metal-organic compounds
(Nitrato-κ2O,O′)bis[(E)-N-(pyridin-4-ylmethylidene-κN)hydroxyamine]silver(I)
aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my
In the mononuclear title compound, [Ag(NO3)(C6H6N2O)2], the AgI atom is located on a twofold rotation axis and the nitrate-chelated AgI atom is further coordinated by two aromatic N atoms of hydroxylamine ligands in a distorted tetrahedral geometry. In the crystal, the nitrate ion has 2 symmetry with the N atom and one O atom located on the twofold rotation axis, and is linked to hydroxy groups of the hydroxylamine ligands by O—H⋯O hydrogen bonds, generating a chain running along the b axis.
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812046107/xu5647sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812046107/xu5647Isup2.hkl
Isonicotinaldehyde oxime was synthesized from the reaction of isonicotinaldehyde and hydroxylamine. Silver nitrate (1 mmol) dissolved in water (5 ml) was added to picolinaldehyde oxime (1 mmol) dissolved in ethanol (5 ml). The solution was filtered and set aside, away from light, for the growth of colorless crystals.
Carbon- and oxygen-bound H-atoms were placed in calculated positions (C–H 0.93 Å, O–H 0.84 Å) and were included in the
in the riding model approximation, with U(H) set to 1.2–1.5U(C,O).Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Ag(NO3)(C6H6N2O)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. | |
Fig. 2. Hydrogen-bonded chain motif. |
[Ag(NO3)(C6H6N2O)2] | F(000) = 824 |
Mr = 414.14 | Dx = 1.838 Mg m−3 |
Orthorhombic, Pccn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ab 2ac | Cell parameters from 4605 reflections |
a = 18.027 (3) Å | θ = 3.2–27.5° |
b = 4.6907 (6) Å | µ = 1.38 mm−1 |
c = 17.7020 (19) Å | T = 293 K |
V = 1496.9 (3) Å3 | Prism, colorless |
Z = 4 | 0.20 × 0.12 × 0.12 mm |
Rigaku R-AXIS RAPID IP diffractometer | 1705 independent reflections |
Radiation source: fine-focus sealed tube | 1038 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
ω scan | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −23→23 |
Tmin = 0.770, Tmax = 0.852 | k = −5→6 |
13223 measured reflections | l = −21→22 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.162 | w = 1/[σ2(Fo2) + (0.073P)2 + 1.2436P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max = 0.001 |
1705 reflections | Δρmax = 0.92 e Å−3 |
108 parameters | Δρmin = −0.67 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0096 (16) |
[Ag(NO3)(C6H6N2O)2] | V = 1496.9 (3) Å3 |
Mr = 414.14 | Z = 4 |
Orthorhombic, Pccn | Mo Kα radiation |
a = 18.027 (3) Å | µ = 1.38 mm−1 |
b = 4.6907 (6) Å | T = 293 K |
c = 17.7020 (19) Å | 0.20 × 0.12 × 0.12 mm |
Rigaku R-AXIS RAPID IP diffractometer | 1705 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1038 reflections with I > 2σ(I) |
Tmin = 0.770, Tmax = 0.852 | Rint = 0.082 |
13223 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.92 e Å−3 |
1705 reflections | Δρmin = −0.67 e Å−3 |
108 parameters |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.2500 | 0.2500 | 0.18639 (3) | 0.0532 (4) | |
O1 | 0.5757 (2) | 1.5200 (8) | 0.0886 (2) | 0.0584 (11) | |
H1 | 0.6143 | 1.5575 | 0.1132 | 0.088* | |
O2 | 0.3058 (3) | 0.1732 (13) | 0.3234 (2) | 0.0789 (15) | |
O3 | 0.2500 | 0.2500 | 0.4306 (3) | 0.093 (3) | |
N1 | 0.3325 (2) | 0.5683 (9) | 0.1548 (2) | 0.0454 (11) | |
N2 | 0.5350 (3) | 1.3109 (9) | 0.1264 (2) | 0.0487 (11) | |
N3 | 0.2500 | 0.2500 | 0.3606 (4) | 0.067 (2) | |
C1 | 0.3371 (3) | 0.6602 (14) | 0.0824 (3) | 0.0487 (13) | |
H1A | 0.3067 | 0.5752 | 0.0464 | 0.058* | |
C2 | 0.3841 (3) | 0.8714 (12) | 0.0598 (2) | 0.0426 (12) | |
H2 | 0.3840 | 0.9318 | 0.0098 | 0.051* | |
C3 | 0.4321 (2) | 0.9961 (10) | 0.1113 (3) | 0.0397 (11) | |
C4 | 0.4286 (3) | 0.9016 (12) | 0.1858 (3) | 0.0466 (13) | |
H4 | 0.4601 | 0.9782 | 0.2222 | 0.056* | |
C5 | 0.3783 (3) | 0.6940 (12) | 0.2050 (3) | 0.0454 (13) | |
H5 | 0.3756 | 0.6371 | 0.2552 | 0.055* | |
C6 | 0.4830 (3) | 1.2177 (11) | 0.0848 (3) | 0.0459 (13) | |
H6 | 0.4771 | 1.2919 | 0.0365 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0461 (5) | 0.0541 (5) | 0.0594 (5) | −0.0093 (3) | 0.000 | 0.000 |
O1 | 0.051 (2) | 0.064 (3) | 0.060 (2) | −0.022 (2) | −0.0052 (18) | 0.007 (2) |
O2 | 0.054 (3) | 0.124 (4) | 0.059 (3) | 0.037 (3) | 0.006 (2) | 0.002 (2) |
O3 | 0.084 (6) | 0.155 (10) | 0.040 (3) | 0.050 (5) | 0.000 | 0.000 |
N1 | 0.038 (2) | 0.047 (3) | 0.051 (2) | −0.007 (2) | 0.0030 (19) | −0.003 (2) |
N2 | 0.049 (3) | 0.050 (3) | 0.046 (2) | −0.009 (2) | 0.003 (2) | 0.0004 (19) |
N3 | 0.057 (5) | 0.084 (6) | 0.061 (5) | 0.020 (4) | 0.000 | 0.000 |
C1 | 0.040 (3) | 0.061 (3) | 0.045 (3) | 0.002 (3) | −0.002 (2) | −0.005 (3) |
C2 | 0.039 (3) | 0.050 (3) | 0.039 (3) | 0.000 (3) | 0.000 (2) | 0.003 (2) |
C3 | 0.034 (2) | 0.040 (3) | 0.045 (3) | 0.002 (2) | 0.003 (2) | 0.001 (2) |
C4 | 0.047 (3) | 0.045 (3) | 0.047 (3) | −0.004 (3) | −0.004 (2) | 0.000 (2) |
C5 | 0.043 (3) | 0.053 (3) | 0.041 (3) | −0.009 (2) | −0.001 (2) | −0.002 (2) |
C6 | 0.046 (3) | 0.051 (3) | 0.041 (2) | 0.002 (2) | −0.005 (2) | 0.000 (2) |
Ag1—N1i | 2.180 (4) | N3—O2i | 1.256 (6) |
Ag1—N1 | 2.180 (4) | C1—C2 | 1.364 (9) |
Ag1—O2 | 2.651 (4) | C1—H1A | 0.9300 |
Ag1—O2i | 2.651 (4) | C2—C3 | 1.386 (7) |
O1—N2 | 1.396 (5) | C2—H2 | 0.9300 |
O1—H1 | 0.8400 | C3—C4 | 1.393 (6) |
O2—N3 | 1.256 (6) | C3—C6 | 1.463 (7) |
O3—N3 | 1.239 (9) | C4—C5 | 1.374 (8) |
N1—C5 | 1.349 (6) | C4—H4 | 0.9300 |
N1—C1 | 1.354 (6) | C5—H5 | 0.9300 |
N2—C6 | 1.270 (7) | C6—H6 | 0.9300 |
N1i—Ag1—N1 | 150.3 (2) | C2—C1—H1A | 118.4 |
N1i—Ag1—O2 | 113.62 (18) | C1—C2—C3 | 120.1 (4) |
N1—Ag1—O2 | 93.94 (18) | C1—C2—H2 | 119.9 |
N1i—Ag1—O2i | 93.94 (18) | C3—C2—H2 | 119.9 |
N1—Ag1—O2i | 113.62 (18) | C2—C3—C4 | 117.4 (4) |
O2—Ag1—O2i | 47.57 (19) | C2—C3—C6 | 118.7 (4) |
N2—O1—H1 | 109.5 | C4—C3—C6 | 123.9 (4) |
N3—O2—Ag1 | 97.9 (4) | C5—C4—C3 | 119.3 (5) |
C5—N1—C1 | 116.5 (5) | C5—C4—H4 | 120.3 |
C5—N1—Ag1 | 123.2 (3) | C3—C4—H4 | 120.3 |
C1—N1—Ag1 | 120.2 (3) | N1—C5—C4 | 123.5 (5) |
C6—N2—O1 | 110.6 (4) | N1—C5—H5 | 118.3 |
O3—N3—O2i | 121.6 (4) | C4—C5—H5 | 118.3 |
O3—N3—O2 | 121.6 (4) | N2—C6—C3 | 121.4 (5) |
O2i—N3—O2 | 116.7 (7) | N2—C6—H6 | 119.3 |
N1—C1—C2 | 123.2 (5) | C3—C6—H6 | 119.3 |
N1—C1—H1A | 118.4 | ||
N1i—Ag1—O2—N3 | −72.7 (4) | Ag1—N1—C1—C2 | 175.7 (4) |
N1—Ag1—O2—N3 | 118.8 (3) | N1—C1—C2—C3 | 2.3 (9) |
O2i—Ag1—O2—N3 | 0.000 (1) | C1—C2—C3—C4 | −1.5 (8) |
N1i—Ag1—N1—C5 | −171.4 (4) | C1—C2—C3—C6 | 178.7 (5) |
O2—Ag1—N1—C5 | −12.8 (4) | C2—C3—C4—C5 | −0.5 (8) |
O2i—Ag1—N1—C5 | 32.1 (5) | C6—C3—C4—C5 | 179.4 (5) |
N1i—Ag1—N1—C1 | 12.1 (4) | C1—N1—C5—C4 | −1.1 (8) |
O2—Ag1—N1—C1 | 170.6 (4) | Ag1—N1—C5—C4 | −177.7 (4) |
O2i—Ag1—N1—C1 | −144.4 (4) | C3—C4—C5—N1 | 1.8 (9) |
Ag1—O2—N3—O3 | 180.0 | O1—N2—C6—C3 | 179.9 (4) |
Ag1—O2—N3—O2i | 0.000 (1) | C2—C3—C6—N2 | −170.0 (5) |
C5—N1—C1—C2 | −1.0 (8) | C4—C3—C6—N2 | 10.2 (8) |
Symmetry code: (i) −x+1/2, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2ii | 0.84 | 1.90 | 2.740 (6) | 173 |
Symmetry code: (ii) −x+1, y+3/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ag(NO3)(C6H6N2O)2] |
Mr | 414.14 |
Crystal system, space group | Orthorhombic, Pccn |
Temperature (K) | 293 |
a, b, c (Å) | 18.027 (3), 4.6907 (6), 17.7020 (19) |
V (Å3) | 1496.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.38 |
Crystal size (mm) | 0.20 × 0.12 × 0.12 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.770, 0.852 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13223, 1705, 1038 |
Rint | 0.082 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.162, 1.13 |
No. of reflections | 1705 |
No. of parameters | 108 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.92, −0.67 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.84 | 1.90 | 2.740 (6) | 172.8 |
Symmetry code: (i) −x+1, y+3/2, −z+1/2. |
Acknowledgements
We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.
References
Abu-Youssef, M. A., Soliman, S. V., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Öhrström, L. R. (2010). Inorg. Chem. 49, 9788–9797. Web of Science CAS PubMed Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Picolinylaldehyde oxime reacts with silver nitrate to yield a monomeric adduct in which the metal atom is N,N'-chelated by the ligand. The nitrate ion is also involved in coordination (Abu-Youssef et al., 2010). The corresponding reaction with isonicotinylaldehyde in place of picolinylaldehyde yields a bis adduct (Scheme I). The nitrate-chelated AgI atom in mononuclear Ag(NO3)(C6H6N2O)2 is coordinated to the hydroxylamine through its aromatic N atom, and it exists in an approximate tetrahedral geometry (Fig. 1). The hydroxyl OH group forms a hydrogen bond with a nitrate O atom to generate a chain running along the longest axis of the orthorhombic unit cell (Table 1).