organic compounds
(1S*,2R*,3S*,4R*,5R*)-5-Tetradecyloxymethyl-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride
aDepartment of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA, bBiology Department, Elizabethtown College, Elizabethtown, PA 17022, USA, and cDepartment of Chemistry, University of South Alabama, Mobile, AL 36688, USA
*Correspondence e-mail: dforbes@southalabama.edu
In the title compound, C23H38O5, the oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride unit has a normal geometry and the tetradecoxymethyl side chain is fully extended. In the crystal, molecules are linked head-to-head by C—H⋯O hydrogen bonds, forming two-dimensional networks propagating along the a and c-axis directions.
Related literature
Olefinic hydrogenation of an oxabicyclo[2.2.1]hept-5-ene derivative using catalytic quantities of 10% Pd on carbon as catalyst afforded the title compound. For reviews on the Diels–Alder reaction, see: Oppolzer (1991); Pindur et al. (1993). For a review on asymmetric cycloaddion processes, see: Pellissier (2012). For a review on catalytic hydrogenations, see: Brieger & Nestrick (1974). For a review on asymmetric catalytic hydrogenation processes, see: Knowles (2002). For discussions on reaction mechanisms with specifics on kinetic and see: Lowry & Richardson (1987); Smith (2012). For a discussion on Diels–Alder selectivity using maleic anhydride, see: Palmer (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812046259/zl2516sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812046259/zl2516Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812046259/zl2516Isup3.cml
The Diels-Alder adduct, 5-tetradecoxymethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, was first synthesized by the following method. To a solution of 3-tetradecoxymethylfuran (1.3 g, 4.5 mmol) in toluene (25 ml) was added maleic anhydride (0.56 g, 5.7 mmol). The reaction mixture was allowed to stir at room temperature for a period of 24 h at which time the reaction was determined complete by thin layer
The reaction mixture was concentrated under reduced pressure and purified by (EtOAc/hexanes, 1/4), to afford the cyclo adduct. (737 mg, 42% yield). TLC Rf 0.31 (EtOAc/hexanes, 1/4). Spectroscopic data for the Diels-Alder adduct, 5-tetradecoxymethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, are available in the archived CIF.The title compound was prepared by bubbling hydrogen gas into a tetrahydrofuran (50 ml) solution consisting of the Diels-Alder adduct starting material (607 mg, 1.5 mmol) and 10% Pd/C (64 mg) for a period of no less than 90 min. at room temperature. The reaction mixture was then filtered through a plug of Celite and concentrated under reduced pressure. Purification by
(EtOAc/hexanes, 1/4) afforded the title compound (154 mg, 26% yield). Colourless plate-like crystals were obtained on slow evaporation of a solution in the solvent mixture EtOAc/hexanes (1/4). Spectroscopic data for the title compound are available in the archived CIF.H atoms were placed in calculated positions and treated as riding atoms: C-H = 0.98, 0.99 and 0.100 Å for CH3, CH2 and CH H atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for CH3 H atoms, and = 1.2 for other H atoms.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C23H38O5 | F(000) = 864 |
Mr = 394.53 | Dx = 1.183 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2yn | Cell parameters from 1915 reflections |
a = 6.8541 (5) Å | θ = 3.2–25.3° |
b = 35.206 (4) Å | µ = 0.08 mm−1 |
c = 9.2992 (7) Å | T = 180 K |
β = 99.060 (7)° | Plate, colourless |
V = 2216.0 (3) Å3 | 0.47 × 0.17 × 0.02 mm |
Z = 4 |
Agilent Xcalibur Eos diffractometer | 4053 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2974 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 16.0514 pixels mm-1 | θmax = 25.3°, θmin = 3.2° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = 0→42 |
Tmin = 0.865, Tmax = 1.000 | l = 0→11 |
9120 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0351P)2 + 0.6309P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4053 reflections | Δρmax = 0.18 e Å−3 |
255 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0027 (5) |
C23H38O5 | V = 2216.0 (3) Å3 |
Mr = 394.53 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.8541 (5) Å | µ = 0.08 mm−1 |
b = 35.206 (4) Å | T = 180 K |
c = 9.2992 (7) Å | 0.47 × 0.17 × 0.02 mm |
β = 99.060 (7)° |
Agilent Xcalibur Eos diffractometer | 4053 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2974 reflections with I > 2σ(I) |
Tmin = 0.865, Tmax = 1.000 | Rint = 0.028 |
9120 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.18 e Å−3 |
4053 reflections | Δρmin = −0.19 e Å−3 |
255 parameters |
Experimental. Spectroscopic data for the Diels-Alder adduct, 5-tetradecoxymethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride: 1H NMR (300 MHz; CDCl3) δ 6.33 (s, 1H), 5.44 (s, 1H), 5.38 (s, 1H), 4.16 (dd, 2H), 3.45 (m, 2H), 3.25 (dd, 2H), 1.56 (m, 2H), 1.27 (b, 22H), 0.90 (t, 3H). Spectroscopic data for the title compound, (1S*,2R*,3S*,4R*,5R*)- 5-Tetradecoxymethyl-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride: 1H NMR (300 MHz; CDCl3) δ 5.00 (dd, 2H), 3.66 (m, 2H), 3.43 (m, 2H), 3.38 (d, 1H), 3.11 (d, 1H), 2.52 (m, 1H), 2.02 (m, 1H), 1.45 (d, 1H), 1.39 (m, 1H), 1.27 (b, 22H), 0.89 (t, 3H). |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.1284 (2) | 0.69729 (4) | 1.26562 (15) | 0.0447 (5) | |
O2 | −0.63572 (18) | 0.71813 (4) | 1.49758 (15) | 0.0411 (5) | |
O3 | −0.39098 (17) | 0.69995 (4) | 1.37987 (13) | 0.0303 (4) | |
O4 | 0.15463 (17) | 0.83205 (4) | 1.30869 (13) | 0.0313 (4) | |
O7 | −0.11995 (16) | 0.75732 (4) | 1.59505 (12) | 0.0275 (4) | |
C1 | −0.3001 (2) | 0.77966 (6) | 1.57800 (19) | 0.0273 (6) | |
C2 | −0.4085 (2) | 0.76561 (6) | 1.42974 (18) | 0.0253 (6) | |
C3 | −0.2330 (2) | 0.75869 (5) | 1.34743 (18) | 0.0243 (6) | |
C4 | −0.0545 (2) | 0.77017 (6) | 1.46208 (18) | 0.0247 (6) | |
C5 | −0.0436 (2) | 0.81327 (6) | 1.48478 (18) | 0.0271 (6) | |
C6 | −0.2285 (3) | 0.82006 (6) | 1.5591 (2) | 0.0301 (6) | |
C8 | −0.2361 (3) | 0.71674 (6) | 1.32259 (19) | 0.0299 (6) | |
C9 | −0.4970 (2) | 0.72724 (6) | 1.44200 (19) | 0.0283 (6) | |
C10 | −0.0329 (2) | 0.83762 (6) | 1.35282 (19) | 0.0285 (6) | |
C11 | 0.1794 (2) | 0.85616 (6) | 1.18939 (18) | 0.0273 (6) | |
C12 | 0.3880 (2) | 0.85308 (6) | 1.15780 (19) | 0.0292 (6) | |
C13 | 0.4198 (2) | 0.87759 (6) | 1.02767 (18) | 0.0269 (6) | |
C14 | 0.6329 (2) | 0.87751 (6) | 0.99874 (18) | 0.0267 (6) | |
C15 | 0.6614 (2) | 0.89951 (6) | 0.86264 (19) | 0.0277 (6) | |
C16 | 0.8754 (2) | 0.90104 (6) | 0.83624 (18) | 0.0254 (6) | |
C17 | 0.9015 (2) | 0.92066 (6) | 0.69409 (19) | 0.0274 (6) | |
C18 | 1.1123 (2) | 0.91929 (6) | 0.66120 (19) | 0.0284 (6) | |
C19 | 1.1398 (2) | 0.94060 (6) | 0.52315 (19) | 0.0278 (6) | |
C20 | 1.3486 (2) | 0.93808 (6) | 0.48634 (19) | 0.0295 (6) | |
C21 | 1.3765 (2) | 0.96049 (6) | 0.35073 (19) | 0.0291 (6) | |
C22 | 1.5860 (3) | 0.95956 (6) | 0.31546 (19) | 0.0299 (6) | |
C23 | 1.6097 (3) | 0.98168 (6) | 0.1793 (2) | 0.0353 (7) | |
C24 | 1.8192 (3) | 0.98184 (7) | 0.1442 (2) | 0.0438 (8) | |
H1 | −0.37790 | 0.77670 | 1.65970 | 0.0330* | |
H2 | −0.50540 | 0.78450 | 1.38020 | 0.0300* | |
H3 | −0.24250 | 0.77370 | 1.25520 | 0.0290* | |
H4 | 0.07310 | 0.75860 | 1.44520 | 0.0300* | |
H5 | 0.07600 | 0.81880 | 1.55820 | 0.0320* | |
H6A | −0.19290 | 0.83300 | 1.65420 | 0.0360* | |
H6B | −0.32960 | 0.83530 | 1.49630 | 0.0360* | |
H10A | −0.13950 | 0.83040 | 1.27280 | 0.0340* | |
H10B | −0.05000 | 0.86470 | 1.37680 | 0.0340* | |
H11A | 0.15120 | 0.88280 | 1.21340 | 0.0330* | |
H11B | 0.08530 | 0.84870 | 1.10210 | 0.0330* | |
H12A | 0.41690 | 0.82620 | 1.13750 | 0.0350* | |
H12B | 0.48120 | 0.86120 | 1.24470 | 0.0350* | |
H13A | 0.33260 | 0.86820 | 0.93970 | 0.0320* | |
H13B | 0.38050 | 0.90400 | 1.04530 | 0.0320* | |
H14A | 0.71880 | 0.88870 | 1.08380 | 0.0320* | |
H14B | 0.67550 | 0.85090 | 0.98860 | 0.0320* | |
H15A | 0.61300 | 0.92580 | 0.87100 | 0.0330* | |
H15B | 0.57970 | 0.88760 | 0.77720 | 0.0330* | |
H16A | 0.92690 | 0.87480 | 0.83520 | 0.0300* | |
H16B | 0.95530 | 0.91460 | 0.91830 | 0.0300* | |
H17A | 0.81270 | 0.90850 | 0.61290 | 0.0330* | |
H17B | 0.86070 | 0.94750 | 0.69870 | 0.0330* | |
H18A | 1.15080 | 0.89240 | 0.65140 | 0.0340* | |
H18B | 1.20220 | 0.93030 | 0.74460 | 0.0340* | |
H19A | 1.10620 | 0.96770 | 0.53460 | 0.0330* | |
H19B | 1.04600 | 0.93030 | 0.44050 | 0.0330* | |
H20A | 1.44290 | 0.94770 | 0.57010 | 0.0350* | |
H20B | 1.38060 | 0.91110 | 0.47170 | 0.0350* | |
H21A | 1.28550 | 0.95020 | 0.26650 | 0.0350* | |
H21B | 1.33900 | 0.98730 | 0.36400 | 0.0350* | |
H22A | 1.67730 | 0.97010 | 0.39900 | 0.0360* | |
H22B | 1.62450 | 0.93280 | 0.30280 | 0.0360* | |
H23A | 1.56790 | 1.00830 | 0.19130 | 0.0420* | |
H23B | 1.52030 | 0.97070 | 0.09570 | 0.0420* | |
H24A | 1.90850 | 0.99340 | 0.22500 | 0.0660* | |
H24B | 1.82270 | 0.99650 | 0.05510 | 0.0660* | |
H24C | 1.86120 | 0.95570 | 0.12970 | 0.0660* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0525 (9) | 0.0385 (10) | 0.0500 (9) | −0.0013 (8) | 0.0294 (7) | −0.0091 (8) |
O2 | 0.0253 (7) | 0.0399 (10) | 0.0616 (9) | −0.0051 (7) | 0.0178 (7) | 0.0052 (8) |
O3 | 0.0304 (7) | 0.0286 (8) | 0.0335 (7) | −0.0033 (6) | 0.0097 (5) | 0.0003 (6) |
O4 | 0.0277 (7) | 0.0363 (9) | 0.0318 (7) | −0.0014 (6) | 0.0104 (5) | 0.0123 (6) |
O7 | 0.0271 (6) | 0.0345 (9) | 0.0217 (6) | −0.0018 (6) | 0.0062 (5) | 0.0064 (6) |
C1 | 0.0258 (9) | 0.0330 (12) | 0.0256 (9) | −0.0003 (9) | 0.0119 (7) | 0.0014 (8) |
C2 | 0.0220 (9) | 0.0274 (12) | 0.0270 (9) | 0.0014 (8) | 0.0051 (7) | 0.0046 (8) |
C3 | 0.0270 (9) | 0.0273 (12) | 0.0195 (9) | −0.0010 (8) | 0.0066 (7) | 0.0050 (8) |
C4 | 0.0220 (9) | 0.0303 (12) | 0.0237 (9) | −0.0002 (8) | 0.0093 (7) | 0.0062 (8) |
C5 | 0.0260 (9) | 0.0314 (12) | 0.0240 (9) | −0.0058 (8) | 0.0045 (7) | 0.0004 (8) |
C6 | 0.0350 (11) | 0.0292 (12) | 0.0283 (10) | −0.0026 (9) | 0.0114 (8) | −0.0033 (9) |
C8 | 0.0314 (10) | 0.0360 (13) | 0.0237 (9) | −0.0039 (9) | 0.0085 (8) | 0.0001 (9) |
C9 | 0.0209 (9) | 0.0332 (13) | 0.0299 (10) | 0.0017 (8) | 0.0016 (8) | 0.0051 (9) |
C10 | 0.0264 (10) | 0.0276 (12) | 0.0329 (10) | −0.0032 (8) | 0.0095 (8) | 0.0046 (9) |
C11 | 0.0295 (10) | 0.0277 (12) | 0.0258 (9) | −0.0041 (8) | 0.0076 (7) | 0.0071 (8) |
C12 | 0.0264 (10) | 0.0329 (13) | 0.0290 (10) | −0.0024 (9) | 0.0069 (8) | 0.0073 (9) |
C13 | 0.0242 (9) | 0.0281 (12) | 0.0292 (10) | 0.0000 (8) | 0.0065 (8) | 0.0055 (8) |
C14 | 0.0247 (9) | 0.0277 (12) | 0.0286 (10) | 0.0009 (8) | 0.0068 (7) | 0.0066 (8) |
C15 | 0.0256 (10) | 0.0291 (12) | 0.0299 (10) | 0.0017 (8) | 0.0088 (8) | 0.0060 (9) |
C16 | 0.0253 (9) | 0.0251 (12) | 0.0268 (9) | 0.0002 (8) | 0.0076 (7) | 0.0032 (8) |
C17 | 0.0263 (10) | 0.0272 (12) | 0.0301 (10) | 0.0009 (8) | 0.0088 (8) | 0.0060 (8) |
C18 | 0.0272 (10) | 0.0279 (12) | 0.0314 (10) | 0.0006 (8) | 0.0088 (8) | 0.0061 (9) |
C19 | 0.0261 (9) | 0.0281 (12) | 0.0309 (10) | −0.0007 (8) | 0.0094 (8) | 0.0038 (9) |
C20 | 0.0284 (10) | 0.0324 (12) | 0.0293 (10) | 0.0011 (9) | 0.0091 (8) | 0.0054 (9) |
C21 | 0.0296 (10) | 0.0306 (12) | 0.0284 (10) | −0.0003 (9) | 0.0087 (8) | 0.0041 (9) |
C22 | 0.0300 (10) | 0.0326 (13) | 0.0287 (10) | −0.0024 (9) | 0.0092 (8) | 0.0009 (9) |
C23 | 0.0367 (11) | 0.0404 (14) | 0.0309 (10) | −0.0048 (10) | 0.0120 (8) | 0.0042 (10) |
C24 | 0.0439 (12) | 0.0493 (16) | 0.0428 (12) | −0.0091 (11) | 0.0212 (10) | 0.0015 (11) |
O1—C8 | 1.191 (2) | C5—H5 | 1.0000 |
O2—C9 | 1.195 (2) | C6—H6A | 0.9900 |
O3—C8 | 1.392 (2) | C6—H6B | 0.9900 |
O3—C9 | 1.385 (2) | C10—H10A | 0.9900 |
O4—C10 | 1.4231 (19) | C10—H10B | 0.9900 |
O4—C11 | 1.428 (2) | C11—H11A | 0.9900 |
O7—C1 | 1.452 (2) | C11—H11B | 0.9900 |
O7—C4 | 1.452 (2) | C12—H12A | 0.9900 |
C1—C2 | 1.541 (2) | C12—H12B | 0.9900 |
C1—C6 | 1.524 (3) | C13—H13A | 0.9900 |
C2—C3 | 1.543 (2) | C13—H13B | 0.9900 |
C2—C9 | 1.493 (3) | C14—H14A | 0.9900 |
C3—C4 | 1.545 (2) | C14—H14B | 0.9900 |
C3—C8 | 1.495 (3) | C15—H15A | 0.9900 |
C4—C5 | 1.532 (3) | C15—H15B | 0.9900 |
C5—C6 | 1.555 (3) | C16—H16A | 0.9900 |
C5—C10 | 1.508 (3) | C16—H16B | 0.9900 |
C11—C12 | 1.508 (2) | C17—H17A | 0.9900 |
C12—C13 | 1.530 (3) | C17—H17B | 0.9900 |
C13—C14 | 1.526 (2) | C18—H18A | 0.9900 |
C14—C15 | 1.522 (3) | C18—H18B | 0.9900 |
C15—C16 | 1.526 (2) | C19—H19A | 0.9900 |
C16—C17 | 1.527 (3) | C19—H19B | 0.9900 |
C17—C18 | 1.524 (2) | C20—H20A | 0.9900 |
C18—C19 | 1.524 (3) | C20—H20B | 0.9900 |
C19—C20 | 1.526 (2) | C21—H21A | 0.9900 |
C20—C21 | 1.525 (3) | C21—H21B | 0.9900 |
C21—C22 | 1.523 (3) | C22—H22A | 0.9900 |
C22—C23 | 1.517 (3) | C22—H22B | 0.9900 |
C23—C24 | 1.522 (3) | C23—H23A | 0.9900 |
C1—H1 | 1.0000 | C23—H23B | 0.9900 |
C2—H2 | 1.0000 | C24—H24A | 0.9800 |
C3—H3 | 1.0000 | C24—H24B | 0.9800 |
C4—H4 | 1.0000 | C24—H24C | 0.9800 |
C8—O3—C9 | 110.30 (15) | H11A—C11—H11B | 108.00 |
C10—O4—C11 | 111.43 (13) | C11—C12—H12A | 109.00 |
C1—O7—C4 | 96.30 (12) | C11—C12—H12B | 109.00 |
O7—C1—C2 | 101.88 (14) | C13—C12—H12A | 109.00 |
O7—C1—C6 | 103.56 (13) | C13—C12—H12B | 109.00 |
C2—C1—C6 | 108.37 (15) | H12A—C12—H12B | 108.00 |
C1—C2—C3 | 101.00 (12) | C12—C13—H13A | 109.00 |
C1—C2—C9 | 111.51 (15) | C12—C13—H13B | 109.00 |
C3—C2—C9 | 104.65 (15) | C14—C13—H13A | 109.00 |
C2—C3—C4 | 102.17 (13) | C14—C13—H13B | 109.00 |
C2—C3—C8 | 103.85 (14) | H13A—C13—H13B | 108.00 |
C4—C3—C8 | 110.84 (15) | C13—C14—H14A | 109.00 |
O7—C4—C3 | 100.89 (12) | C13—C14—H14B | 109.00 |
O7—C4—C5 | 101.89 (13) | C15—C14—H14A | 109.00 |
C3—C4—C5 | 111.74 (14) | C15—C14—H14B | 109.00 |
C4—C5—C6 | 100.84 (14) | H14A—C14—H14B | 108.00 |
C4—C5—C10 | 117.28 (15) | C14—C15—H15A | 109.00 |
C6—C5—C10 | 114.95 (15) | C14—C15—H15B | 109.00 |
C1—C6—C5 | 101.99 (16) | C16—C15—H15A | 109.00 |
O1—C8—O3 | 119.31 (18) | C16—C15—H15B | 109.00 |
O1—C8—C3 | 129.97 (18) | H15A—C15—H15B | 108.00 |
O3—C8—C3 | 110.71 (15) | C15—C16—H16A | 109.00 |
O2—C9—O3 | 119.98 (18) | C15—C16—H16B | 109.00 |
O2—C9—C2 | 129.53 (17) | C17—C16—H16A | 109.00 |
O3—C9—C2 | 110.48 (13) | C17—C16—H16B | 109.00 |
O4—C10—C5 | 108.55 (14) | H16A—C16—H16B | 108.00 |
O4—C11—C12 | 109.93 (14) | C16—C17—H17A | 109.00 |
C11—C12—C13 | 111.78 (14) | C16—C17—H17B | 109.00 |
C12—C13—C14 | 113.45 (14) | C18—C17—H17A | 109.00 |
C13—C14—C15 | 113.41 (14) | C18—C17—H17B | 109.00 |
C14—C15—C16 | 113.84 (14) | H17A—C17—H17B | 108.00 |
C15—C16—C17 | 113.70 (13) | C17—C18—H18A | 109.00 |
C16—C17—C18 | 113.80 (14) | C17—C18—H18B | 109.00 |
C17—C18—C19 | 113.60 (14) | C19—C18—H18A | 109.00 |
C18—C19—C20 | 113.90 (14) | C19—C18—H18B | 109.00 |
C19—C20—C21 | 113.56 (14) | H18A—C18—H18B | 108.00 |
C20—C21—C22 | 114.35 (14) | C18—C19—H19A | 109.00 |
C21—C22—C23 | 113.41 (16) | C18—C19—H19B | 109.00 |
C22—C23—C24 | 114.18 (17) | C20—C19—H19A | 109.00 |
O7—C1—H1 | 114.00 | C20—C19—H19B | 109.00 |
C2—C1—H1 | 114.00 | H19A—C19—H19B | 108.00 |
C6—C1—H1 | 114.00 | C19—C20—H20A | 109.00 |
C1—C2—H2 | 113.00 | C19—C20—H20B | 109.00 |
C3—C2—H2 | 113.00 | C21—C20—H20A | 109.00 |
C9—C2—H2 | 113.00 | C21—C20—H20B | 109.00 |
C2—C3—H3 | 113.00 | H20A—C20—H20B | 108.00 |
C4—C3—H3 | 113.00 | C20—C21—H21A | 109.00 |
C8—C3—H3 | 113.00 | C20—C21—H21B | 109.00 |
O7—C4—H4 | 114.00 | C22—C21—H21A | 109.00 |
C3—C4—H4 | 114.00 | C22—C21—H21B | 109.00 |
C5—C4—H4 | 114.00 | H21A—C21—H21B | 108.00 |
C4—C5—H5 | 108.00 | C21—C22—H22A | 109.00 |
C6—C5—H5 | 108.00 | C21—C22—H22B | 109.00 |
C10—C5—H5 | 108.00 | C23—C22—H22A | 109.00 |
C1—C6—H6A | 111.00 | C23—C22—H22B | 109.00 |
C1—C6—H6B | 111.00 | H22A—C22—H22B | 108.00 |
C5—C6—H6A | 111.00 | C22—C23—H23A | 109.00 |
C5—C6—H6B | 111.00 | C22—C23—H23B | 109.00 |
H6A—C6—H6B | 109.00 | C24—C23—H23A | 109.00 |
O4—C10—H10A | 110.00 | C24—C23—H23B | 109.00 |
O4—C10—H10B | 110.00 | H23A—C23—H23B | 108.00 |
C5—C10—H10A | 110.00 | C23—C24—H24A | 109.00 |
C5—C10—H10B | 110.00 | C23—C24—H24B | 109.00 |
H10A—C10—H10B | 108.00 | C23—C24—H24C | 109.00 |
O4—C11—H11A | 110.00 | H24A—C24—H24B | 110.00 |
O4—C11—H11B | 110.00 | H24A—C24—H24C | 110.00 |
C12—C11—H11A | 110.00 | H24B—C24—H24C | 109.00 |
C12—C11—H11B | 110.00 | ||
C9—O3—C8—O1 | 179.49 (16) | C8—C3—C4—O7 | −74.70 (16) |
C9—O3—C8—C3 | 0.42 (19) | C8—C3—C4—C5 | 177.69 (13) |
C8—O3—C9—O2 | −179.69 (16) | C2—C3—C8—O1 | −178.60 (19) |
C8—O3—C9—C2 | −1.05 (18) | C2—C3—C8—O3 | 0.34 (18) |
C11—O4—C10—C5 | −176.33 (15) | C4—C3—C8—O1 | −69.6 (2) |
C10—O4—C11—C12 | 172.98 (15) | C4—C3—C8—O3 | 109.38 (15) |
C4—O7—C1—C2 | 58.09 (15) | O7—C4—C5—C6 | −38.51 (14) |
C4—O7—C1—C6 | −54.37 (15) | O7—C4—C5—C10 | −164.10 (12) |
C1—O7—C4—C3 | −57.67 (15) | C3—C4—C5—C6 | 68.45 (16) |
C1—O7—C4—C5 | 57.54 (13) | C3—C4—C5—C10 | −57.14 (17) |
O7—C1—C2—C3 | −35.03 (17) | C4—C5—C6—C1 | 4.96 (16) |
O7—C1—C2—C9 | 75.68 (15) | C10—C5—C6—C1 | 132.10 (16) |
C6—C1—C2—C3 | 73.78 (17) | C4—C5—C10—O4 | −69.48 (17) |
C6—C1—C2—C9 | −175.52 (14) | C6—C5—C10—O4 | 172.27 (15) |
O7—C1—C6—C5 | 30.12 (16) | O4—C11—C12—C13 | 178.34 (15) |
C2—C1—C6—C5 | −77.52 (15) | C11—C12—C13—C14 | 175.87 (16) |
C1—C2—C3—C4 | −0.33 (18) | C12—C13—C14—C15 | 175.72 (16) |
C1—C2—C3—C8 | 115.01 (16) | C13—C14—C15—C16 | 177.53 (16) |
C9—C2—C3—C4 | −116.23 (15) | C14—C15—C16—C17 | 175.87 (17) |
C9—C2—C3—C8 | −0.89 (17) | C15—C16—C17—C18 | −175.12 (17) |
C1—C2—C9—O2 | 71.3 (2) | C16—C17—C18—C19 | −177.12 (16) |
C1—C2—C9—O3 | −107.15 (15) | C17—C18—C19—C20 | −177.78 (16) |
C3—C2—C9—O2 | 179.68 (18) | C18—C19—C20—C21 | −178.20 (16) |
C3—C2—C9—O3 | 1.21 (17) | C19—C20—C21—C22 | 177.79 (16) |
C2—C3—C4—O7 | 35.43 (17) | C20—C21—C22—C23 | 179.38 (17) |
C2—C3—C4—C5 | −72.18 (16) | C21—C22—C23—C24 | 178.66 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 1.00 | 2.30 | 3.163 (2) | 144 |
C4—H4···O2ii | 1.00 | 2.44 | 3.377 (2) | 156 |
Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C23H38O5 |
Mr | 394.53 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 180 |
a, b, c (Å) | 6.8541 (5), 35.206 (4), 9.2992 (7) |
β (°) | 99.060 (7) |
V (Å3) | 2216.0 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.47 × 0.17 × 0.02 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.865, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9120, 4053, 2974 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.108, 1.04 |
No. of reflections | 4053 |
No. of parameters | 255 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.19 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 1.00 | 2.30 | 3.163 (2) | 144 |
C4—H4···O2ii | 1.00 | 2.44 | 3.377 (2) | 156 |
Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) x+1, y, z. |
Acknowledgements
The authors gratefully acknowledge the National Science Foundation (NSF–CAREER grant to RES, CHE-0846680; NSF–RUI grant to DCF, CHE-0957482). DCF also gratefully acknowledges the Camille and Henry Dreyfus Foundation (TH-06–008) for partial support of this work.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brieger, G. & Nestrick, T. J. (1974). Chem. Rev. 74, 567–580. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Knowles, W. S. (2002). Angew. Chem. Int. Ed. 41, 1998–2007. CrossRef CAS Google Scholar
Lowry, T. H. & Richardson, K. S. (1987). Mechanism and Theory in Organic Chemistry, 3rd ed. New York: Harper & Row. Google Scholar
Oppolzer, W. (1991). Comprehensive Organic Synthesis, edited by B. M. Trost & I Fleming. Oxford: Pergamon. Google Scholar
Palmer, D. R. J. (2004). J. Chem. Educ. 81, 1633–1635. CrossRef CAS Google Scholar
Pellissier, H. (2012). Tetrahedron, 68, 2197–2232. Web of Science CrossRef CAS Google Scholar
Pindur, U., Lutz, G. & Otto, C. (1993). Chem. Rev. 93, 741–761. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, M. B. (2012). March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th ed. New York: Wiley. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The pericyclic [4 + 2] cycloaddition can arguably be considered as one of the most versatile transformations when considering both atom economy and stereochemistry as reported by Oppolzer (1991), Pindur et al. (1993), and Pellissier (2012). When coupled to processes which are driven under kinetic or thermodynamic reaction conditions as illustrated by Lowry & Richardson (1987) and Smith (2012), the opportunity to illustrate both modalities on one unified system exists. That is, the irreversible hydrogenation of alkenes as reported by Brieger & Nestrick (1974) and Knowles (2002) and the reversible [4 + 2] cycloaddition when using not cyclopentadiene but furan with maleic anhydride as reported by Palmer (2004) provided us with a platform to illustrate both processes on one system. Upon reversible cycloaddition of a substituted furan with maleic anhydride, the resulting alkene was subjected to catalytic hydrogenation of the alkene.
As the end product was both crystalline and suitable for X-ray analysis, we succeeded in illustrating both reaction pathways of kinetic and thermodynamic driven processes through the establishment of five contiguous stereocenters, as shown in Fig. 1.
The title compound was isolated as the major product in moderate yield and offered definitive evidence of the facial selectivity involved in the catalytic hydrogenation as well as the juxtaposition of the anhydride relative to the bicyclic scaffold as a result of the [4 + 2] cycloaddition. The configurations of the preexisting sites C1, C2, C3, and C4 prior to the hydrogenation of the alkene are S, R, S, and R for one of the enantiomers of the racemic mixture, and R, S, R, and S for the other, respectively. The configuration of the newly formed stereocenter upon hydrogenation of the chiral racemic mixture is R for the former, S for the latter, which confirms a profile of kinetic reaction control for the hydrogenation and thermodynamic reaction control for the cycloaddition.
In the solid state structure of the title compound (Fig. 1) the small amount of vibrational motion of the tetradecoxymethyl tail group indicates a significant degree of non-covalent interactions within those domains. No unusual deviations from normal bond distances or bond angles are observed in the title molecule.
In the crystal, molecules are linked head-to-head via C-H···O hydrogen bonds (Table 1) to form V-shaped or folded two-dimensional networks extending in the a and c directions. In the crystal, there are clear hydrophobic and hydrophilic domains (Fig. 2).