metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1538-m1539

Bis{μ-2-[(pyrimidin-2-yl)amino­meth­yl]phenolato}-κ2N1:O;κ2O:N1-bis­­({2-[(pyrimidin-2-yl-κN)amino­meth­yl]phenol}silver(I)) dihydrate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 31 October 2012; accepted 6 November 2012; online 28 November 2012)

The AgI atom in the title centrosymmetric dinuclear compound, [Ag2(C11H10N3O)2(C11H11N3O)2]·2H2O, shows a T-shaped coordination arising from bonding to the N atom of a neutral 2-[(pyrimidin-2-yl)amino­meth­yl]phenol ligand, the N atom of the 2-[(pyrimidin-2-yl)amino­meth­yl]phenolate anion [N—Ag—N = 171.8 (1)°] and the terminal O atom of the other anion [Ag—O = 2.606 (3) Å]. A pair of 2-[(pyrimidin-2-yl)amino­meth­yl]phenolate anions link the two AgI atoms to form the dinuclear compound. In the crystal, adjacent dinuclear mol­ecules are linked to the lattice water mol­ecules, generating an O—H⋯O- and N—H⋯O-connected three-dimensional network. In the crystal, the hy­droxy H atom is disordered over two positions in a 1:1 ratio; one half-occupancy H atom is connected to one hy­droxy group, whereas the other half-occupancy H atom is connected to another hy­droxy group.

Related literature

For the structure of 2-{[(pyrimidin-2-yl)amino]­meth­yl}phenol, see: Xu et al. (2011[Xu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o3258.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C11H10N3O)2(C11H11N3O)2]·2H2O

  • Mr = 1054.67

  • Monoclinic, P 21 /c

  • a = 9.2992 (4) Å

  • b = 24.808 (1) Å

  • c = 9.8158 (5) Å

  • β = 108.453 (1)°

  • V = 2148.02 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.807, Tmax = 0.852

  • 20943 measured reflections

  • 4910 independent reflections

  • 3230 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.133

  • S = 1.11

  • 4910 reflections

  • 307 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.27 e Å−3

  • Δρmin = −1.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.84 (1) 1.68 (3) 2.504 (4) 166 (12)
O2—H2o⋯O1ii 0.84 (1) 1.68 (3) 2.504 (4) 166 (13)
O1w—H11⋯O2iii 0.84 (1) 2.31 (6) 2.927 (5) 130 (6)
O1w—H12⋯N3iv 0.84 (1) 2.27 (2) 3.085 (5) 165 (6)
N1—H1⋯O1v 0.88 (1) 1.99 (1) 2.863 (5) 176 (4)
N6—H6⋯O1w 0.88 (1) 2.08 (2) 2.943 (5) 169 (5)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A recent study reports 2-[(pyrimidin-2-yl)aminomethyl]phenol, a reduced Schiff-base that possesses an acidic phenolic group (Xu et al., 2011). The reaction with silver nitrate yields dinuclear [Ag(C11H10N3O)(C11H11N3O)]2.2H2O (Scheme I, Fig. 1). The asymmetric unit has one Ag atom; however, the hydroxy H-atom is disordered over two positions in a 1:1 ratio. One half-occupancy H-atom is connected to O1 whereas the other half-occupancy atom is connected to O2. The AgI atom shows T-shaped coordination. Adjacent molecules are linked to the lattice water molecules to generate a O–H···O and N–H···O connected three-dimensional network (Table 1).

Related literature top

For the structure of 2-{[(pyrimidin-2-yl)amino]methyl}phenol, see: Xu et al. (2011).

Experimental top

An acetonitrile solution (10 ml) of silver nitrate (1 mmol) was added to a methanol solution (5 ml) of 2-[(pyrimidin-2-yl)aminomethyl]phenol (1 mmol) and potassium hydroxide (0.5 mmol). The solution was filtered and then side aside, away from light, for the growth of crystals. Colorless crystals were obtained after several days.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino and hydroxy/water H atoms were located in a difference Fouier map, and were refined with distance restraints of N–H 0.88±0.01, O–H 0.84±0.01 and H···H 1.37±0.01 Å. Their temperature factors were refined.

The hydroxy H-atom is disordered over two positions in a 1:1 ratio; one half-occupancy H-atom is connected to O1 whereas the other half-occupancy atom is connected to O2.

The final difference Fouier map had a peak at 0.83 Å from Ag1 and a hole at 0.84 Å from this atom.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Ag2(C11H10N3O)2(C11H11N3O)]2.H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the phenolic –OH groups is not shown.
Bis{µ-2-[(pyrimidin-2-yl)aminomethyl]phenolato}- κ2N1:O;κ2O:N1-bis({2-[(pyrimidin-2- yl-κN)aminomethyl]phenol}silver(I)) dihydrate top
Crystal data top
[Ag2(C11H10N3O)2(C11H11N3O)2]·2H2OF(000) = 1072
Mr = 1054.67Dx = 1.631 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13157 reflections
a = 9.2992 (4) Åθ = 3.1–27.5°
b = 24.808 (1) ŵ = 0.98 mm1
c = 9.8158 (5) ÅT = 293 K
β = 108.453 (1)°Prism, colorless
V = 2148.02 (17) Å30.23 × 0.20 × 0.17 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4910 independent reflections
Radiation source: fine-focus sealed tube3230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1211
Tmin = 0.807, Tmax = 0.852k = 3232
20943 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0382P)2 + 4.7243P]
where P = (Fo2 + 2Fc2)/3
4910 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 1.27 e Å3
7 restraintsΔρmin = 1.29 e Å3
Crystal data top
[Ag2(C11H10N3O)2(C11H11N3O)2]·2H2OV = 2148.02 (17) Å3
Mr = 1054.67Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.2992 (4) ŵ = 0.98 mm1
b = 24.808 (1) ÅT = 293 K
c = 9.8158 (5) Å0.23 × 0.20 × 0.17 mm
β = 108.453 (1)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4910 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3230 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.852Rint = 0.063
20943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0447 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 1.27 e Å3
4910 reflectionsΔρmin = 1.29 e Å3
307 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.70167 (5)0.644035 (13)0.56817 (5)0.04905 (15)
O11.0721 (3)0.39077 (12)0.5102 (3)0.0383 (7)
H1O0.990 (7)0.376 (4)0.461 (10)0.057*0.50
O20.1768 (4)0.84419 (14)0.0994 (4)0.0458 (8)
H2O0.095 (7)0.858 (5)0.050 (11)0.069*0.50
O1W0.3708 (5)0.64557 (15)0.4170 (5)0.0650 (11)
H110.289 (4)0.659 (2)0.420 (8)0.097*
H120.353 (6)0.6145 (12)0.382 (7)0.097*
N10.8011 (4)0.51659 (14)0.5833 (4)0.0371 (9)
H10.838 (5)0.5460 (11)0.557 (5)0.045*
N20.6393 (4)0.56969 (14)0.6588 (4)0.0362 (8)
N30.6313 (4)0.47353 (14)0.6741 (4)0.0404 (9)
N40.7537 (4)0.72440 (15)0.5013 (5)0.0441 (10)
N50.7062 (5)0.80270 (15)0.3525 (5)0.0482 (10)
N60.5199 (4)0.73932 (15)0.3360 (5)0.0441 (10)
H60.487 (6)0.7108 (13)0.370 (5)0.053*
C10.5302 (5)0.57248 (19)0.7213 (6)0.0451 (11)
H1A0.49530.60620.73750.054*
C20.4682 (5)0.5276 (2)0.7621 (6)0.0472 (12)
H2A0.39400.53010.80690.057*
C30.5215 (6)0.4788 (2)0.7332 (6)0.0482 (12)
H30.47850.44770.75620.058*
C40.6884 (5)0.51959 (16)0.6398 (5)0.0328 (9)
C50.8671 (5)0.46637 (17)0.5550 (5)0.0350 (9)
H5A0.89790.47100.47010.042*
H5B0.78970.43860.53390.042*
C61.0024 (5)0.44711 (17)0.6770 (5)0.0350 (9)
C71.0368 (6)0.4667 (2)0.8155 (5)0.0443 (11)
H70.97290.49190.83650.053*
C81.1647 (6)0.4494 (2)0.9240 (6)0.0533 (13)
H81.18730.46351.01620.064*
C91.2577 (6)0.4113 (2)0.8933 (6)0.0499 (12)
H91.34350.39950.96530.060*
C101.2245 (5)0.39041 (18)0.7566 (5)0.0404 (10)
H101.28730.36410.73840.048*
C111.0981 (5)0.40809 (16)0.6445 (5)0.0347 (9)
C120.8956 (6)0.7416 (2)0.5634 (7)0.0660 (17)
H12A0.96080.72090.63600.079*
C130.9484 (7)0.7889 (2)0.5233 (9)0.078 (2)
H131.04750.80050.56690.094*
C140.8486 (6)0.8178 (2)0.4167 (7)0.0580 (14)
H140.88190.84980.38750.070*
C150.6627 (5)0.75617 (17)0.3970 (5)0.0392 (10)
C160.4023 (6)0.77407 (18)0.2440 (5)0.0446 (11)
H16A0.31970.75160.18690.054*
H16B0.44370.79300.17830.054*
C170.3390 (5)0.81517 (17)0.3238 (5)0.0355 (10)
C180.3894 (6)0.82048 (19)0.4713 (5)0.0447 (11)
H180.46710.79830.52550.054*
C190.3273 (6)0.8580 (2)0.5401 (6)0.0502 (12)
H190.36280.86090.63960.060*
C200.2126 (6)0.8911 (2)0.4609 (6)0.0503 (12)
H200.17010.91630.50690.060*
C210.1606 (6)0.88692 (19)0.3134 (6)0.0462 (12)
H210.08340.90950.26040.055*
C220.2225 (5)0.84915 (17)0.2430 (5)0.0361 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0552 (3)0.02896 (19)0.0589 (3)0.00169 (16)0.01237 (19)0.00829 (16)
O10.0365 (17)0.0369 (16)0.0407 (19)0.0016 (14)0.0111 (15)0.0062 (13)
O20.047 (2)0.0487 (19)0.0391 (19)0.0124 (16)0.0096 (16)0.0051 (15)
O1W0.076 (3)0.048 (2)0.081 (3)0.020 (2)0.040 (3)0.005 (2)
N10.036 (2)0.0258 (17)0.054 (2)0.0002 (15)0.0206 (19)0.0032 (16)
N20.0352 (19)0.0296 (17)0.042 (2)0.0038 (16)0.0092 (17)0.0002 (15)
N30.040 (2)0.0309 (18)0.055 (3)0.0011 (16)0.0223 (19)0.0027 (17)
N40.036 (2)0.0319 (19)0.061 (3)0.0074 (17)0.011 (2)0.0106 (18)
N50.054 (3)0.036 (2)0.055 (3)0.0006 (19)0.018 (2)0.0101 (18)
N60.042 (2)0.0288 (19)0.058 (3)0.0006 (17)0.010 (2)0.0057 (18)
C10.043 (3)0.040 (2)0.053 (3)0.009 (2)0.018 (2)0.003 (2)
C20.035 (2)0.060 (3)0.050 (3)0.006 (2)0.019 (2)0.000 (2)
C30.044 (3)0.043 (3)0.062 (3)0.002 (2)0.023 (3)0.007 (2)
C40.029 (2)0.028 (2)0.039 (2)0.0002 (17)0.0069 (19)0.0012 (17)
C50.030 (2)0.031 (2)0.046 (3)0.0026 (18)0.014 (2)0.0020 (18)
C60.035 (2)0.032 (2)0.040 (2)0.0017 (18)0.016 (2)0.0007 (18)
C70.047 (3)0.045 (3)0.044 (3)0.007 (2)0.020 (2)0.000 (2)
C80.056 (3)0.062 (3)0.040 (3)0.004 (3)0.014 (3)0.001 (2)
C90.044 (3)0.059 (3)0.045 (3)0.005 (2)0.011 (2)0.009 (2)
C100.035 (2)0.038 (2)0.048 (3)0.007 (2)0.012 (2)0.003 (2)
C110.036 (2)0.030 (2)0.041 (3)0.0045 (18)0.015 (2)0.0016 (18)
C120.042 (3)0.052 (3)0.095 (5)0.010 (3)0.008 (3)0.022 (3)
C130.040 (3)0.058 (4)0.131 (6)0.005 (3)0.017 (4)0.022 (4)
C140.053 (3)0.044 (3)0.079 (4)0.004 (3)0.024 (3)0.010 (3)
C150.042 (3)0.028 (2)0.050 (3)0.0072 (19)0.019 (2)0.0009 (19)
C160.044 (3)0.033 (2)0.053 (3)0.005 (2)0.010 (2)0.002 (2)
C170.036 (2)0.030 (2)0.039 (2)0.0042 (18)0.009 (2)0.0043 (18)
C180.045 (3)0.041 (2)0.047 (3)0.004 (2)0.013 (2)0.004 (2)
C190.060 (3)0.054 (3)0.036 (3)0.007 (3)0.013 (2)0.003 (2)
C200.055 (3)0.051 (3)0.051 (3)0.002 (2)0.025 (3)0.007 (2)
C210.045 (3)0.040 (3)0.057 (3)0.007 (2)0.021 (3)0.004 (2)
C220.033 (2)0.035 (2)0.041 (2)0.0045 (18)0.013 (2)0.0049 (18)
Geometric parameters (Å, º) top
Ag1—N42.200 (4)C5—H5A0.9700
Ag1—N22.204 (4)C5—H5B0.9700
Ag1—O1i2.606 (3)C6—C71.382 (6)
Ag1—O1W2.963 (5)C6—C111.419 (6)
O1—C111.333 (5)C7—C81.389 (7)
O1—H1O0.840 (10)C7—H70.9300
O2—C221.343 (5)C8—C91.379 (7)
O2—H2O0.839 (10)C8—H80.9300
O1W—H110.842 (10)C9—C101.379 (7)
O1W—H120.840 (10)C9—H90.9300
N1—C41.334 (5)C10—C111.402 (6)
N1—C51.454 (5)C10—H100.9300
N1—H10.877 (10)C12—C131.376 (8)
N2—C11.343 (6)C12—H12A0.9300
N2—C41.357 (5)C13—C141.363 (8)
N3—C31.331 (6)C13—H130.9300
N3—C41.347 (5)C14—H140.9300
N4—C121.336 (7)C16—C171.514 (6)
N4—C151.356 (6)C16—H16A0.9700
N5—C141.328 (7)C16—H16B0.9700
N5—C151.341 (6)C17—C181.379 (6)
N6—C151.340 (6)C17—C221.403 (6)
N6—C161.459 (6)C18—C191.379 (7)
N6—H60.877 (10)C18—H180.9300
C1—C21.371 (7)C19—C201.375 (7)
C1—H1A0.9300C19—H190.9300
C2—C31.371 (7)C20—C211.377 (7)
C2—H2A0.9300C20—H200.9300
C3—H30.9300C21—C221.393 (6)
C5—C61.514 (6)C21—H210.9300
N4—Ag1—N2171.75 (14)C9—C8—C7119.2 (5)
N4—Ag1—O1i86.43 (12)C9—C8—H8120.4
N2—Ag1—O1i100.50 (11)C7—C8—H8120.4
N4—Ag1—O1W97.51 (13)C10—C9—C8120.5 (5)
N2—Ag1—O1W81.30 (12)C10—C9—H9119.7
O1i—Ag1—O1W131.60 (11)C8—C9—H9119.7
C11—O1—H1O124 (8)C9—C10—C11121.4 (4)
C22—O2—H2O120 (9)C9—C10—H10119.3
Ag1—O1W—H11142 (4)C11—C10—H10119.3
Ag1—O1W—H12103 (4)O1—C11—C10121.3 (4)
H11—O1W—H12109 (2)O1—C11—C6120.8 (4)
C4—N1—C5124.2 (3)C10—C11—C6117.8 (4)
C4—N1—H1120 (3)N4—C12—C13122.1 (5)
C5—N1—H1115 (3)N4—C12—H12A118.9
C1—N2—C4116.5 (4)C13—C12—H12A118.9
C1—N2—Ag1118.3 (3)C14—C13—C12116.8 (5)
C4—N2—Ag1124.6 (3)C14—C13—H13121.6
C3—N3—C4116.3 (4)C12—C13—H13121.6
C12—N4—C15116.7 (4)N5—C14—C13123.3 (5)
C12—N4—Ag1115.6 (3)N5—C14—H14118.3
C15—N4—Ag1127.5 (3)C13—C14—H14118.3
C14—N5—C15116.5 (4)N6—C15—N5118.8 (4)
C15—N6—C16122.4 (4)N6—C15—N4116.8 (4)
C15—N6—H6120 (4)N5—C15—N4124.5 (4)
C16—N6—H6115 (4)N6—C16—C17114.6 (4)
N2—C1—C2122.7 (4)N6—C16—H16A108.6
N2—C1—H1A118.7C17—C16—H16A108.6
C2—C1—H1A118.7N6—C16—H16B108.6
C3—C2—C1116.3 (4)C17—C16—H16B108.6
C3—C2—H2A121.8H16A—C16—H16B107.6
C1—C2—H2A121.8C18—C17—C22118.8 (4)
N3—C3—C2123.7 (4)C18—C17—C16123.3 (4)
N3—C3—H3118.2C22—C17—C16118.0 (4)
C2—C3—H3118.2C19—C18—C17121.5 (5)
N1—C4—N3118.7 (4)C19—C18—H18119.3
N1—C4—N2116.8 (4)C17—C18—H18119.3
N3—C4—N2124.4 (4)C20—C19—C18119.7 (5)
N1—C5—C6114.5 (4)C20—C19—H19120.1
N1—C5—H5A108.6C18—C19—H19120.1
C6—C5—H5A108.6C19—C20—C21120.1 (5)
N1—C5—H5B108.6C19—C20—H20120.0
C6—C5—H5B108.6C21—C20—H20120.0
H5A—C5—H5B107.6C20—C21—C22120.6 (5)
C7—C6—C11119.6 (4)C20—C21—H21119.7
C7—C6—C5122.9 (4)C22—C21—H21119.7
C11—C6—C5117.4 (4)O2—C22—C21122.6 (4)
C6—C7—C8121.5 (4)O2—C22—C17118.0 (4)
C6—C7—H7119.3C21—C22—C17119.3 (4)
C8—C7—H7119.3
O1i—Ag1—N2—C1175.4 (3)C7—C6—C11—O1176.3 (4)
O1W—Ag1—N2—C153.7 (3)C5—C6—C11—O12.4 (6)
O1i—Ag1—N2—C413.9 (4)C7—C6—C11—C100.7 (6)
O1W—Ag1—N2—C4117.0 (4)C5—C6—C11—C10179.4 (4)
O1i—Ag1—N4—C1255.8 (4)C15—N4—C12—C130.6 (9)
O1W—Ag1—N4—C12172.7 (4)Ag1—N4—C12—C13174.3 (5)
O1i—Ag1—N4—C15118.4 (4)N4—C12—C13—C140.2 (11)
O1W—Ag1—N4—C1513.1 (4)C15—N5—C14—C130.4 (9)
C4—N2—C1—C21.1 (7)C12—C13—C14—N50.4 (10)
Ag1—N2—C1—C2170.3 (4)C16—N6—C15—N512.2 (7)
N2—C1—C2—C31.2 (8)C16—N6—C15—N4167.5 (4)
C4—N3—C3—C21.3 (8)C14—N5—C15—N6179.7 (5)
C1—C2—C3—N32.6 (8)C14—N5—C15—N40.1 (7)
C5—N1—C4—N30.4 (7)C12—N4—C15—N6179.2 (5)
C5—N1—C4—N2179.7 (4)Ag1—N4—C15—N66.6 (6)
C3—N3—C4—N1178.5 (4)C12—N4—C15—N50.6 (7)
C3—N3—C4—N21.4 (7)Ag1—N4—C15—N5173.6 (3)
C1—N2—C4—N1177.3 (4)C15—N6—C16—C1777.1 (6)
Ag1—N2—C4—N111.8 (6)N6—C16—C17—C181.2 (6)
C1—N2—C4—N32.6 (7)N6—C16—C17—C22178.3 (4)
Ag1—N2—C4—N3168.3 (3)C22—C17—C18—C190.5 (7)
C4—N1—C5—C691.6 (5)C16—C17—C18—C19179.1 (4)
N1—C5—C6—C716.3 (6)C17—C18—C19—C200.1 (7)
N1—C5—C6—C11162.4 (4)C18—C19—C20—C210.3 (8)
C11—C6—C7—C80.8 (7)C19—C20—C21—C220.4 (7)
C5—C6—C7—C8177.8 (4)C20—C21—C22—O2179.1 (4)
C6—C7—C8—C91.2 (8)C20—C21—C22—C170.0 (7)
C7—C8—C9—C100.1 (8)C18—C17—C22—O2178.7 (4)
C8—C9—C10—C111.5 (7)C16—C17—C22—O21.7 (6)
C9—C10—C11—O1175.2 (4)C18—C17—C22—C210.4 (6)
C9—C10—C11—C61.9 (6)C16—C17—C22—C21179.2 (4)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2ii0.84 (1)1.68 (3)2.504 (4)166 (12)
O2—H2o···O1iii0.84 (1)1.68 (3)2.504 (4)166 (13)
O1w—H11···O2iv0.84 (1)2.31 (6)2.927 (5)130 (6)
O1w—H12···N3v0.84 (1)2.27 (2)3.085 (5)165 (6)
N1—H1···O1i0.88 (1)1.99 (1)2.863 (5)176 (4)
N6—H6···O1w0.88 (1)2.08 (2)2.943 (5)169 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag2(C11H10N3O)2(C11H11N3O)2]·2H2O
Mr1054.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.2992 (4), 24.808 (1), 9.8158 (5)
β (°) 108.453 (1)
V3)2148.02 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.23 × 0.20 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.807, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
20943, 4910, 3230
Rint0.063
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.133, 1.11
No. of reflections4910
No. of parameters307
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.27, 1.29

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.84 (1)1.68 (3)2.504 (4)166 (12)
O2—H2o···O1ii0.84 (1)1.68 (3)2.504 (4)166 (13)
O1w—H11···O2iii0.84 (1)2.31 (6)2.927 (5)130 (6)
O1w—H12···N3iv0.84 (1)2.27 (2)3.085 (5)165 (6)
N1—H1···O1v0.88 (1)1.99 (1)2.863 (5)176 (4)
N6—H6···O1w0.88 (1)2.08 (2)2.943 (5)169 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023, No. 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o3258.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1538-m1539
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds