metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Nitrato-κ2O,O′)bis­­[(E)-N-(pyridin-4-yl­methyl­­idene-κN)hy­dr­oxy­amine]­silver(I)

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 November 2012; accepted 8 November 2012; online 28 November 2012)

In the mononuclear title compound, [Ag(NO3)(C6H6N2O)2], the AgI atom is located on a twofold rotation axis and the nitrate-chelated AgI atom is further coordinated by two aromatic N atoms of hydroxyl­amine ligands in a distorted tetra­hedral geometry. In the crystal, the nitrate ion has 2 symmetry with the N atom and one O atom located on the twofold rotation axis, and is linked to hy­droxy groups of the hydroxyl­amine ligands by O—H⋯O hydrogen bonds, generating a chain running along the b axis.

Related literature

For (nitrato)(picolinaldehyde oxime)silver(I), see: Abu-Youssef et al. (2010[Abu-Youssef, M. A., Soliman, S. V., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Öhrström, L. R. (2010). Inorg. Chem. 49, 9788-9797.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO3)(C6H6N2O)2]

  • Mr = 414.14

  • Orthorhombic, P c c n

  • a = 18.027 (3) Å

  • b = 4.6907 (6) Å

  • c = 17.7020 (19) Å

  • V = 1496.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 293 K

  • 0.20 × 0.12 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.770, Tmax = 0.852

  • 13223 measured reflections

  • 1705 independent reflections

  • 1038 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.162

  • S = 1.13

  • 1705 reflections

  • 108 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.90 2.740 (6) 173
Symmetry code: (i) [-x+1, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Picolinylaldehyde oxime reacts with silver nitrate to yield a monomeric adduct in which the metal atom is N,N'-chelated by the ligand. The nitrate ion is also involved in coordination (Abu-Youssef et al., 2010). The corresponding reaction with isonicotinylaldehyde in place of picolinylaldehyde yields a bis adduct (Scheme I). The nitrate-chelated AgI atom in mononuclear Ag(NO3)(C6H6N2O)2 is coordinated to the hydroxylamine through its aromatic N atom, and it exists in an approximate tetrahedral geometry (Fig. 1). The hydroxyl OH group forms a hydrogen bond with a nitrate O atom to generate a chain running along the longest axis of the orthorhombic unit cell (Table 1).

Related literature top

For (nitrato)(picolinaldehyde oxime)silver, see: Abu-Youssef et al. (2010).

Experimental top

Isonicotinaldehyde oxime was synthesized from the reaction of isonicotinaldehyde and hydroxylamine. Silver nitrate (1 mmol) dissolved in water (5 ml) was added to picolinaldehyde oxime (1 mmol) dissolved in ethanol (5 ml). The solution was filtered and set aside, away from light, for the growth of colorless crystals.

Refinement top

Carbon- and oxygen-bound H-atoms were placed in calculated positions (C–H 0.93 Å, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Ag(NO3)(C6H6N2O)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain motif.
(Nitrato-κ2O,O')bis[(E)-N-(pyridin-4- ylmethylidene-κN)hydroxyamine]silver(I) top
Crystal data top
[Ag(NO3)(C6H6N2O)2]F(000) = 824
Mr = 414.14Dx = 1.838 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 4605 reflections
a = 18.027 (3) Åθ = 3.2–27.5°
b = 4.6907 (6) ŵ = 1.38 mm1
c = 17.7020 (19) ÅT = 293 K
V = 1496.9 (3) Å3Prism, colorless
Z = 40.20 × 0.12 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1705 independent reflections
Radiation source: fine-focus sealed tube1038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω scanθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2323
Tmin = 0.770, Tmax = 0.852k = 56
13223 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.073P)2 + 1.2436P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
1705 reflectionsΔρmax = 0.92 e Å3
108 parametersΔρmin = 0.67 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0096 (16)
Crystal data top
[Ag(NO3)(C6H6N2O)2]V = 1496.9 (3) Å3
Mr = 414.14Z = 4
Orthorhombic, PccnMo Kα radiation
a = 18.027 (3) ŵ = 1.38 mm1
b = 4.6907 (6) ÅT = 293 K
c = 17.7020 (19) Å0.20 × 0.12 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1705 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1038 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.852Rint = 0.082
13223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.13Δρmax = 0.92 e Å3
1705 reflectionsΔρmin = 0.67 e Å3
108 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.25000.25000.18639 (3)0.0532 (4)
O10.5757 (2)1.5200 (8)0.0886 (2)0.0584 (11)
H10.61431.55750.11320.088*
O20.3058 (3)0.1732 (13)0.3234 (2)0.0789 (15)
O30.25000.25000.4306 (3)0.093 (3)
N10.3325 (2)0.5683 (9)0.1548 (2)0.0454 (11)
N20.5350 (3)1.3109 (9)0.1264 (2)0.0487 (11)
N30.25000.25000.3606 (4)0.067 (2)
C10.3371 (3)0.6602 (14)0.0824 (3)0.0487 (13)
H1A0.30670.57520.04640.058*
C20.3841 (3)0.8714 (12)0.0598 (2)0.0426 (12)
H20.38400.93180.00980.051*
C30.4321 (2)0.9961 (10)0.1113 (3)0.0397 (11)
C40.4286 (3)0.9016 (12)0.1858 (3)0.0466 (13)
H40.46010.97820.22220.056*
C50.3783 (3)0.6940 (12)0.2050 (3)0.0454 (13)
H50.37560.63710.25520.055*
C60.4830 (3)1.2177 (11)0.0848 (3)0.0459 (13)
H60.47711.29190.03650.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0461 (5)0.0541 (5)0.0594 (5)0.0093 (3)0.0000.000
O10.051 (2)0.064 (3)0.060 (2)0.022 (2)0.0052 (18)0.007 (2)
O20.054 (3)0.124 (4)0.059 (3)0.037 (3)0.006 (2)0.002 (2)
O30.084 (6)0.155 (10)0.040 (3)0.050 (5)0.0000.000
N10.038 (2)0.047 (3)0.051 (2)0.007 (2)0.0030 (19)0.003 (2)
N20.049 (3)0.050 (3)0.046 (2)0.009 (2)0.003 (2)0.0004 (19)
N30.057 (5)0.084 (6)0.061 (5)0.020 (4)0.0000.000
C10.040 (3)0.061 (3)0.045 (3)0.002 (3)0.002 (2)0.005 (3)
C20.039 (3)0.050 (3)0.039 (3)0.000 (3)0.000 (2)0.003 (2)
C30.034 (2)0.040 (3)0.045 (3)0.002 (2)0.003 (2)0.001 (2)
C40.047 (3)0.045 (3)0.047 (3)0.004 (3)0.004 (2)0.000 (2)
C50.043 (3)0.053 (3)0.041 (3)0.009 (2)0.001 (2)0.002 (2)
C60.046 (3)0.051 (3)0.041 (2)0.002 (2)0.005 (2)0.000 (2)
Geometric parameters (Å, º) top
Ag1—N1i2.180 (4)N3—O2i1.256 (6)
Ag1—N12.180 (4)C1—C21.364 (9)
Ag1—O22.651 (4)C1—H1A0.9300
Ag1—O2i2.651 (4)C2—C31.386 (7)
O1—N21.396 (5)C2—H20.9300
O1—H10.8400C3—C41.393 (6)
O2—N31.256 (6)C3—C61.463 (7)
O3—N31.239 (9)C4—C51.374 (8)
N1—C51.349 (6)C4—H40.9300
N1—C11.354 (6)C5—H50.9300
N2—C61.270 (7)C6—H60.9300
N1i—Ag1—N1150.3 (2)C2—C1—H1A118.4
N1i—Ag1—O2113.62 (18)C1—C2—C3120.1 (4)
N1—Ag1—O293.94 (18)C1—C2—H2119.9
N1i—Ag1—O2i93.94 (18)C3—C2—H2119.9
N1—Ag1—O2i113.62 (18)C2—C3—C4117.4 (4)
O2—Ag1—O2i47.57 (19)C2—C3—C6118.7 (4)
N2—O1—H1109.5C4—C3—C6123.9 (4)
N3—O2—Ag197.9 (4)C5—C4—C3119.3 (5)
C5—N1—C1116.5 (5)C5—C4—H4120.3
C5—N1—Ag1123.2 (3)C3—C4—H4120.3
C1—N1—Ag1120.2 (3)N1—C5—C4123.5 (5)
C6—N2—O1110.6 (4)N1—C5—H5118.3
O3—N3—O2i121.6 (4)C4—C5—H5118.3
O3—N3—O2121.6 (4)N2—C6—C3121.4 (5)
O2i—N3—O2116.7 (7)N2—C6—H6119.3
N1—C1—C2123.2 (5)C3—C6—H6119.3
N1—C1—H1A118.4
N1i—Ag1—O2—N372.7 (4)Ag1—N1—C1—C2175.7 (4)
N1—Ag1—O2—N3118.8 (3)N1—C1—C2—C32.3 (9)
O2i—Ag1—O2—N30.000 (1)C1—C2—C3—C41.5 (8)
N1i—Ag1—N1—C5171.4 (4)C1—C2—C3—C6178.7 (5)
O2—Ag1—N1—C512.8 (4)C2—C3—C4—C50.5 (8)
O2i—Ag1—N1—C532.1 (5)C6—C3—C4—C5179.4 (5)
N1i—Ag1—N1—C112.1 (4)C1—N1—C5—C41.1 (8)
O2—Ag1—N1—C1170.6 (4)Ag1—N1—C5—C4177.7 (4)
O2i—Ag1—N1—C1144.4 (4)C3—C4—C5—N11.8 (9)
Ag1—O2—N3—O3180.0O1—N2—C6—C3179.9 (4)
Ag1—O2—N3—O2i0.000 (1)C2—C3—C6—N2170.0 (5)
C5—N1—C1—C21.0 (8)C4—C3—C6—N210.2 (8)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.841.902.740 (6)173
Symmetry code: (ii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(NO3)(C6H6N2O)2]
Mr414.14
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)293
a, b, c (Å)18.027 (3), 4.6907 (6), 17.7020 (19)
V3)1496.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.20 × 0.12 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.770, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
13223, 1705, 1038
Rint0.082
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.162, 1.13
No. of reflections1705
No. of parameters108
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.67

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.902.740 (6)172.8
Symmetry code: (i) x+1, y+3/2, z+1/2.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAbu-Youssef, M. A., Soliman, S. V., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Öhrström, L. R. (2010). Inorg. Chem. 49, 9788–9797.  Web of Science CAS PubMed Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds