metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,2,3,4-Tetra­kis(pyridin-4-yl)butane-κ2N1:N4]bis­­[trimeth­yl(thio­cyanato-κN)tin(IV)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 November 2012; accepted 18 November 2012; online 28 November 2012)

In the title compound, [Sn2(CH3)6(NCS)2(C24H22N4)], the 1,2,3,4-tetra­kis­(pyridin-4-yl)butane ligand uses the pyridine N atoms at the ends of the butyl chain to coordinate to two trimethylthiocyanatotin(IV) units, forming a dinuclear structure. The SnIV atom in the mol­ecule shows a distorted trans-trigonal–bipyramidal coordination with the methyl groups in equatorial positions. The mol­ecule lies on a center of inversion, with the mid-point of the butyl chain coinciding with this symmetry element. In the crystal, weak C—H⋯π inter­actions occur between pyridine rings of adjacent mol­ecules.

Related literature

For trimethyl­tin(IV) thio­cyanate, see: Forder & Sheldrick (1970[Forder, R. A. & Sheldrick, G. M. (1970). J. Organomet. Chem. 21, 115-120.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(CH3)6(NCS)2(C24H22N4)]

  • Mr = 810.20

  • Triclinic, [P \overline 1]

  • a = 9.2959 (8) Å

  • b = 9.7210 (7) Å

  • c = 10.2448 (9) Å

  • α = 90.388 (7)°

  • β = 94.381 (7)°

  • γ = 103.646 (7)°

  • V = 896.72 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 295 K

  • 0.25 × 0.25 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.700, Tmax = 0.927

  • 8527 measured reflections

  • 4153 independent reflections

  • 3645 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 1.05

  • 4153 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N2-pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cgi 0.93 2.79 3.631 (4) 151
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Unlike trimethyltin chloride, the pseudohalide, trimethyltin thiocyanate, furnishes only few coordination compounds with aromatic amines. Trimethyltin thiocyanate itself exists as a zigzag chain in which the thiocyanate unit bridges adjacent trimethyltin cations (Forder & Sheldrick, 1970). The title adduct (Scheme I, Fig. 1) is the first crystal structure report of such an adduct. The tetrapyridyl-substitutent butane ligand, C24H22N4, uses the pyridine N-atoms at the either ends of the butyl chain to coordinate to a trimethylthiocyanatotin unit. The dinuclear molecule lies on a center-of-inversion, with the mid-point of the butyl chain coinciding with this symmetry element.

The Sn atom is displaced out of the trigonal plane, in the direction of the thiocyanate ion, by 0.036 (2) Å.

Related literature top

For trimethyltin(IV) thiocyanate, see: Forder & Sheldrick (1970).

Experimental top

Trimethyltin thiocyanate (0.19 g, 1 mmol) and 4-[1,3,4-tris(pyridin-4-yl)butan-2-yl]pyridine (0.73 g, 2 mmol) were loaded into a convection tube; the tube was filled with ethyl alcohol andkept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H atoms were placed in calculated positions [C–H 0.93 to 0.96 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [(CH3)3Sn(NCS)]2(C24H22N4) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[µ-1,2,3,4-Tetrakis(pyridin-4-yl)butane- κ2N1:N4]bis[trimethyl(thiocyanato-κN)tin(IV)] top
Crystal data top
[Sn2(CH3)6(NCS)2(C24H22N4)]Z = 1
Mr = 810.20F(000) = 406
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2959 (8) ÅCell parameters from 3676 reflections
b = 9.7210 (7) Åθ = 2.9–27.5°
c = 10.2448 (9) ŵ = 1.54 mm1
α = 90.388 (7)°T = 295 K
β = 94.381 (7)°Prism, colorless
γ = 103.646 (7)°0.25 × 0.25 × 0.05 mm
V = 896.72 (13) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4153 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3645 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 1012
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1212
Tmin = 0.700, Tmax = 0.927l = 1213
8527 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.1997P]
where P = (Fo2 + 2Fc2)/3
4153 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Sn2(CH3)6(NCS)2(C24H22N4)]γ = 103.646 (7)°
Mr = 810.20V = 896.72 (13) Å3
Triclinic, P1Z = 1
a = 9.2959 (8) ÅMo Kα radiation
b = 9.7210 (7) ŵ = 1.54 mm1
c = 10.2448 (9) ÅT = 295 K
α = 90.388 (7)°0.25 × 0.25 × 0.05 mm
β = 94.381 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4153 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3645 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.927Rint = 0.030
8527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 0.50 e Å3
4153 reflectionsΔρmin = 0.52 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.76200 (2)0.553034 (18)0.347974 (18)0.03890 (8)
S11.20140 (12)0.90346 (10)0.55879 (11)0.0742 (3)
N10.9749 (3)0.7032 (3)0.4286 (3)0.0656 (9)
N20.5239 (3)0.3899 (2)0.2637 (2)0.0347 (5)
N30.3574 (3)0.2627 (3)0.0683 (3)0.0566 (7)
C10.6775 (5)0.7271 (3)0.2837 (4)0.0666 (11)
H1A0.75030.81360.30560.100*
H1B0.58880.72730.32590.100*
H1C0.65490.71930.19060.100*
C20.7196 (4)0.4771 (3)0.5374 (3)0.0531 (8)
H2A0.79870.52480.59930.080*
H2B0.71330.37710.53810.080*
H2C0.62750.49480.56080.080*
C30.8759 (4)0.4507 (4)0.2210 (3)0.0579 (9)
H3A0.98030.49380.23210.087*
H3B0.83970.45970.13190.087*
H3C0.85920.35220.24140.087*
C41.0677 (4)0.7876 (3)0.4841 (3)0.0458 (7)
C50.4359 (3)0.4259 (3)0.1683 (3)0.0382 (6)
H50.46980.51060.12640.046*
C60.2962 (3)0.3436 (3)0.1280 (3)0.0403 (6)
H60.23880.37340.06060.048*
C70.2420 (3)0.2165 (3)0.1887 (3)0.0351 (6)
C80.3340 (3)0.1789 (3)0.2859 (3)0.0437 (7)
H80.30300.09440.32900.052*
C90.4726 (3)0.2655 (3)0.3204 (3)0.0439 (7)
H90.53320.23650.38570.053*
C100.0880 (3)0.1277 (3)0.1497 (3)0.0427 (7)
H10A0.02020.18940.13670.051*
H10B0.05510.06490.22030.051*
C110.0817 (3)0.0381 (2)0.0226 (3)0.0315 (5)
H110.12010.10300.04630.038*
C120.1783 (3)0.0664 (3)0.0395 (2)0.0314 (5)
C130.2892 (3)0.0683 (3)0.0411 (3)0.0373 (6)
H130.30680.00370.10790.045*
C140.3750 (4)0.1665 (3)0.0230 (3)0.0483 (7)
H140.44980.16440.07890.058*
C150.2501 (5)0.2597 (4)0.1456 (4)0.0619 (10)
H150.23530.32570.21150.074*
C160.1589 (4)0.1668 (3)0.1362 (3)0.0510 (8)
H160.08540.17120.19390.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03404 (13)0.03835 (12)0.04120 (12)0.00409 (8)0.00196 (8)0.00293 (8)
S10.0695 (7)0.0535 (5)0.0823 (7)0.0110 (5)0.0211 (5)0.0118 (4)
N10.0449 (18)0.0651 (18)0.076 (2)0.0031 (15)0.0090 (15)0.0174 (15)
N20.0307 (12)0.0330 (11)0.0389 (12)0.0063 (9)0.0018 (9)0.0036 (9)
N30.0480 (18)0.0529 (16)0.072 (2)0.0224 (13)0.0095 (15)0.0021 (14)
C10.071 (3)0.0364 (16)0.086 (3)0.0074 (16)0.018 (2)0.0022 (15)
C20.056 (2)0.066 (2)0.0380 (16)0.0187 (16)0.0005 (14)0.0060 (14)
C30.0422 (19)0.070 (2)0.058 (2)0.0038 (16)0.0117 (15)0.0171 (16)
C40.0440 (18)0.0423 (15)0.0475 (17)0.0043 (14)0.0004 (14)0.0002 (12)
C50.0411 (16)0.0313 (13)0.0384 (14)0.0028 (11)0.0019 (12)0.0001 (10)
C60.0413 (17)0.0400 (14)0.0388 (15)0.0126 (12)0.0102 (12)0.0044 (11)
C70.0282 (14)0.0332 (13)0.0416 (14)0.0035 (11)0.0010 (11)0.0113 (10)
C80.0444 (18)0.0332 (13)0.0480 (16)0.0003 (12)0.0025 (13)0.0029 (11)
C90.0397 (17)0.0365 (14)0.0511 (17)0.0053 (12)0.0116 (13)0.0025 (12)
C100.0279 (15)0.0472 (15)0.0509 (17)0.0054 (12)0.0017 (12)0.0149 (12)
C110.0221 (13)0.0306 (12)0.0394 (13)0.0020 (10)0.0011 (10)0.0032 (10)
C120.0245 (13)0.0342 (12)0.0333 (13)0.0048 (10)0.0038 (10)0.0044 (10)
C130.0323 (15)0.0351 (13)0.0438 (15)0.0065 (11)0.0041 (12)0.0003 (11)
C140.0366 (17)0.0446 (16)0.065 (2)0.0120 (13)0.0039 (14)0.0089 (14)
C150.068 (3)0.0549 (19)0.064 (2)0.0211 (18)0.0032 (19)0.0193 (16)
C160.050 (2)0.0559 (18)0.0497 (18)0.0151 (15)0.0096 (15)0.0136 (14)
Geometric parameters (Å, º) top
Sn1—C12.116 (3)C6—C71.390 (4)
Sn1—C32.119 (3)C6—H60.9300
Sn1—C22.113 (3)C7—C81.371 (4)
Sn1—N12.258 (3)C7—C101.509 (4)
Sn1—N22.489 (2)C8—C91.381 (4)
S1—C41.606 (3)C8—H80.9300
N1—C41.152 (4)C9—H90.9300
N2—C51.328 (3)C10—C111.551 (4)
N2—C91.344 (3)C10—H10A0.9700
N3—C141.319 (4)C10—H10B0.9700
N3—C151.326 (5)C11—C121.509 (4)
C1—H1A0.9600C11—C11i1.557 (5)
C1—H1B0.9600C11—H110.9800
C1—H1C0.9600C12—C131.373 (4)
C2—H2A0.9600C12—C161.388 (4)
C2—H2B0.9600C13—C141.385 (4)
C2—H2C0.9600C13—H130.9300
C3—H3A0.9600C14—H140.9300
C3—H3B0.9600C15—C161.376 (5)
C3—H3C0.9600C15—H150.9300
C5—C61.386 (4)C16—H160.9300
C5—H50.9300
C1—Sn1—C3120.57 (17)C5—C6—H6120.1
C1—Sn1—C2118.37 (16)C7—C6—H6120.1
C3—Sn1—C2120.97 (15)C8—C7—C6116.6 (2)
C1—Sn1—N190.01 (13)C8—C7—C10122.7 (2)
C3—Sn1—N192.20 (13)C6—C7—C10120.7 (3)
C2—Sn1—N190.71 (12)C7—C8—C9120.5 (2)
C1—Sn1—N289.41 (11)C7—C8—H8119.8
C3—Sn1—N289.29 (10)C9—C8—H8119.8
C2—Sn1—N288.33 (10)N2—C9—C8123.0 (3)
N1—Sn1—N2178.49 (10)N2—C9—H9118.5
C4—N1—Sn1168.1 (3)C8—C9—H9118.5
C5—N2—C9116.8 (2)C7—C10—C11112.5 (2)
C5—N2—Sn1121.93 (16)C7—C10—H10A109.1
C9—N2—Sn1121.08 (18)C11—C10—H10A109.1
C14—N3—C15115.2 (3)C7—C10—H10B109.1
Sn1—C1—H1A109.5C11—C10—H10B109.1
Sn1—C1—H1B109.5H10A—C10—H10B107.8
H1A—C1—H1B109.5C12—C11—C10111.5 (2)
Sn1—C1—H1C109.5C12—C11—C11i111.1 (2)
H1A—C1—H1C109.5C10—C11—C11i110.7 (3)
H1B—C1—H1C109.5C12—C11—H11107.8
Sn1—C2—H2A109.5C10—C11—H11107.8
Sn1—C2—H2B109.5C11i—C11—H11107.8
H2A—C2—H2B109.5C13—C12—C16116.3 (3)
Sn1—C2—H2C109.5C13—C12—C11121.8 (2)
H2A—C2—H2C109.5C16—C12—C11121.9 (3)
H2B—C2—H2C109.5C12—C13—C14120.1 (3)
Sn1—C3—H3A109.5C12—C13—H13119.9
Sn1—C3—H3B109.5C14—C13—H13119.9
H3A—C3—H3B109.5N3—C14—C13124.2 (3)
Sn1—C3—H3C109.5N3—C14—H14117.9
H3A—C3—H3C109.5C13—C14—H14117.9
H3B—C3—H3C109.5N3—C15—C16125.3 (3)
N1—C4—S1178.0 (3)N3—C15—H15117.4
N2—C5—C6123.3 (2)C16—C15—H15117.4
N2—C5—H5118.3C15—C16—C12119.0 (3)
C6—C5—H5118.3C15—C16—H16120.5
C5—C6—C7119.8 (3)C12—C16—H16120.5
C1—Sn1—N1—C464.3 (14)C7—C8—C9—N21.0 (5)
C3—Sn1—N1—C4175.1 (14)C8—C7—C10—C11101.4 (3)
C2—Sn1—N1—C454.0 (14)C6—C7—C10—C1179.9 (3)
C1—Sn1—N2—C524.7 (2)C7—C10—C11—C1262.2 (3)
C3—Sn1—N2—C595.9 (2)C7—C10—C11—C11i173.6 (3)
C2—Sn1—N2—C5143.1 (2)C10—C11—C12—C13123.3 (3)
C1—Sn1—N2—C9149.7 (3)C11i—C11—C12—C13112.7 (3)
C3—Sn1—N2—C989.7 (2)C10—C11—C12—C1657.5 (3)
C2—Sn1—N2—C931.3 (2)C11i—C11—C12—C1666.6 (4)
C9—N2—C5—C61.3 (4)C16—C12—C13—C140.3 (4)
Sn1—N2—C5—C6173.4 (2)C11—C12—C13—C14179.6 (2)
N2—C5—C6—C70.1 (4)C15—N3—C14—C130.6 (5)
C5—C6—C7—C81.0 (4)C12—C13—C14—N30.5 (4)
C5—C6—C7—C10177.9 (3)C14—N3—C15—C160.5 (5)
C6—C7—C8—C90.4 (4)N3—C15—C16—C120.3 (6)
C10—C7—C8—C9178.4 (3)C13—C12—C16—C150.2 (4)
C5—N2—C9—C81.8 (4)C11—C12—C16—C15179.5 (3)
Sn1—N2—C9—C8172.9 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2-pyridine ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cgii0.932.793.631 (4)151
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Sn2(CH3)6(NCS)2(C24H22N4)]
Mr810.20
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.2959 (8), 9.7210 (7), 10.2448 (9)
α, β, γ (°)90.388 (7), 94.381 (7), 103.646 (7)
V3)896.72 (13)
Z1
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.25 × 0.25 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.700, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
8527, 4153, 3645
Rint0.030
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.05
No. of reflections4153
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.52

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2-pyridine ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cgi0.932.79053.631 (4)151
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationForder, R. A. & Sheldrick, G. M. (1970). J. Organomet. Chem. 21, 115–120.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds