateh et al. (2008[Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353-m1354.]); Khalighi et al. (2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.]); Shirvan & Haydari Dezfuli (2012[Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m846.]); Tadayon Pour et al. (2008[Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.]).

[Scheme 1]

Experimental

Crystal data
  • [InCl3(C12H12N2)(C3H7NO)]·0.5H2O

  • Mr = 487.51

  • Triclinic, [P \overline 1]

  • a = 11.3021 (5) Å

  • b = 11.4445 (5) Å

  • c = 15.0860 (6) Å

  • α = 91.089 (4)°

  • β = 96.024 (3)°

  • γ = 96.448 (4)°

  • V = 1927.34 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.65 mm−1

  • T = 173 K

  • 0.32 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.601, Tmax = 0.688

  • 15402 measured reflections

  • 7524 independent reflections

  • 6051 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.067

  • S = 1.03

  • 7524 reflections

  • 437 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

In1—Cl1 2.4185 (9)
In1—Cl2 2.4227 (9)
In1—Cl3 2.4496 (9)
In1—O1 2.267 (2)
In1—N1 2.287 (3)
In1—N2 2.301 (3)
In2—Cl4 2.4737 (9)
In2—Cl5 2.4327 (10)
In2—Cl6 2.4326 (9)
In2—O2 2.202 (3)
In2—N4 2.292 (3)
In2—N5 2.316 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3D⋯Cl5i 0.84 (3) 2.49 (3) 3.326 (5) 174 (3)
O3—H3E⋯Cl3ii 0.84 (2) 2.40 (2) 3.183 (5) 156 (3)
C5—H5⋯Cl4 0.93 2.69 3.620 (3) 175
C8—H8⋯Cl4 0.93 2.69 3.574 (4) 160
C9—H9⋯Cl4iii 0.93 2.78 3.657 (3) 158
C20—H20⋯O3iv 0.93 2.60 3.526 (6) 178
C23—H23⋯O3iv 0.93 2.49 3.416 (6) 173
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we reported the synthes and crystal structure of [Cd(5,5'-dmbpy)(µ-Br)2]n, (Shirvan & Haydari Dezfuli, 2012) [where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine]. 5,5'-Dimethyl-2,2'-bipyridine is a good bidentate ligand, and numerous complexes with 5,5'-dmbipy have been prepared, such as that of zinc (Khalighi et al., 2008), indium (Kalateh et al., 2008), iron (Amani et al., 2007), platin (Amani et al., 2009), copper (Albada et al., 2004) and mercury (Tadayon Pour et al., 2008; Alizadeh et al., 2010). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains two crystallographically independent [In(C12H12N2)Cl3(C3H7NO)] molecules and one water solvent molecule. The InIII atom is six-coordinated in a distorted octahedral configuration by two N atoms from the chelating 5,5'-dimethyl-2,2'-bipyridine ligand, one O atom from a dimethylformamide and three Cl atoms. The In—Cl, In—O and In—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular O—H···Cl and C—H···O and C—H···Cl hydrogen bonds link the molecules (Fig. 2 & Table 2).

Related literature top

For related structures, see: Albada et al. (2004); Alizadeh et al. (2010); Amani et al. (2007, 2009); Kalateh et al. (2008); Khalighi et al. (2008); Shirvan & Haydari Dezfuli (2012); Tadayon Pour et al. (2008).

Experimental top

For the preparation of the title compound, a solution of 5,5'-dimethyl-2,2'-bipyridine (0.30 g, 1.65 mmol) in methanol (10 ml) was added to a solution of InCl3.4H2O (0.48 g, 1.65 mmol) in methanol (10 ml) and the resulting colorless solution was stirred for 20 min at 323 K. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in dimethylformamide. Suitable crystals were isolated after one week (yield; 0.58 g, 72.1%).

Refinement top

Water H atoms were located in a difference Fourier map and refined with O—H distance of 0.84 (2) Å, Uiso(H) = 0.1 Å2. Other H atoms were positioned geometrically with C—H = 0.93 Å for aromatics H and 0.96 Å for methyl H atoms constrained to ride on their parent atoms, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for title molecule. Hydrogen bonds are shown as dashed lines.
Trichlorido(5,5'-dimethyl-2,2'-bipyridine- κ2N,N')(dimethylformamide-κO)indium(III) hemihydrate top
Crystal data top
[InCl3(C12H12N2)(C3H7NO)]·0.5H2OZ = 4
Mr = 487.51F(000) = 972
Triclinic, P1Dx = 1.680 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3021 (5) ÅCell parameters from 15402 reflections
b = 11.4445 (5) Åθ = 2.4–26.0°
c = 15.0860 (6) ŵ = 1.65 mm1
α = 91.089 (4)°T = 173 K
β = 96.024 (3)°Block, colorless
γ = 96.448 (4)°0.32 × 0.30 × 0.25 mm
V = 1927.34 (14) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7524 independent reflections
Radiation source: fine-focus sealed tube6051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.601, Tmax = 0.688k = 1414
15402 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.5815P]
where P = (Fo2 + 2Fc2)/3
7524 reflections(Δ/σ)max = 0.001
437 parametersΔρmax = 0.57 e Å3
3 restraintsΔρmin = 0.54 e Å3
Crystal data top
[InCl3(C12H12N2)(C3H7NO)]·0.5H2Oγ = 96.448 (4)°
Mr = 487.51V = 1927.34 (14) Å3
Triclinic, P1Z = 4
a = 11.3021 (5) ÅMo Kα radiation
b = 11.4445 (5) ŵ = 1.65 mm1
c = 15.0860 (6) ÅT = 173 K
α = 91.089 (4)°0.32 × 0.30 × 0.25 mm
β = 96.024 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7524 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6051 reflections with I > 2σ(I)
Tmin = 0.601, Tmax = 0.688Rint = 0.036
15402 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.57 e Å3
7524 reflectionsΔρmin = 0.54 e Å3
437 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5123 (3)1.0246 (3)0.2042 (2)0.0251 (7)
H10.54501.08900.17460.030*
C20.3899 (3)1.0132 (3)0.2121 (2)0.0255 (7)
C30.3115 (3)1.1025 (4)0.1753 (3)0.0341 (9)
H3C0.26521.12700.22060.041*
H3B0.25871.06820.12530.041*
H3A0.36061.16940.15640.041*
C40.3441 (3)0.9152 (3)0.2551 (2)0.0277 (8)
H40.26250.90310.26080.033*
C50.4183 (3)0.8350 (3)0.2899 (2)0.0249 (7)
H50.38750.76970.31940.030*
C60.5403 (3)0.8539 (3)0.2797 (2)0.0222 (7)
C70.6250 (3)0.7694 (3)0.3113 (2)0.0206 (7)
C80.5969 (3)0.6830 (3)0.3715 (2)0.0261 (7)
H80.52270.67600.39350.031*
C90.6800 (3)0.6076 (3)0.3984 (2)0.0293 (8)
H90.66260.55100.44000.035*
C100.7899 (3)0.6162 (3)0.3633 (2)0.0272 (8)
C110.8797 (4)0.5334 (4)0.3906 (3)0.0377 (9)
H11C0.88450.52430.45390.045*
H11B0.95670.56450.37440.045*
H11A0.85540.45830.36090.045*
C120.8112 (3)0.7047 (3)0.3039 (2)0.0252 (7)
H120.88390.71170.27970.030*
C130.8628 (3)1.0800 (3)0.4086 (2)0.0269 (8)
H130.90231.13860.37700.032*
C140.9446 (4)1.1909 (4)0.5437 (3)0.0495 (12)
H14C1.00741.16570.58420.059*
H14B0.89241.23130.57660.059*
H14A0.97881.24300.50170.059*
C150.8199 (4)0.9974 (4)0.5493 (3)0.0422 (10)
H15A0.79730.92660.51340.051*
H15B0.75011.02370.57060.051*
H15C0.87560.98190.59900.051*
C160.4078 (3)0.2947 (3)0.3691 (2)0.0267 (7)
H160.34320.27360.40120.032*
C170.5101 (3)0.2392 (3)0.3877 (2)0.0272 (8)
C180.5177 (4)0.1442 (3)0.4548 (3)0.0359 (9)
H18A0.45720.07990.43720.043*
H18B0.50540.17510.51230.043*
H18C0.59530.11700.45770.043*
C190.6052 (3)0.2748 (3)0.3395 (2)0.0314 (8)
H190.67630.24100.34980.038*
C200.5954 (3)0.3597 (3)0.2764 (2)0.0312 (8)
H200.65940.38320.24420.037*
C210.4897 (3)0.4096 (3)0.2615 (2)0.0232 (7)
C220.4726 (3)0.5031 (3)0.1956 (2)0.0236 (7)
C230.5582 (3)0.5398 (3)0.1397 (2)0.0317 (8)
H230.62990.50670.14270.038*
C240.5356 (4)0.6265 (4)0.0791 (2)0.0341 (9)
H240.59250.65170.04110.041*
C250.4292 (3)0.6756 (3)0.0749 (2)0.0301 (8)
C260.4010 (4)0.7694 (4)0.0104 (3)0.0460 (11)
H26C0.47090.82500.00840.055*
H26B0.33710.80910.02930.055*
H26A0.37710.73410.04790.055*
C270.3478 (3)0.6325 (3)0.1325 (2)0.0287 (8)
H270.27440.66250.12950.034*
C280.1038 (3)0.2848 (4)0.1282 (2)0.0322 (8)
H280.07200.23560.17030.039*
C290.1028 (5)0.3466 (5)0.0221 (3)0.0639 (15)
H29C0.14060.30450.06480.077*
H29B0.15910.40900.00580.077*
H29A0.03520.37910.05180.077*
C300.0240 (5)0.1663 (6)0.0160 (3)0.0706 (18)
H30A0.04550.12300.06690.085*
H30B0.01050.11620.02350.085*
H30C0.09410.19330.01460.085*
N10.5854 (2)0.9478 (2)0.23712 (18)0.0219 (6)
N20.7329 (2)0.7812 (2)0.27921 (17)0.0209 (6)
N30.8759 (3)1.0879 (3)0.49582 (19)0.0290 (7)
N40.3964 (2)0.3764 (2)0.30794 (18)0.0229 (6)
N50.3691 (3)0.5500 (3)0.19222 (18)0.0234 (6)
N60.0629 (3)0.2669 (3)0.0452 (2)0.0378 (8)
O10.7993 (2)0.9967 (2)0.36637 (15)0.0309 (6)
O20.1854 (2)0.3663 (2)0.15434 (17)0.0375 (6)
O30.1661 (4)0.5577 (4)0.1491 (4)0.0903 (15)
Cl10.72933 (9)0.90119 (10)0.06210 (6)0.0395 (2)
Cl20.99623 (8)0.93947 (9)0.22712 (6)0.0333 (2)
Cl30.79761 (8)1.17277 (8)0.19951 (6)0.0313 (2)
Cl40.29650 (8)0.59312 (8)0.41650 (6)0.03024 (19)
Cl50.08798 (9)0.60500 (10)0.22539 (7)0.0435 (3)
Cl60.10673 (8)0.31911 (9)0.35452 (6)0.0355 (2)
In10.78415 (2)0.95952 (2)0.217222 (15)0.02104 (7)
In20.22743 (2)0.46926 (2)0.280738 (15)0.02290 (7)
H3D0.099 (2)0.521 (3)0.168 (3)0.100*
H3E0.155 (3)0.6286 (12)0.156 (3)0.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0259 (18)0.0258 (18)0.0228 (16)0.0032 (14)0.0012 (14)0.0023 (14)
C20.0253 (18)0.0315 (19)0.0194 (16)0.0047 (15)0.0001 (13)0.0012 (14)
C30.029 (2)0.040 (2)0.034 (2)0.0100 (17)0.0012 (16)0.0072 (17)
C40.0188 (17)0.037 (2)0.0276 (17)0.0032 (15)0.0036 (14)0.0021 (15)
C50.0258 (18)0.0259 (18)0.0227 (16)0.0021 (14)0.0062 (14)0.0030 (14)
C60.0249 (18)0.0227 (17)0.0184 (15)0.0008 (14)0.0042 (13)0.0016 (13)
C70.0214 (17)0.0207 (17)0.0189 (15)0.0019 (13)0.0034 (13)0.0014 (13)
C80.0228 (18)0.0287 (19)0.0278 (17)0.0010 (14)0.0087 (14)0.0035 (14)
C90.034 (2)0.0283 (19)0.0262 (18)0.0044 (16)0.0052 (15)0.0079 (15)
C100.0265 (19)0.0279 (19)0.0275 (17)0.0052 (15)0.0022 (14)0.0025 (14)
C110.034 (2)0.039 (2)0.043 (2)0.0098 (18)0.0055 (18)0.0156 (18)
C120.0220 (18)0.0290 (19)0.0244 (17)0.0020 (14)0.0032 (13)0.0009 (14)
C130.0236 (18)0.033 (2)0.0238 (17)0.0024 (15)0.0026 (14)0.0021 (15)
C140.059 (3)0.049 (3)0.034 (2)0.010 (2)0.003 (2)0.006 (2)
C150.043 (2)0.059 (3)0.0232 (18)0.006 (2)0.0073 (17)0.0034 (18)
C160.0285 (19)0.0246 (18)0.0280 (18)0.0033 (14)0.0071 (14)0.0036 (14)
C170.031 (2)0.0233 (18)0.0261 (17)0.0031 (15)0.0029 (15)0.0003 (14)
C180.040 (2)0.032 (2)0.037 (2)0.0107 (17)0.0023 (17)0.0090 (17)
C190.031 (2)0.030 (2)0.035 (2)0.0141 (16)0.0039 (16)0.0006 (16)
C200.0260 (19)0.033 (2)0.036 (2)0.0077 (16)0.0073 (16)0.0028 (16)
C210.0237 (18)0.0223 (17)0.0227 (16)0.0005 (14)0.0006 (13)0.0013 (13)
C220.0244 (18)0.0243 (18)0.0217 (16)0.0018 (14)0.0015 (13)0.0005 (13)
C230.0263 (19)0.036 (2)0.0326 (19)0.0013 (16)0.0095 (15)0.0031 (16)
C240.033 (2)0.042 (2)0.0265 (18)0.0049 (17)0.0088 (15)0.0060 (16)
C250.032 (2)0.033 (2)0.0243 (18)0.0030 (16)0.0014 (15)0.0070 (15)
C260.038 (2)0.058 (3)0.042 (2)0.003 (2)0.0017 (19)0.026 (2)
C270.0258 (19)0.032 (2)0.0281 (18)0.0048 (15)0.0012 (15)0.0067 (15)
C280.0259 (19)0.041 (2)0.0300 (19)0.0034 (17)0.0055 (15)0.0032 (16)
C290.080 (4)0.075 (4)0.035 (2)0.016 (3)0.006 (2)0.007 (2)
C300.045 (3)0.107 (5)0.053 (3)0.023 (3)0.013 (2)0.039 (3)
N10.0232 (15)0.0209 (14)0.0210 (13)0.0001 (11)0.0022 (11)0.0026 (11)
N20.0216 (14)0.0211 (14)0.0197 (13)0.0001 (11)0.0034 (11)0.0011 (11)
N30.0267 (16)0.0348 (17)0.0238 (15)0.0005 (13)0.0006 (12)0.0027 (13)
N40.0211 (15)0.0235 (15)0.0236 (14)0.0012 (12)0.0010 (11)0.0041 (11)
N50.0220 (15)0.0279 (15)0.0197 (13)0.0001 (12)0.0015 (11)0.0029 (12)
N60.0271 (17)0.055 (2)0.0313 (17)0.0066 (15)0.0014 (13)0.0081 (16)
O10.0349 (15)0.0336 (14)0.0220 (12)0.0056 (11)0.0037 (10)0.0001 (11)
O20.0383 (16)0.0420 (16)0.0289 (13)0.0062 (13)0.0002 (12)0.0016 (12)
O30.066 (3)0.056 (2)0.153 (4)0.007 (2)0.023 (3)0.036 (3)
Cl10.0392 (5)0.0567 (6)0.0198 (4)0.0049 (5)0.0021 (4)0.0024 (4)
Cl20.0199 (4)0.0461 (6)0.0344 (5)0.0039 (4)0.0040 (3)0.0086 (4)
Cl30.0316 (5)0.0272 (5)0.0364 (5)0.0020 (4)0.0097 (4)0.0079 (4)
Cl40.0338 (5)0.0286 (5)0.0276 (4)0.0034 (4)0.0071 (4)0.0028 (3)
Cl50.0327 (5)0.0588 (7)0.0450 (5)0.0229 (5)0.0101 (4)0.0232 (5)
Cl60.0294 (5)0.0353 (5)0.0409 (5)0.0057 (4)0.0085 (4)0.0084 (4)
In10.01898 (13)0.02579 (14)0.01822 (11)0.00006 (10)0.00357 (9)0.00353 (9)
In20.01887 (13)0.02634 (14)0.02381 (13)0.00307 (10)0.00239 (9)0.00571 (10)
Geometric parameters (Å, º) top
C1—N11.340 (4)C18—H18C0.9600
C1—C21.393 (5)C19—C201.378 (5)
C1—H10.9300C19—H190.9300
C2—C41.383 (5)C20—C211.381 (5)
C2—C31.504 (5)C20—H200.9300
C3—H3C0.9600C21—N41.349 (4)
C3—H3B0.9600C21—C221.490 (5)
C3—H3A0.9600C22—N51.337 (4)
C4—C51.386 (5)C22—C231.385 (5)
C4—H40.9300C23—C241.389 (6)
C5—C61.396 (5)C23—H230.9300
C5—H50.9300C24—C251.380 (6)
C6—N11.342 (4)C24—H240.9300
C6—C71.487 (5)C25—C271.387 (5)
C7—N21.352 (4)C25—C261.501 (5)
C7—C81.388 (5)C26—H26C0.9600
C8—C91.381 (5)C26—H26B0.9600
C8—H80.9300C26—H26A0.9600
C9—C101.395 (5)C27—N51.341 (4)
C9—H90.9300C27—H270.9300
C10—C121.384 (5)C28—O21.262 (4)
C10—C111.496 (5)C28—N61.293 (5)
C11—H11C0.9600C28—H280.9300
C11—H11B0.9600C29—N61.452 (6)
C11—H11A0.9600C29—H29C0.9600
C12—N21.343 (4)C29—H29B0.9600
C12—H120.9300C29—H29A0.9600
C13—O11.248 (4)C30—N61.456 (6)
C13—N31.309 (4)C30—H30A0.9600
C13—H130.9300C30—H30B0.9600
C14—N31.469 (5)C30—H30C0.9600
C14—H14C0.9600O3—H3D0.844 (10)
C14—H14B0.9600O3—H3E0.841 (10)
C14—H14A0.9600In1—Cl12.4185 (9)
C15—N31.454 (5)In1—Cl22.4227 (9)
C15—H15A0.9600In1—Cl32.4496 (9)
C15—H15B0.9600In1—O12.267 (2)
C15—H15C0.9600In1—N12.287 (3)
C16—N41.333 (4)In1—N22.301 (3)
C16—C171.387 (5)In2—Cl42.4737 (9)
C16—H160.9300In2—Cl52.4327 (10)
C17—C191.388 (5)In2—Cl62.4326 (9)
C17—C181.502 (5)In2—O22.202 (3)
C18—H18A0.9600In2—N42.292 (3)
C18—H18B0.9600In2—N52.316 (3)
N1—C1—C2123.4 (3)C24—C23—H23120.4
N1—C1—H1118.3C25—C24—C23120.2 (3)
C2—C1—H1118.3C25—C24—H24119.9
C4—C2—C1116.6 (3)C23—C24—H24119.9
C4—C2—C3121.7 (3)C24—C25—C27116.7 (3)
C1—C2—C3121.6 (3)C24—C25—C26122.0 (3)
C2—C3—H3C109.5C27—C25—C26121.3 (4)
C2—C3—H3B109.5C25—C26—H26C109.5
H3C—C3—H3B109.5C25—C26—H26B109.5
C2—C3—H3A109.5H26C—C26—H26B109.5
H3C—C3—H3A109.5C25—C26—H26A109.5
H3B—C3—H3A109.5H26C—C26—H26A109.5
C2—C4—C5120.8 (3)H26B—C26—H26A109.5
C2—C4—H4119.6N5—C27—C25123.7 (3)
C5—C4—H4119.6N5—C27—H27118.2
C4—C5—C6118.8 (3)C25—C27—H27118.2
C4—C5—H5120.6O2—C28—N6122.5 (4)
C6—C5—H5120.6O2—C28—H28118.7
N1—C6—C5120.9 (3)N6—C28—H28118.7
N1—C6—C7116.8 (3)N6—C29—H29C109.5
C5—C6—C7122.2 (3)N6—C29—H29B109.5
N2—C7—C8120.9 (3)H29C—C29—H29B109.5
N2—C7—C6116.7 (3)N6—C29—H29A109.5
C8—C7—C6122.4 (3)H29C—C29—H29A109.5
C9—C8—C7119.5 (3)H29B—C29—H29A109.5
C9—C8—H8120.3N6—C30—H30A109.5
C7—C8—H8120.3N6—C30—H30B109.5
C8—C9—C10120.1 (3)H30A—C30—H30B109.5
C8—C9—H9119.9N6—C30—H30C109.5
C10—C9—H9119.9H30A—C30—H30C109.5
C12—C10—C9116.8 (3)H30B—C30—H30C109.5
C12—C10—C11122.6 (3)C1—N1—C6119.4 (3)
C9—C10—C11120.6 (3)C1—N1—In1123.7 (2)
C10—C11—H11C109.5C6—N1—In1116.7 (2)
C10—C11—H11B109.5C12—N2—C7118.8 (3)
H11C—C11—H11B109.5C12—N2—In1124.1 (2)
C10—C11—H11A109.5C7—N2—In1115.0 (2)
H11C—C11—H11A109.5C13—N3—C15121.6 (3)
H11B—C11—H11A109.5C13—N3—C14121.2 (3)
N2—C12—C10123.8 (3)C15—N3—C14117.2 (3)
N2—C12—H12118.1C16—N4—C21119.0 (3)
C10—C12—H12118.1C16—N4—In2123.1 (2)
O1—C13—N3122.3 (3)C21—N4—In2117.8 (2)
O1—C13—H13118.8C22—N5—C27119.1 (3)
N3—C13—H13118.8C22—N5—In2117.4 (2)
N3—C14—H14C109.5C27—N5—In2123.2 (2)
N3—C14—H14B109.5C28—N6—C29120.8 (4)
H14C—C14—H14B109.5C28—N6—C30121.4 (4)
N3—C14—H14A109.5C29—N6—C30117.8 (4)
H14C—C14—H14A109.5C13—O1—In1126.5 (2)
H14B—C14—H14A109.5C28—O2—In2132.3 (3)
N3—C15—H15A109.5H3D—O3—H3E103.2 (16)
N3—C15—H15B109.5O1—In1—N180.31 (9)
H15A—C15—H15B109.5O1—In1—N274.40 (9)
N3—C15—H15C109.5N1—In1—N272.49 (10)
H15A—C15—H15C109.5O1—In1—Cl1168.73 (7)
H15B—C15—H15C109.5N1—In1—Cl189.31 (7)
N4—C16—C17124.0 (3)N2—In1—Cl198.40 (7)
N4—C16—H16118.0O1—In1—Cl290.23 (7)
C17—C16—H16118.0N1—In1—Cl2165.72 (7)
C16—C17—C19116.1 (3)N2—In1—Cl294.75 (7)
C16—C17—C18122.3 (3)Cl1—In1—Cl299.11 (3)
C19—C17—C18121.5 (3)O1—In1—Cl387.14 (7)
C17—C18—H18A109.5N1—In1—Cl392.18 (7)
C17—C18—H18B109.5N2—In1—Cl3157.55 (7)
H18A—C18—H18B109.5Cl1—In1—Cl397.68 (4)
C17—C18—H18C109.5Cl2—In1—Cl398.06 (3)
H18A—C18—H18C109.5O2—In2—N488.49 (10)
H18B—C18—H18C109.5O2—In2—N576.22 (10)
C20—C19—C17120.7 (3)N4—In2—N571.49 (10)
C20—C19—H19119.6O2—In2—Cl689.75 (7)
C17—C19—H19119.6N4—In2—Cl692.52 (7)
C19—C20—C21119.3 (4)N5—In2—Cl6158.71 (8)
C19—C20—H20120.4O2—In2—Cl589.31 (8)
C21—C20—H20120.4N4—In2—Cl5162.54 (7)
N4—C21—C20120.9 (3)N5—In2—Cl591.17 (8)
N4—C21—C22116.6 (3)Cl6—In2—Cl5104.79 (4)
C20—C21—C22122.6 (3)O2—In2—Cl4173.50 (8)
N5—C22—C23121.1 (3)N4—In2—Cl487.98 (7)
N5—C22—C21116.6 (3)N5—In2—Cl497.47 (7)
C23—C22—C21122.3 (3)Cl6—In2—Cl495.86 (3)
C22—C23—C24119.2 (4)Cl5—In2—Cl492.42 (4)
C22—C23—H23120.4
N1—C1—C2—C41.2 (5)C23—C22—N5—In2174.8 (3)
N1—C1—C2—C3179.1 (3)C21—C22—N5—In24.7 (4)
C1—C2—C4—C51.4 (5)C25—C27—N5—C222.1 (5)
C3—C2—C4—C5178.9 (3)C25—C27—N5—In2175.4 (3)
C2—C4—C5—C60.8 (5)O2—C28—N6—C294.9 (6)
C4—C5—C6—N10.1 (5)O2—C28—N6—C30174.8 (4)
C4—C5—C6—C7177.1 (3)N3—C13—O1—In1172.6 (3)
N1—C6—C7—N212.9 (4)N6—C28—O2—In2151.2 (3)
C5—C6—C7—N2164.3 (3)C13—O1—In1—N1130.2 (3)
N1—C6—C7—C8166.3 (3)C13—O1—In1—N2155.4 (3)
C5—C6—C7—C816.5 (5)C13—O1—In1—Cl1153.3 (3)
N2—C7—C8—C90.5 (5)C13—O1—In1—Cl260.6 (3)
C6—C7—C8—C9179.7 (3)C13—O1—In1—Cl337.5 (3)
C7—C8—C9—C101.8 (5)C1—N1—In1—O1113.0 (3)
C8—C9—C10—C122.0 (5)C6—N1—In1—O171.1 (2)
C8—C9—C10—C11178.8 (3)C1—N1—In1—N2170.4 (3)
C9—C10—C12—N20.2 (5)C6—N1—In1—N25.5 (2)
C11—C10—C12—N2179.1 (3)C1—N1—In1—Cl171.4 (2)
N4—C16—C17—C191.2 (5)C6—N1—In1—Cl1104.5 (2)
N4—C16—C17—C18177.6 (3)C1—N1—In1—Cl2162.2 (2)
C16—C17—C19—C200.7 (5)C6—N1—In1—Cl222.0 (5)
C18—C17—C19—C20178.2 (3)C1—N1—In1—Cl326.3 (2)
C17—C19—C20—C210.1 (6)C6—N1—In1—Cl3157.8 (2)
C19—C20—C21—N40.1 (5)C12—N2—In1—O191.2 (3)
C19—C20—C21—C22179.1 (3)C7—N2—In1—O172.3 (2)
N4—C21—C22—N53.7 (4)C12—N2—In1—N1175.7 (3)
C20—C21—C22—N5175.3 (3)C7—N2—In1—N112.3 (2)
N4—C21—C22—C23175.8 (3)C12—N2—In1—Cl197.7 (2)
C20—C21—C22—C235.2 (5)C7—N2—In1—Cl198.9 (2)
N5—C22—C23—C240.2 (5)C12—N2—In1—Cl22.2 (2)
C21—C22—C23—C24179.3 (3)C7—N2—In1—Cl2161.2 (2)
C22—C23—C24—C250.1 (6)C12—N2—In1—Cl3126.9 (2)
C23—C24—C25—C271.0 (5)C7—N2—In1—Cl336.5 (3)
C23—C24—C25—C26179.9 (4)C28—O2—In2—N4111.2 (4)
C24—C25—C27—N52.1 (5)C28—O2—In2—N5177.5 (4)
C26—C25—C27—N5179.1 (4)C28—O2—In2—Cl618.7 (4)
C2—C1—N1—C60.4 (5)C28—O2—In2—Cl586.1 (4)
C2—C1—N1—In1176.1 (2)C28—O2—In2—Cl4168.4 (5)
C5—C6—N1—C10.3 (5)C16—N4—In2—O2107.4 (3)
C7—C6—N1—C1177.5 (3)C21—N4—In2—O274.9 (2)
C5—C6—N1—In1175.7 (2)C16—N4—In2—N5176.6 (3)
C7—C6—N1—In11.4 (3)C21—N4—In2—N51.0 (2)
C10—C12—N2—C72.5 (5)C16—N4—In2—Cl617.7 (3)
C10—C12—N2—In1160.4 (3)C21—N4—In2—Cl6164.6 (2)
C8—C7—N2—C122.6 (5)C16—N4—In2—Cl5169.7 (2)
C6—C7—N2—C12178.2 (3)C21—N4—In2—Cl58.0 (4)
C8—C7—N2—In1161.8 (2)C16—N4—In2—Cl478.1 (3)
C6—C7—N2—In117.5 (3)C21—N4—In2—Cl499.6 (2)
O1—C13—N3—C152.1 (6)C22—N5—In2—O289.9 (2)
O1—C13—N3—C14175.8 (4)C27—N5—In2—O283.5 (3)
C17—C16—N4—C211.1 (5)C22—N5—In2—N43.1 (2)
C17—C16—N4—In2178.7 (3)C27—N5—In2—N4176.5 (3)
C20—C21—N4—C160.4 (5)C22—N5—In2—Cl639.9 (4)
C22—C21—N4—C16178.7 (3)C27—N5—In2—Cl6133.5 (2)
C20—C21—N4—In2178.1 (3)C22—N5—In2—Cl5178.9 (2)
C22—C21—N4—In20.9 (4)C27—N5—In2—Cl55.5 (3)
C23—C22—N5—C271.1 (5)C22—N5—In2—Cl488.5 (2)
C21—C22—N5—C27178.4 (3)C27—N5—In2—Cl498.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···Cl5i0.84 (3)2.49 (3)3.326 (5)174 (3)
O3—H3E···Cl3ii0.84 (2)2.40 (2)3.183 (5)156 (3)
C5—H5···Cl40.932.693.620 (3)175
C8—H8···Cl40.932.693.574 (4)160
C9—H9···Cl4iii0.932.783.657 (3)158
C16—H16···Cl60.932.803.430 (4)126
C20—H20···O3iv0.932.603.526 (6)178
C23—H23···O3iv0.932.493.416 (6)173
C27—H27···Cl50.932.713.370 (4)129
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[InCl3(C12H12N2)(C3H7NO)]·0.5H2O
Mr487.51
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.3021 (5), 11.4445 (5), 15.0860 (6)
α, β, γ (°)91.089 (4), 96.024 (3), 96.448 (4)
V3)1927.34 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.32 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.601, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
15402, 7524, 6051
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.067, 1.03
No. of reflections7524
No. of parameters437
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.54

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
In1—Cl12.4185 (9)In2—Cl42.4737 (9)
In1—Cl22.4227 (9)In2—Cl52.4327 (10)
In1—Cl32.4496 (9)In2—Cl62.4326 (9)
In1—O12.267 (2)In2—O22.202 (3)
In1—N12.287 (3)In2—N42.292 (3)
In1—N22.301 (3)In2—N52.316 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···Cl5i0.84 (3)2.49 (3)3.326 (5)174 (3)
O3—H3E···Cl3ii0.842 (17)2.396 (19)3.183 (5)156 (3)
C5—H5···Cl40.932.693.620 (3)175
C8—H8···Cl40.932.693.574 (4)160
C9—H9···Cl4iii0.932.783.657 (3)158
C20—H20···O3iv0.932.603.526 (6)178
C23—H23···O3iv0.932.493.416 (6)173
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

References

First citationAlbada, G. A., Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733–3742.  Google Scholar
First citationAlizadeh, R., Amani, V., Farshady, A. A. & Khavasi, H. R. (2010). J. Coord. Chem. 63, 2122–2131.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257–4262.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026–3030.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353–m1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m846.  CSD CrossRef IUCr Journals Google Scholar
First citationTadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1448-m1449
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds