metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-(E)-N-(pyridin-3-yl­methyl­­idene)hy­dr­oxy­amine]-κ2N1:N3;κ2N3:N1-bis­­{[(E)-N-(pyridin-3-yl­methyl­­idene-κN)hy­dr­oxy­amine]­silver(I)} dinitrate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 November 2012; accepted 6 November 2012; online 28 November 2012)

In the centrosymmetric dinuclear title AgI compound, [Ag2(C6H6N2O)4](NO3)2, the aromatic amine-coordinated AgI atom is further bridged by two hydroxyl­amine mol­ecules that use aromatic and oxime N atoms for bridging, and it exists in a distorted trigonal-planar geometry. In the crystal, the nitrate anions link to the dinuclear compound mol­ecules via O—H⋯O hydrogen bonds, generating a chain running along the a-axis direction.

Related literature

For bis­(nicotinyl­aldehyde oxime)silver perchlorate, see: Xu et al. (2012[Xu, J., Gao, S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m735-m736.]) and for (nitrato)(picolinaldehyde oxime)silver, see: Abu-Youssef et al. (2010[Abu-Youssef, M. A., Soliman, S. V., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Öhrström, L. R. (2010). Inorg. Chem. 49, 9788-9797.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C6H6N2O)4](NO3)2

  • Mr = 828.27

  • Triclinic, [P \overline 1]

  • a = 7.2913 (10) Å

  • b = 8.3395 (10) Å

  • c = 13.1415 (17) Å

  • α = 92.934 (4)°

  • β = 95.008 (4)°

  • γ = 111.360 (3)°

  • V = 738.38 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.730, Tmax = 0.797

  • 7293 measured reflections

  • 3341 independent reflections

  • 2896 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.11

  • 3341 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 1.71 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.84 2.39 3.189 (6) 158
O1—H1⋯O4i 0.84 2.20 2.925 (5) 145
O2—H2⋯O4ii 0.84 1.92 2.745 (4) 169
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+2, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A previous study on the adducts of silver salts with nicotinylaldehyde oxime reported the salt, [Ag(C6H6N2O)2] ClO4; the metal atom shows linear coordination (Xu et al., 2012). The aromatic amine-coordinated AgI atom in dinuclear [Ag(C6H6N2O)2]2 2NO3 is bridged by another hydroxylamine molecule that uses its aromatic and oxime N atoms for bridging, and it exists in a trigonal planar geometry (Scheme I, Fig. 1). The hydroxyl OH groups forms H atoms to the nitrate O atoms of adjacent molecules to generate a chain running along the shortest axis of the orthorhombic unit cell (Table 1).

With picolinylaldehyde oxime in place of nicotinylaldehyde oxime, the synthesis yields the monomeric adduct in which the metal atom is chelated by the ligand (Abu-Youssef et al., 2010).

Related literature top

For bis(nicotinylaldehyde oxime)silver perchlorate, see: Xu et al. (2012) and for (nitrato)(picolinaldehyde oxime)silver, see: Abu-Youssef et al. (2010).

Experimental top

Nicotinyladehyde oxime was synthesized from the reaction of nicotinylaldehyde and hydroxylamine. Silver nitrate (1 mmol) dissolved in water (5 ml) was added to nicotinylaldehyde oxime (1 mmol) dissolved in ethanol (5 ml). The solution was filtered and set aside, away from light, for the growth of colorless crystals.

Refinement top

Carbon- and oxygen-bound H-atoms were placed in calculated positions (C–H 0.93 Å, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,O).

The (-1 3 3), (5 - 10 1), (6 - 9 5) and (0 9 1) reflections were omitted.

The final difference Fourier map had a peak at 0.88 Å from Ag1.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Ag(C6H6N2O)2]2 2NO3 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Bis[µ-(E)-N-(pyridin-3-ylmethylidene)hydroxyamine]- κ2N1:N3;κ2N3:N1-bis{[(E)- N-(pyridin-3-ylmethylidene-κN)hydroxyamine]silver(I)} dinitrate top
Crystal data top
[Ag2(C6H6N2O)4](NO3)2Z = 1
Mr = 828.27F(000) = 412
Triclinic, P1Dx = 1.863 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2913 (10) ÅCell parameters from 6130 reflections
b = 8.3395 (10) Åθ = 3.0–27.4°
c = 13.1415 (17) ŵ = 1.40 mm1
α = 92.934 (4)°T = 293 K
β = 95.008 (4)°Prism, colorless
γ = 111.360 (3)°0.24 × 0.21 × 0.17 mm
V = 738.38 (16) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3341 independent reflections
Radiation source: fine-focus sealed tube2896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scanθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.730, Tmax = 0.797k = 1010
7293 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.056P)2 + 0.3361P]
where P = (Fo2 + 2Fc2)/3
3341 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 1.71 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ag2(C6H6N2O)4](NO3)2γ = 111.360 (3)°
Mr = 828.27V = 738.38 (16) Å3
Triclinic, P1Z = 1
a = 7.2913 (10) ÅMo Kα radiation
b = 8.3395 (10) ŵ = 1.40 mm1
c = 13.1415 (17) ÅT = 293 K
α = 92.934 (4)°0.24 × 0.21 × 0.17 mm
β = 95.008 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3341 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2896 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.797Rint = 0.035
7293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.11Δρmax = 1.71 e Å3
3341 reflectionsΔρmin = 0.34 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.38614 (4)0.61092 (3)0.314850 (18)0.04700 (13)
O11.0366 (4)0.7195 (3)0.7651 (2)0.0501 (6)
H11.07580.63780.75410.075*
O20.9485 (4)1.1845 (3)0.0856 (2)0.0522 (6)
H20.94511.22720.14190.078*
O30.7359 (7)0.5156 (5)0.3151 (4)0.1102 (16)
O41.0106 (5)0.6444 (5)0.2602 (3)0.0751 (10)
O50.8581 (6)0.7867 (4)0.3354 (3)0.0792 (10)
N10.4261 (4)0.7161 (4)0.4767 (2)0.0393 (6)
N20.8633 (4)0.6911 (4)0.7003 (2)0.0426 (6)
N30.4227 (4)0.6552 (4)0.1507 (2)0.0393 (6)
N40.7795 (4)1.0353 (4)0.0856 (2)0.0411 (6)
N50.8690 (4)0.6504 (4)0.3059 (2)0.0436 (7)
C10.2918 (5)0.5528 (4)0.0748 (3)0.0420 (7)
H1A0.18750.45740.09150.050*
C20.3047 (5)0.5827 (4)0.0277 (3)0.0438 (7)
H2A0.21040.50870.07830.053*
C30.4576 (5)0.7221 (4)0.0537 (3)0.0410 (7)
H30.46890.74370.12200.049*
C40.5962 (5)0.8315 (4)0.0240 (2)0.0354 (6)
C50.5728 (5)0.7911 (4)0.1242 (2)0.0366 (6)
H50.66630.86210.17620.044*
C60.7622 (5)0.9865 (4)0.0046 (3)0.0375 (7)
H60.85591.04990.05860.045*
C70.3097 (5)0.7957 (4)0.5116 (3)0.0430 (7)
H70.19440.78530.47080.052*
C80.3541 (5)0.8913 (4)0.6046 (3)0.0429 (7)
H80.27210.94670.62560.051*
C90.5228 (5)0.9041 (4)0.6669 (3)0.0407 (7)
H90.55700.97040.72960.049*
C100.6402 (5)0.8177 (4)0.6350 (2)0.0361 (6)
C110.5871 (5)0.7270 (4)0.5384 (2)0.0369 (6)
H110.66750.67130.51560.044*
C120.8170 (5)0.8228 (4)0.6996 (2)0.0396 (7)
H120.89520.92340.74010.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05390 (19)0.0543 (2)0.03057 (17)0.01848 (14)0.00080 (12)0.00222 (11)
O10.0459 (13)0.0570 (15)0.0475 (15)0.0220 (12)0.0050 (11)0.0026 (11)
O20.0459 (13)0.0490 (14)0.0565 (16)0.0103 (11)0.0045 (12)0.0153 (12)
O30.101 (3)0.062 (2)0.155 (5)0.007 (2)0.035 (3)0.043 (3)
O40.0682 (19)0.124 (3)0.062 (2)0.064 (2)0.0219 (16)0.034 (2)
O50.100 (3)0.0675 (19)0.079 (2)0.0441 (19)0.009 (2)0.0041 (16)
N10.0458 (14)0.0412 (14)0.0277 (13)0.0131 (12)0.0010 (11)0.0040 (10)
N20.0430 (14)0.0408 (14)0.0401 (15)0.0129 (12)0.0037 (12)0.0043 (11)
N30.0400 (14)0.0462 (15)0.0333 (14)0.0179 (12)0.0039 (11)0.0034 (11)
N40.0401 (14)0.0401 (14)0.0439 (16)0.0154 (12)0.0063 (12)0.0039 (12)
N50.0483 (16)0.0521 (17)0.0383 (15)0.0257 (15)0.0081 (13)0.0138 (13)
C10.0393 (16)0.0407 (17)0.0425 (18)0.0106 (14)0.0054 (14)0.0021 (13)
C20.0442 (17)0.0446 (17)0.0386 (18)0.0150 (15)0.0037 (14)0.0056 (14)
C30.0471 (18)0.0475 (18)0.0297 (15)0.0197 (15)0.0012 (14)0.0024 (13)
C40.0349 (14)0.0415 (16)0.0328 (15)0.0178 (13)0.0035 (12)0.0027 (12)
C50.0352 (15)0.0437 (16)0.0310 (15)0.0163 (13)0.0002 (12)0.0023 (12)
C60.0367 (15)0.0424 (16)0.0373 (17)0.0203 (14)0.0013 (13)0.0012 (13)
C70.0394 (16)0.0468 (17)0.0443 (19)0.0166 (15)0.0061 (14)0.0098 (14)
C80.0470 (17)0.0457 (18)0.0413 (18)0.0210 (15)0.0138 (15)0.0082 (14)
C90.0530 (19)0.0390 (16)0.0322 (16)0.0188 (15)0.0093 (14)0.0022 (12)
C100.0424 (16)0.0309 (14)0.0319 (15)0.0097 (13)0.0039 (13)0.0057 (11)
C110.0439 (16)0.0315 (14)0.0356 (16)0.0141 (13)0.0066 (13)0.0021 (12)
C120.0455 (17)0.0385 (16)0.0315 (16)0.0129 (14)0.0015 (13)0.0022 (12)
Geometric parameters (Å, º) top
Ag1—N12.212 (3)C2—C31.369 (5)
Ag1—N32.229 (3)C2—H2A0.9300
Ag1—N2i2.498 (3)C3—C41.396 (5)
O1—N21.397 (4)C3—H30.9300
O1—H10.8400C4—C51.385 (4)
O2—N41.396 (4)C4—C61.466 (5)
O2—H20.8400C5—H50.9300
O3—N51.208 (5)C6—H60.9300
O4—N51.255 (4)C7—C81.370 (5)
O5—N51.214 (4)C7—H70.9300
N1—C111.339 (4)C8—C91.383 (5)
N1—C71.349 (5)C8—H80.9300
N2—C121.262 (4)C9—C101.381 (5)
N2—Ag1i2.498 (3)C9—H90.9300
N3—C11.337 (5)C10—C111.392 (4)
N3—C51.344 (4)C10—C121.466 (5)
N4—C61.274 (4)C11—H110.9300
C1—C21.387 (5)C12—H120.9300
C1—H1A0.9300
N1—Ag1—N3149.49 (11)C5—C4—C3117.7 (3)
N1—Ag1—N2i107.79 (10)C5—C4—C6119.0 (3)
N3—Ag1—N2i101.48 (10)C3—C4—C6123.3 (3)
N2—O1—H1109.5N3—C5—C4123.8 (3)
N4—O2—H2109.5N3—C5—H5118.1
C11—N1—C7117.6 (3)C4—C5—H5118.1
C11—N1—Ag1119.9 (2)N4—C6—C4120.7 (3)
C7—N1—Ag1121.6 (2)N4—C6—H6119.6
C12—N2—O1112.4 (3)C4—C6—H6119.6
C12—N2—Ag1i123.3 (2)N1—C7—C8122.8 (3)
O1—N2—Ag1i115.10 (18)N1—C7—H7118.6
C1—N3—C5117.2 (3)C8—C7—H7118.6
C1—N3—Ag1121.6 (2)C7—C8—C9119.0 (3)
C5—N3—Ag1121.1 (2)C7—C8—H8120.5
C6—N4—O2110.6 (3)C9—C8—H8120.5
O3—N5—O5120.1 (4)C10—C9—C8119.5 (3)
O3—N5—O4117.9 (4)C10—C9—H9120.3
O5—N5—O4121.9 (4)C8—C9—H9120.3
N3—C1—C2122.8 (3)C9—C10—C11117.8 (3)
N3—C1—H1A118.6C9—C10—C12121.5 (3)
C2—C1—H1A118.6C11—C10—C12120.6 (3)
C3—C2—C1119.4 (3)N1—C11—C10123.3 (3)
C3—C2—H2A120.3N1—C11—H11118.4
C1—C2—H2A120.3C10—C11—H11118.4
C2—C3—C4119.0 (3)N2—C12—C10120.1 (3)
C2—C3—H3120.5N2—C12—H12119.9
C4—C3—H3120.5C10—C12—H12119.9
N3—Ag1—N1—C1193.9 (3)O2—N4—C6—C4179.6 (3)
N2i—Ag1—N1—C11103.1 (2)C5—C4—C6—N4174.4 (3)
N3—Ag1—N1—C775.2 (3)C3—C4—C6—N44.9 (5)
N2i—Ag1—N1—C787.8 (3)C11—N1—C7—C82.6 (5)
N1—Ag1—N3—C1147.5 (3)Ag1—N1—C7—C8166.8 (2)
N2i—Ag1—N3—C116.0 (3)N1—C7—C8—C91.5 (5)
N1—Ag1—N3—C529.4 (4)C7—C8—C9—C101.4 (5)
N2i—Ag1—N3—C5167.1 (2)C8—C9—C10—C112.9 (4)
C5—N3—C1—C20.6 (5)C8—C9—C10—C12178.1 (3)
Ag1—N3—C1—C2176.4 (3)C7—N1—C11—C100.9 (5)
N3—C1—C2—C30.2 (5)Ag1—N1—C11—C10168.7 (2)
C1—C2—C3—C40.4 (5)C9—C10—C11—N11.8 (5)
C2—C3—C4—C50.9 (5)C12—C10—C11—N1179.2 (3)
C2—C3—C4—C6178.4 (3)O1—N2—C12—C10179.4 (3)
C1—N3—C5—C41.2 (5)Ag1i—N2—C12—C1035.6 (4)
Ag1—N3—C5—C4175.8 (2)C9—C10—C12—N2144.0 (3)
C3—C4—C5—N31.4 (5)C11—C10—C12—N237.1 (5)
C6—C4—C5—N3178.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3ii0.842.393.189 (6)158
O1—H1···O4ii0.842.202.925 (5)145
O2—H2···O4iii0.841.922.745 (4)169
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula[Ag2(C6H6N2O)4](NO3)2
Mr828.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2913 (10), 8.3395 (10), 13.1415 (17)
α, β, γ (°)92.934 (4), 95.008 (4), 111.360 (3)
V3)738.38 (16)
Z1
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.24 × 0.21 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.730, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
7293, 3341, 2896
Rint0.035
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.11
No. of reflections3341
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.71, 0.34

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.842.393.189 (6)158.3
O1—H1···O4i0.842.202.925 (5)145.0
O2—H2···O4ii0.841.922.745 (4)168.6
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAbu-Youssef, M. A., Soliman, S. V., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Öhrström, L. R. (2010). Inorg. Chem. 49, 9788–9797.  Web of Science CAS PubMed Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J., Gao, S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m735–m736.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds