organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyano­methanaminium perchlorate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: quanjnjcc@126.com

(Received 18 November 2012; accepted 21 November 2012; online 30 November 2012)

In the crystal of the title salt, C2H5N2+·ClO4, the cations and anions are connected via N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For general background, see: Haertling (1999[Haertling, G. H. (1999). J. Am. Ceram. Soc. 82, 797-810.]); Homes et al. (2001[Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673-676.]). For a related structure, see: Han & Zhang (2010[Han, M. T. & Zhang, Y. (2010). Acta Cryst. E66, o1941.]).

[Scheme 1]

Experimental

Crystal data
  • C2H5N2+·ClO4

  • Mr = 156.53

  • Orthorhombic, P b c a

  • a = 9.908 (2) Å

  • b = 10.398 (2) Å

  • c = 11.176 (2) Å

  • V = 1151.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 K

  • 0.20 × 0.19 × 0.18 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.88, Tmax = 0.90

  • 10965 measured reflections

  • 1321 independent reflections

  • 1151 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.12

  • 1321 reflections

  • 84 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1i 0.89 2.10 2.920 (2) 152
N1—H1D⋯O4 0.89 2.03 2.919 (2) 175
N1—H1E⋯O2ii 0.89 2.10 2.914 (3) 152
C1—H1A⋯O1iii 0.97 2.49 3.456 (3) 172
C1—H1B⋯O3iv 0.97 2.57 3.532 (3) 169
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

At present, much attention in ferroelectric material field is focused on developing ferroelectric pure organic or inorganic compounds (Haertling, 1999; Homes et al., 2001). In order to find more dielectric ferroelectric materials, we investigate the physical properties of the title compound (Fig. 1). The dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 3.7 to 5.2), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (453 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 3.7 to 5.2). Herein, we report the synthesis and crystal structure of the title compound.

Molecules of the title compound have normal geometric parameters. The bond lengths and angles are within their normal ranges (Han & Zhang, 2010). As can be seen from the packing diagram (Fig. 2), molecules are connected via intermolecular N—H···O and C—H···O hydrogen bonds to form a three dimensional network.

Related literature top

For background, see: Haertling (1999); Homes et al. (2001). For a related structure, see: Han & Zhang (2010).

Experimental top

A mixture of aminoacetonitrile hydrochloride (0.095 g, 0.01 mol) and perchloric acid (1.40 g, 0.01 mol) in methanol (20 ml) was stirred until clear. After several days, the title compound was formed and recrystallized from solution to afford colourless prismatic crystals suitable for X-ray analysis.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.97 and N—H = 0.89 Å, Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates N—H···O hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along thea axis showing the hydrogen bondings network.
Cyanomethanaminium perchlorate top
Crystal data top
C2H5N2+·ClO4F(000) = 640
Mr = 156.53Dx = 1.806 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1321 reflections
a = 9.908 (2) Åθ = 2.6–27.5°
b = 10.398 (2) ŵ = 0.61 mm1
c = 11.176 (2) ÅT = 293 K
V = 1151.4 (4) Å3Prism, colorless
Z = 80.20 × 0.19 × 0.18 mm
Data collection top
Rigaku Mercury2
diffractometer
1321 independent reflections
Radiation source: fine-focus sealed tube1151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
CCD_Profile_fitting scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.88, Tmax = 0.90l = 1414
10965 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.8373P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.002
1321 reflectionsΔρmax = 0.40 e Å3
84 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.072 (3)
Crystal data top
C2H5N2+·ClO4V = 1151.4 (4) Å3
Mr = 156.53Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.908 (2) ŵ = 0.61 mm1
b = 10.398 (2) ÅT = 293 K
c = 11.176 (2) Å0.20 × 0.19 × 0.18 mm
Data collection top
Rigaku Mercury2
diffractometer
1321 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1151 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.90Rint = 0.044
10965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.12Δρmax = 0.40 e Å3
1321 reflectionsΔρmin = 0.37 e Å3
84 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24234 (4)0.55298 (4)0.39030 (4)0.0262 (2)
N10.38874 (19)0.80122 (18)0.60010 (15)0.0338 (4)
H1C0.33430.84610.64780.051*
H1D0.34230.77260.53740.051*
H1E0.45580.85140.57500.051*
N20.5768 (2)0.7581 (2)0.85728 (18)0.0503 (6)
O10.30000 (17)0.51248 (16)0.27907 (14)0.0432 (4)
O20.10533 (16)0.50926 (18)0.39645 (16)0.0485 (5)
O30.31737 (19)0.50020 (19)0.48743 (16)0.0521 (5)
O40.24459 (16)0.69160 (15)0.39638 (15)0.0414 (5)
C10.4448 (2)0.6911 (2)0.6667 (2)0.0354 (5)
H1A0.37180.63430.69000.042*
H1B0.50490.64320.61470.042*
C20.5189 (2)0.7311 (2)0.77361 (19)0.0335 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0279 (3)0.0258 (3)0.0249 (3)0.00019 (17)0.00002 (18)0.00046 (17)
N10.0368 (10)0.0363 (10)0.0283 (9)0.0023 (7)0.0062 (7)0.0005 (7)
N20.0541 (12)0.0613 (15)0.0354 (11)0.0057 (11)0.0128 (9)0.0011 (10)
O10.0516 (10)0.0449 (9)0.0331 (9)0.0040 (8)0.0122 (7)0.0064 (7)
O20.0319 (9)0.0492 (10)0.0643 (12)0.0084 (7)0.0085 (8)0.0033 (8)
O30.0638 (12)0.0515 (10)0.0409 (10)0.0079 (9)0.0182 (9)0.0077 (8)
O40.0529 (11)0.0247 (9)0.0466 (11)0.0000 (6)0.0076 (8)0.0046 (6)
C10.0415 (11)0.0306 (11)0.0341 (11)0.0017 (9)0.0089 (10)0.0009 (9)
C20.0308 (10)0.0386 (11)0.0310 (11)0.0019 (9)0.0016 (8)0.0028 (9)
Geometric parameters (Å, º) top
Cl1—O31.4256 (17)N1—H1D0.8900
Cl1—O11.4314 (16)N1—H1E0.8900
Cl1—O21.4333 (17)N2—C21.133 (3)
Cl1—O41.4431 (16)C1—C21.462 (3)
N1—C11.475 (3)C1—H1A0.9700
N1—H1C0.8900C1—H1B0.9700
O3—Cl1—O1109.87 (11)H1C—N1—H1E109.5
O3—Cl1—O2109.59 (12)H1D—N1—H1E109.5
O1—Cl1—O2109.04 (11)C2—C1—N1112.37 (18)
O3—Cl1—O4109.92 (11)C2—C1—H1A109.1
O1—Cl1—O4109.18 (10)N1—C1—H1A109.1
O2—Cl1—O4109.22 (10)C2—C1—H1B109.1
C1—N1—H1C109.5N1—C1—H1B109.1
C1—N1—H1D109.5H1A—C1—H1B107.9
H1C—N1—H1D109.5N2—C2—C1177.8 (2)
C1—N1—H1E109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.892.102.920 (2)152
N1—H1D···O40.892.032.919 (2)175
N1—H1E···O2ii0.892.102.914 (3)152
C1—H1A···O1iii0.972.493.456 (3)172
C1—H1B···O3iv0.972.573.532 (3)169
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1, z+1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC2H5N2+·ClO4
Mr156.53
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.908 (2), 10.398 (2), 11.176 (2)
V3)1151.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.20 × 0.19 × 0.18
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.88, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
10965, 1321, 1151
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.12
No. of reflections1321
No. of parameters84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.37

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.892.102.920 (2)152
N1—H1D···O40.892.032.919 (2)175
N1—H1E···O2ii0.892.102.914 (3)152
C1—H1A···O1iii0.972.493.456 (3)172
C1—H1B···O3iv0.972.573.532 (3)169
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1, z+1/2; (iv) x+1, y+1, z+1.
 

References

First citationHaertling, G. H. (1999). J. Am. Ceram. Soc. 82, 797–810.  CrossRef CAS Google Scholar
First citationHan, M. T. & Zhang, Y. (2010). Acta Cryst. E66, o1941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHomes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673–676.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds