organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S*,2R*,3S*,4R*,5R*)-5-Tetra­decyl­oxy­methyl-7-oxabi­cyclo­[2.2.1]heptane-2,3-dicarb­­oxy­lic anhydride

aDepartment of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA, bBiology Department, Elizabethtown College, Elizabethtown, PA 17022, USA, and cDepartment of Chemistry, University of South Alabama, Mobile, AL 36688, USA
*Correspondence e-mail: dforbes@southalabama.edu

(Received 6 November 2012; accepted 8 November 2012; online 17 November 2012)

In the title compound, C23H38O5, the oxabicyclo­[2.2.1]heptane-2,3-dicarb­oxy­lic anhydride unit has a normal geometry and the tetra­decoxymethyl side chain is fully extended. In the crystal, mol­ecules are linked head-to-head by C—H⋯O hydrogen bonds, forming two-dimensional networks propagating along the a and c-axis directions.

Related literature

Olefinic hydrogenation of an oxabicyclo­[2.2.1]hept-5-ene derivative using catalytic quanti­ties of 10% Pd on carbon as catalyst afforded the title compound. For reviews on the Diels–Alder reaction, see: Oppolzer (1991[Oppolzer, W. (1991). Comprehensive Organic Synthesis, edited by B. M. Trost & I Fleming. Oxford: Pergamon.]); Pindur et al. (1993[Pindur, U., Lutz, G. & Otto, C. (1993). Chem. Rev. 93, 741-761.]). For a review on asymmetric cyclo­addion processes, see: Pellissier (2012[Pellissier, H. (2012). Tetrahedron, 68, 2197-2232.]). For a review on catalytic hydrogenations, see: Brieger & Nestrick (1974[Brieger, G. & Nestrick, T. J. (1974). Chem. Rev. 74, 567-580.]). For a review on asymmetric catalytic hydrogenation processes, see: Knowles (2002[Knowles, W. S. (2002). Angew. Chem. Int. Ed. 41, 1998-2007.]). For discussions on reaction mechanisms with specifics on kinetic and thermodynamic control, see: Lowry & Richardson (1987[Lowry, T. H. & Richardson, K. S. (1987). Mechanism and Theory in Organic Chemistry, 3rd ed. New York: Harper & Row.]); Smith (2012[Smith, M. B. (2012). March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th ed. New York: Wiley.]). For a discussion on Diels–Alder selectivity using maleic anhydride, see: Palmer (2004[Palmer, D. R. J. (2004). J. Chem. Educ. 81, 1633-1635.]).

[Scheme 1]

Experimental

Crystal data
  • C23H38O5

  • Mr = 394.53

  • Monoclinic, P 21 /n

  • a = 6.8541 (5) Å

  • b = 35.206 (4) Å

  • c = 9.2992 (7) Å

  • β = 99.060 (7)°

  • V = 2216.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 180 K

  • 0.47 × 0.17 × 0.02 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.865, Tmax = 1.000

  • 9120 measured reflections

  • 4053 independent reflections

  • 2974 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.108

  • S = 1.04

  • 4053 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 1.00 2.30 3.163 (2) 144
C4—H4⋯O2ii 1.00 2.44 3.377 (2) 156
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The pericyclic [4 + 2] cycloaddition can arguably be considered as one of the most versatile transformations when considering both atom economy and stereochemistry as reported by Oppolzer (1991), Pindur et al. (1993), and Pellissier (2012). When coupled to processes which are driven under kinetic or thermodynamic reaction conditions as illustrated by Lowry & Richardson (1987) and Smith (2012), the opportunity to illustrate both modalities on one unified system exists. That is, the irreversible hydrogenation of alkenes as reported by Brieger & Nestrick (1974) and Knowles (2002) and the reversible [4 + 2] cycloaddition when using not cyclopentadiene but furan with maleic anhydride as reported by Palmer (2004) provided us with a platform to illustrate both processes on one system. Upon reversible cycloaddition of a substituted furan with maleic anhydride, the resulting alkene was subjected to catalytic hydrogenation of the alkene.

As the end product was both crystalline and suitable for X-ray analysis, we succeeded in illustrating both reaction pathways of kinetic and thermodynamic driven processes through the establishment of five contiguous stereocenters, as shown in Fig. 1.

The title compound was isolated as the major product in moderate yield and offered definitive evidence of the facial selectivity involved in the catalytic hydrogenation as well as the juxtaposition of the anhydride relative to the bicyclic scaffold as a result of the [4 + 2] cycloaddition. The configurations of the preexisting sites C1, C2, C3, and C4 prior to the hydrogenation of the alkene are S, R, S, and R for one of the enantiomers of the racemic mixture, and R, S, R, and S for the other, respectively. The configuration of the newly formed stereocenter upon hydrogenation of the chiral racemic mixture is R for the former, S for the latter, which confirms a profile of kinetic reaction control for the hydrogenation and thermodynamic reaction control for the cycloaddition.

In the solid state structure of the title compound (Fig. 1) the small amount of vibrational motion of the tetradecoxymethyl tail group indicates a significant degree of non-covalent interactions within those domains. No unusual deviations from normal bond distances or bond angles are observed in the title molecule.

In the crystal, molecules are linked head-to-head via C-H···O hydrogen bonds (Table 1) to form V-shaped or folded two-dimensional networks extending in the a and c directions. In the crystal, there are clear hydrophobic and hydrophilic domains (Fig. 2).

Related literature top

Olefinic hydrogenation of an oxabicyclo[2.2.1]hept-5-ene derivative using catalytic quantities of 10% Pd on carbon as catalyst afforded the title compound. For reviews on the Diels–Alder reaction, see: Oppolzer (1991); Pindur et al. (1993). For a review on asymmetric cycloaddion processes, see: Pellissier (2012). For a review on catalytic hydrogenations, see: Brieger & Nestrick (1974). For a review on asymmetric catalytic hydrogenation processes, see: Knowles (2002). For discussions on reaction mechanisms with specifics on kinetic and thermodynamic control, see: Lowry & Richardson (1987); Smith (2012). For a discussion on Diels–Alder selectivity using maleic anhydride, see: Palmer (2004).

Experimental top

The Diels-Alder adduct, 5-tetradecoxymethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, was first synthesized by the following method. To a solution of 3-tetradecoxymethylfuran (1.3 g, 4.5 mmol) in toluene (25 ml) was added maleic anhydride (0.56 g, 5.7 mmol). The reaction mixture was allowed to stir at room temperature for a period of 24 h at which time the reaction was determined complete by thin layer chromatography. The reaction mixture was concentrated under reduced pressure and purified by column chromatography (EtOAc/hexanes, 1/4), to afford the cyclo adduct. (737 mg, 42% yield). TLC Rf 0.31 (EtOAc/hexanes, 1/4). Spectroscopic data for the Diels-Alder adduct, 5-tetradecoxymethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, are available in the archived CIF.

The title compound was prepared by bubbling hydrogen gas into a tetrahydrofuran (50 ml) solution consisting of the Diels-Alder adduct starting material (607 mg, 1.5 mmol) and 10% Pd/C (64 mg) for a period of no less than 90 min. at room temperature. The reaction mixture was then filtered through a plug of Celite and concentrated under reduced pressure. Purification by column chromatography (EtOAc/hexanes, 1/4) afforded the title compound (154 mg, 26% yield). Colourless plate-like crystals were obtained on slow evaporation of a solution in the solvent mixture EtOAc/hexanes (1/4). Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

H atoms were placed in calculated positions and treated as riding atoms: C-H = 0.98, 0.99 and 0.100 Å for CH3, CH2 and CH H atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for CH3 H atoms, and = 1.2 for other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a-axis of the crystal packing of the title compound, showing the undulating layers that result due to the large polar head groups.
(1S*,2R*,3S*,4R*,5R*)-5- Tetradecyloxymethyl-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride top
Crystal data top
C23H38O5F(000) = 864
Mr = 394.53Dx = 1.183 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 1915 reflections
a = 6.8541 (5) Åθ = 3.2–25.3°
b = 35.206 (4) ŵ = 0.08 mm1
c = 9.2992 (7) ÅT = 180 K
β = 99.060 (7)°Plate, colourless
V = 2216.0 (3) Å30.47 × 0.17 × 0.02 mm
Z = 4
Data collection top
Agilent Xcalibur Eos
diffractometer
4053 independent reflections
Radiation source: Enhance (Mo) X-ray Source2974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.0514 pixels mm-1θmax = 25.3°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 042
Tmin = 0.865, Tmax = 1.000l = 011
9120 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.6309P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4053 reflectionsΔρmax = 0.18 e Å3
255 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (5)
Crystal data top
C23H38O5V = 2216.0 (3) Å3
Mr = 394.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8541 (5) ŵ = 0.08 mm1
b = 35.206 (4) ÅT = 180 K
c = 9.2992 (7) Å0.47 × 0.17 × 0.02 mm
β = 99.060 (7)°
Data collection top
Agilent Xcalibur Eos
diffractometer
4053 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2974 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 1.000Rint = 0.028
9120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
4053 reflectionsΔρmin = 0.19 e Å3
255 parameters
Special details top

Experimental. Spectroscopic data for the Diels-Alder adduct, 5-tetradecoxymethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride: 1H NMR (300 MHz; CDCl3) δ 6.33 (s, 1H), 5.44 (s, 1H), 5.38 (s, 1H), 4.16 (dd, 2H), 3.45 (m, 2H), 3.25 (dd, 2H), 1.56 (m, 2H), 1.27 (b, 22H), 0.90 (t, 3H).

Spectroscopic data for the title compound, (1S*,2R*,3S*,4R*,5R*)- 5-Tetradecoxymethyl-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride: 1H NMR (300 MHz; CDCl3) δ 5.00 (dd, 2H), 3.66 (m, 2H), 3.43 (m, 2H), 3.38 (d, 1H), 3.11 (d, 1H), 2.52 (m, 1H), 2.02 (m, 1H), 1.45 (d, 1H), 1.39 (m, 1H), 1.27 (b, 22H), 0.89 (t, 3H).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1284 (2)0.69729 (4)1.26562 (15)0.0447 (5)
O20.63572 (18)0.71813 (4)1.49758 (15)0.0411 (5)
O30.39098 (17)0.69995 (4)1.37987 (13)0.0303 (4)
O40.15463 (17)0.83205 (4)1.30869 (13)0.0313 (4)
O70.11995 (16)0.75732 (4)1.59505 (12)0.0275 (4)
C10.3001 (2)0.77966 (6)1.57800 (19)0.0273 (6)
C20.4085 (2)0.76561 (6)1.42974 (18)0.0253 (6)
C30.2330 (2)0.75869 (5)1.34743 (18)0.0243 (6)
C40.0545 (2)0.77017 (6)1.46208 (18)0.0247 (6)
C50.0436 (2)0.81327 (6)1.48478 (18)0.0271 (6)
C60.2285 (3)0.82006 (6)1.5591 (2)0.0301 (6)
C80.2361 (3)0.71674 (6)1.32259 (19)0.0299 (6)
C90.4970 (2)0.72724 (6)1.44200 (19)0.0283 (6)
C100.0329 (2)0.83762 (6)1.35282 (19)0.0285 (6)
C110.1794 (2)0.85616 (6)1.18939 (18)0.0273 (6)
C120.3880 (2)0.85308 (6)1.15780 (19)0.0292 (6)
C130.4198 (2)0.87759 (6)1.02767 (18)0.0269 (6)
C140.6329 (2)0.87751 (6)0.99874 (18)0.0267 (6)
C150.6614 (2)0.89951 (6)0.86264 (19)0.0277 (6)
C160.8754 (2)0.90104 (6)0.83624 (18)0.0254 (6)
C170.9015 (2)0.92066 (6)0.69409 (19)0.0274 (6)
C181.1123 (2)0.91929 (6)0.66120 (19)0.0284 (6)
C191.1398 (2)0.94060 (6)0.52315 (19)0.0278 (6)
C201.3486 (2)0.93808 (6)0.48634 (19)0.0295 (6)
C211.3765 (2)0.96049 (6)0.35073 (19)0.0291 (6)
C221.5860 (3)0.95956 (6)0.31546 (19)0.0299 (6)
C231.6097 (3)0.98168 (6)0.1793 (2)0.0353 (7)
C241.8192 (3)0.98184 (7)0.1442 (2)0.0438 (8)
H10.377900.776701.659700.0330*
H20.505400.784501.380200.0300*
H30.242500.773701.255200.0290*
H40.073100.758601.445200.0300*
H50.076000.818801.558200.0320*
H6A0.192900.833001.654200.0360*
H6B0.329600.835301.496300.0360*
H10A0.139500.830401.272800.0340*
H10B0.050000.864701.376800.0340*
H11A0.151200.882801.213400.0330*
H11B0.085300.848701.102100.0330*
H12A0.416900.826201.137500.0350*
H12B0.481200.861201.244700.0350*
H13A0.332600.868200.939700.0320*
H13B0.380500.904001.045300.0320*
H14A0.718800.888701.083800.0320*
H14B0.675500.850900.988600.0320*
H15A0.613000.925800.871000.0330*
H15B0.579700.887600.777200.0330*
H16A0.926900.874800.835200.0300*
H16B0.955300.914600.918300.0300*
H17A0.812700.908500.612900.0330*
H17B0.860700.947500.698700.0330*
H18A1.150800.892400.651400.0340*
H18B1.202200.930300.744600.0340*
H19A1.106200.967700.534600.0330*
H19B1.046000.930300.440500.0330*
H20A1.442900.947700.570100.0350*
H20B1.380600.911100.471700.0350*
H21A1.285500.950200.266500.0350*
H21B1.339000.987300.364000.0350*
H22A1.677300.970100.399000.0360*
H22B1.624500.932800.302800.0360*
H23A1.567901.008300.191300.0420*
H23B1.520300.970700.095700.0420*
H24A1.908500.993400.225000.0660*
H24B1.822700.996500.055100.0660*
H24C1.861200.955700.129700.0660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0525 (9)0.0385 (10)0.0500 (9)0.0013 (8)0.0294 (7)0.0091 (8)
O20.0253 (7)0.0399 (10)0.0616 (9)0.0051 (7)0.0178 (7)0.0052 (8)
O30.0304 (7)0.0286 (8)0.0335 (7)0.0033 (6)0.0097 (5)0.0003 (6)
O40.0277 (7)0.0363 (9)0.0318 (7)0.0014 (6)0.0104 (5)0.0123 (6)
O70.0271 (6)0.0345 (9)0.0217 (6)0.0018 (6)0.0062 (5)0.0064 (6)
C10.0258 (9)0.0330 (12)0.0256 (9)0.0003 (9)0.0119 (7)0.0014 (8)
C20.0220 (9)0.0274 (12)0.0270 (9)0.0014 (8)0.0051 (7)0.0046 (8)
C30.0270 (9)0.0273 (12)0.0195 (9)0.0010 (8)0.0066 (7)0.0050 (8)
C40.0220 (9)0.0303 (12)0.0237 (9)0.0002 (8)0.0093 (7)0.0062 (8)
C50.0260 (9)0.0314 (12)0.0240 (9)0.0058 (8)0.0045 (7)0.0004 (8)
C60.0350 (11)0.0292 (12)0.0283 (10)0.0026 (9)0.0114 (8)0.0033 (9)
C80.0314 (10)0.0360 (13)0.0237 (9)0.0039 (9)0.0085 (8)0.0001 (9)
C90.0209 (9)0.0332 (13)0.0299 (10)0.0017 (8)0.0016 (8)0.0051 (9)
C100.0264 (10)0.0276 (12)0.0329 (10)0.0032 (8)0.0095 (8)0.0046 (9)
C110.0295 (10)0.0277 (12)0.0258 (9)0.0041 (8)0.0076 (7)0.0071 (8)
C120.0264 (10)0.0329 (13)0.0290 (10)0.0024 (9)0.0069 (8)0.0073 (9)
C130.0242 (9)0.0281 (12)0.0292 (10)0.0000 (8)0.0065 (8)0.0055 (8)
C140.0247 (9)0.0277 (12)0.0286 (10)0.0009 (8)0.0068 (7)0.0066 (8)
C150.0256 (10)0.0291 (12)0.0299 (10)0.0017 (8)0.0088 (8)0.0060 (9)
C160.0253 (9)0.0251 (12)0.0268 (9)0.0002 (8)0.0076 (7)0.0032 (8)
C170.0263 (10)0.0272 (12)0.0301 (10)0.0009 (8)0.0088 (8)0.0060 (8)
C180.0272 (10)0.0279 (12)0.0314 (10)0.0006 (8)0.0088 (8)0.0061 (9)
C190.0261 (9)0.0281 (12)0.0309 (10)0.0007 (8)0.0094 (8)0.0038 (9)
C200.0284 (10)0.0324 (12)0.0293 (10)0.0011 (9)0.0091 (8)0.0054 (9)
C210.0296 (10)0.0306 (12)0.0284 (10)0.0003 (9)0.0087 (8)0.0041 (9)
C220.0300 (10)0.0326 (13)0.0287 (10)0.0024 (9)0.0092 (8)0.0009 (9)
C230.0367 (11)0.0404 (14)0.0309 (10)0.0048 (10)0.0120 (8)0.0042 (10)
C240.0439 (12)0.0493 (16)0.0428 (12)0.0091 (11)0.0212 (10)0.0015 (11)
Geometric parameters (Å, º) top
O1—C81.191 (2)C5—H51.0000
O2—C91.195 (2)C6—H6A0.9900
O3—C81.392 (2)C6—H6B0.9900
O3—C91.385 (2)C10—H10A0.9900
O4—C101.4231 (19)C10—H10B0.9900
O4—C111.428 (2)C11—H11A0.9900
O7—C11.452 (2)C11—H11B0.9900
O7—C41.452 (2)C12—H12A0.9900
C1—C21.541 (2)C12—H12B0.9900
C1—C61.524 (3)C13—H13A0.9900
C2—C31.543 (2)C13—H13B0.9900
C2—C91.493 (3)C14—H14A0.9900
C3—C41.545 (2)C14—H14B0.9900
C3—C81.495 (3)C15—H15A0.9900
C4—C51.532 (3)C15—H15B0.9900
C5—C61.555 (3)C16—H16A0.9900
C5—C101.508 (3)C16—H16B0.9900
C11—C121.508 (2)C17—H17A0.9900
C12—C131.530 (3)C17—H17B0.9900
C13—C141.526 (2)C18—H18A0.9900
C14—C151.522 (3)C18—H18B0.9900
C15—C161.526 (2)C19—H19A0.9900
C16—C171.527 (3)C19—H19B0.9900
C17—C181.524 (2)C20—H20A0.9900
C18—C191.524 (3)C20—H20B0.9900
C19—C201.526 (2)C21—H21A0.9900
C20—C211.525 (3)C21—H21B0.9900
C21—C221.523 (3)C22—H22A0.9900
C22—C231.517 (3)C22—H22B0.9900
C23—C241.522 (3)C23—H23A0.9900
C1—H11.0000C23—H23B0.9900
C2—H21.0000C24—H24A0.9800
C3—H31.0000C24—H24B0.9800
C4—H41.0000C24—H24C0.9800
C8—O3—C9110.30 (15)H11A—C11—H11B108.00
C10—O4—C11111.43 (13)C11—C12—H12A109.00
C1—O7—C496.30 (12)C11—C12—H12B109.00
O7—C1—C2101.88 (14)C13—C12—H12A109.00
O7—C1—C6103.56 (13)C13—C12—H12B109.00
C2—C1—C6108.37 (15)H12A—C12—H12B108.00
C1—C2—C3101.00 (12)C12—C13—H13A109.00
C1—C2—C9111.51 (15)C12—C13—H13B109.00
C3—C2—C9104.65 (15)C14—C13—H13A109.00
C2—C3—C4102.17 (13)C14—C13—H13B109.00
C2—C3—C8103.85 (14)H13A—C13—H13B108.00
C4—C3—C8110.84 (15)C13—C14—H14A109.00
O7—C4—C3100.89 (12)C13—C14—H14B109.00
O7—C4—C5101.89 (13)C15—C14—H14A109.00
C3—C4—C5111.74 (14)C15—C14—H14B109.00
C4—C5—C6100.84 (14)H14A—C14—H14B108.00
C4—C5—C10117.28 (15)C14—C15—H15A109.00
C6—C5—C10114.95 (15)C14—C15—H15B109.00
C1—C6—C5101.99 (16)C16—C15—H15A109.00
O1—C8—O3119.31 (18)C16—C15—H15B109.00
O1—C8—C3129.97 (18)H15A—C15—H15B108.00
O3—C8—C3110.71 (15)C15—C16—H16A109.00
O2—C9—O3119.98 (18)C15—C16—H16B109.00
O2—C9—C2129.53 (17)C17—C16—H16A109.00
O3—C9—C2110.48 (13)C17—C16—H16B109.00
O4—C10—C5108.55 (14)H16A—C16—H16B108.00
O4—C11—C12109.93 (14)C16—C17—H17A109.00
C11—C12—C13111.78 (14)C16—C17—H17B109.00
C12—C13—C14113.45 (14)C18—C17—H17A109.00
C13—C14—C15113.41 (14)C18—C17—H17B109.00
C14—C15—C16113.84 (14)H17A—C17—H17B108.00
C15—C16—C17113.70 (13)C17—C18—H18A109.00
C16—C17—C18113.80 (14)C17—C18—H18B109.00
C17—C18—C19113.60 (14)C19—C18—H18A109.00
C18—C19—C20113.90 (14)C19—C18—H18B109.00
C19—C20—C21113.56 (14)H18A—C18—H18B108.00
C20—C21—C22114.35 (14)C18—C19—H19A109.00
C21—C22—C23113.41 (16)C18—C19—H19B109.00
C22—C23—C24114.18 (17)C20—C19—H19A109.00
O7—C1—H1114.00C20—C19—H19B109.00
C2—C1—H1114.00H19A—C19—H19B108.00
C6—C1—H1114.00C19—C20—H20A109.00
C1—C2—H2113.00C19—C20—H20B109.00
C3—C2—H2113.00C21—C20—H20A109.00
C9—C2—H2113.00C21—C20—H20B109.00
C2—C3—H3113.00H20A—C20—H20B108.00
C4—C3—H3113.00C20—C21—H21A109.00
C8—C3—H3113.00C20—C21—H21B109.00
O7—C4—H4114.00C22—C21—H21A109.00
C3—C4—H4114.00C22—C21—H21B109.00
C5—C4—H4114.00H21A—C21—H21B108.00
C4—C5—H5108.00C21—C22—H22A109.00
C6—C5—H5108.00C21—C22—H22B109.00
C10—C5—H5108.00C23—C22—H22A109.00
C1—C6—H6A111.00C23—C22—H22B109.00
C1—C6—H6B111.00H22A—C22—H22B108.00
C5—C6—H6A111.00C22—C23—H23A109.00
C5—C6—H6B111.00C22—C23—H23B109.00
H6A—C6—H6B109.00C24—C23—H23A109.00
O4—C10—H10A110.00C24—C23—H23B109.00
O4—C10—H10B110.00H23A—C23—H23B108.00
C5—C10—H10A110.00C23—C24—H24A109.00
C5—C10—H10B110.00C23—C24—H24B109.00
H10A—C10—H10B108.00C23—C24—H24C109.00
O4—C11—H11A110.00H24A—C24—H24B110.00
O4—C11—H11B110.00H24A—C24—H24C110.00
C12—C11—H11A110.00H24B—C24—H24C109.00
C12—C11—H11B110.00
C9—O3—C8—O1179.49 (16)C8—C3—C4—O774.70 (16)
C9—O3—C8—C30.42 (19)C8—C3—C4—C5177.69 (13)
C8—O3—C9—O2179.69 (16)C2—C3—C8—O1178.60 (19)
C8—O3—C9—C21.05 (18)C2—C3—C8—O30.34 (18)
C11—O4—C10—C5176.33 (15)C4—C3—C8—O169.6 (2)
C10—O4—C11—C12172.98 (15)C4—C3—C8—O3109.38 (15)
C4—O7—C1—C258.09 (15)O7—C4—C5—C638.51 (14)
C4—O7—C1—C654.37 (15)O7—C4—C5—C10164.10 (12)
C1—O7—C4—C357.67 (15)C3—C4—C5—C668.45 (16)
C1—O7—C4—C557.54 (13)C3—C4—C5—C1057.14 (17)
O7—C1—C2—C335.03 (17)C4—C5—C6—C14.96 (16)
O7—C1—C2—C975.68 (15)C10—C5—C6—C1132.10 (16)
C6—C1—C2—C373.78 (17)C4—C5—C10—O469.48 (17)
C6—C1—C2—C9175.52 (14)C6—C5—C10—O4172.27 (15)
O7—C1—C6—C530.12 (16)O4—C11—C12—C13178.34 (15)
C2—C1—C6—C577.52 (15)C11—C12—C13—C14175.87 (16)
C1—C2—C3—C40.33 (18)C12—C13—C14—C15175.72 (16)
C1—C2—C3—C8115.01 (16)C13—C14—C15—C16177.53 (16)
C9—C2—C3—C4116.23 (15)C14—C15—C16—C17175.87 (17)
C9—C2—C3—C80.89 (17)C15—C16—C17—C18175.12 (17)
C1—C2—C9—O271.3 (2)C16—C17—C18—C19177.12 (16)
C1—C2—C9—O3107.15 (15)C17—C18—C19—C20177.78 (16)
C3—C2—C9—O2179.68 (18)C18—C19—C20—C21178.20 (16)
C3—C2—C9—O31.21 (17)C19—C20—C21—C22177.79 (16)
C2—C3—C4—O735.43 (17)C20—C21—C22—C23179.38 (17)
C2—C3—C4—C572.18 (16)C21—C22—C23—C24178.66 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i1.002.303.163 (2)144
C4—H4···O2ii1.002.443.377 (2)156
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H38O5
Mr394.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)6.8541 (5), 35.206 (4), 9.2992 (7)
β (°) 99.060 (7)
V3)2216.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.17 × 0.02
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.865, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9120, 4053, 2974
Rint0.028
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.108, 1.04
No. of reflections4053
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i1.002.303.163 (2)144
C4—H4···O2ii1.002.443.377 (2)156
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the National Science Foundation (NSF–CAREER grant to RES, CHE-0846680; NSF–RUI grant to DCF, CHE-0957482). DCF also gratefully acknowledges the Camille and Henry Dreyfus Foundation (TH-06–008) for partial support of this work.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrieger, G. & Nestrick, T. J. (1974). Chem. Rev. 74, 567–580.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKnowles, W. S. (2002). Angew. Chem. Int. Ed. 41, 1998–2007.  CrossRef CAS Google Scholar
First citationLowry, T. H. & Richardson, K. S. (1987). Mechanism and Theory in Organic Chemistry, 3rd ed. New York: Harper & Row.  Google Scholar
First citationOppolzer, W. (1991). Comprehensive Organic Synthesis, edited by B. M. Trost & I Fleming. Oxford: Pergamon.  Google Scholar
First citationPalmer, D. R. J. (2004). J. Chem. Educ. 81, 1633–1635.  CrossRef CAS Google Scholar
First citationPellissier, H. (2012). Tetrahedron, 68, 2197–2232.  Web of Science CrossRef CAS Google Scholar
First citationPindur, U., Lutz, G. & Otto, C. (1993). Chem. Rev. 93, 741–761.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, M. B. (2012). March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th ed. New York: Wiley.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds