metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1476-m1477

cis-Di­chloridobis(2-iso­cyano­phenyl 4-meth­­oxy­benzoate)palladium(II) chloro­form monosolvate

aDepartment of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and bUniversity of Jyväskylä, Department of Chemistry, PO Box 35, 40014 University of Jyväskylä, Finland
*Correspondence e-mail: matti.o.haukka@jyu.fi

(Received 25 September 2012; accepted 6 November 2012; online 14 November 2012)

In the title compound, [PdCl2(C15H11NO3)2]·CHCl3, the PdII atom adopts a slightly distorted square-planar coordination geometry composed of two Cl atoms in cis positions and two C atoms from isocyano­phenyl ligands. The mol­ecular conformation is stabilized by ππ stacking inter­actions [shortest centroid–centroid distance = 3.600 (1) Å] between substituted benzene rings of different ligands. The crystal packing is characterized by C—H⋯O and C—H⋯Cl inter­actions involving the chloro­form solvent mol­ecules.

Related literature

For further information on acyclic diamino­carbenes, see: Slaughter (2012[Slaughter, L. M. (2012). ACS Catal. 2, 1802-1816.]); Boyarskiy et al. (2012[Boyarskiy, V. P., Luzyanin, K. V. & Kukushkin, V. Y. (2012). Coord. Chem. Rev. 256, 2029-2056.]). For background to the Passerini reaction, see: Banfi & Riva (2005[Banfi, L. & Riva, R. (2005). Org. React. pp. 1-140.]). For novel metal-mediated coupling as a route to cyclic carbenes and amino­carbene complexes, see: Luzyanin et al. (2009a[Luzyanin, K. V., Tskhovrebov, A. G., Carias, M. C., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2009a). Organometallics, 28, 6559-6566.],b[Luzyanin, K. V., Tskhovrebov, A. G., Guedes da Silva, M. F. C., Haukka, M., Pombeiro, A. J. L. & Kukushkin, V. Y. (2009b). Chem. Eur. J. 15, 5969-5978.]); Tskhovrebov et al. (2011[Tskhovrebov, A. G., Luzyanin, K. V., Dolgushin, F. M., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2011). Organometallics, 30, 3362-3370.]); Chay et al. (2012[Chay, R. S., Luzyanin, K. V., Kukushkin, V. Y., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2012). Organometallics, 31, 2379-2387.]). For related structures, see: Davies et al. (1996[Davies, J. A., Hockensmith, C. M., Kukushkin, V. Y. & Kukushkin, Y. N. (1996). In Synthetic Coordination Chemistry: Principles and Practice. Singapore: World Scientific.]); Bertani et al. (1991[Bertani, R., Mozzon, M., Michelin, R. A., Benetollo, F., Bombieri, G., Castilho, T. J. & Pombeiro, A. J. L. (1991). Inorg. Chim. Acta, 189, 175-187.]); Bonati & Minghetti (1970[Bonati, F. & Minghetti, G. (1970). J. Organomet. Chem. 24, 251-256.]); Luzyanin et al. (2009a[Luzyanin, K. V., Tskhovrebov, A. G., Carias, M. C., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2009a). Organometallics, 28, 6559-6566.],b[Luzyanin, K. V., Tskhovrebov, A. G., Guedes da Silva, M. F. C., Haukka, M., Pombeiro, A. J. L. & Kukushkin, V. Y. (2009b). Chem. Eur. J. 15, 5969-5978.]); Michelin et al. (1988a[Michelin, R. A., Zanotto, L., Braga, D., Sabatino, P. & Angelici, R. J. (1988a). Inorg. Chem. 27, 85-92.],b[Michelin, R. A., Zanotto, L., Braga, D., Sabatino, P. & Angelici, R. J. (1988b). Inorg. Chem. 27, 93-99.]); Rourke (2007[Rourke, J. P. (2007). In Comprehensive Organometallic Chemistry III, 1st ed., edited by A. Canty, Vol. 8, ch. 8.07, pp. 405-444. Oxford: Elsevier.]). For bond lengths in coordin­ation complexes, see: Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C15H11NO3)2]·CHCl3

  • Mr = 803.16

  • Orthorhombic, P 21 21 21

  • a = 7.4457 (1) Å

  • b = 12.1352 (4) Å

  • c = 36.1109 (11) Å

  • V = 3262.80 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 100 K

  • 0.35 × 0.23 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])Tmin = 0.717, Tmax = 0.903

  • 24908 measured reflections

  • 9228 independent reflections

  • 7397 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.067

  • S = 1.01

  • 9228 reflections

  • 408 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.79 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3936 Friedel pairs

  • Flack parameter: −0.011 (17)

Table 1
Selected bond lengths (Å)

Pd1—C16 1.935 (3)
Pd1—C1 1.947 (3)
Pd1—Cl2 2.2979 (7)
Pd1—Cl1 2.2994 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.53 3.193 (4) 127
C6—H6⋯O6ii 0.95 2.53 3.433 (4) 158
C19—H19⋯O5iii 0.95 2.37 3.182 (3) 143
C20—H20⋯Cl1iv 0.95 2.80 3.622 (3) 145
C31—H31⋯Cl1v 1.00 2.77 3.607 (3) 141
C31—H31⋯Cl2v 1.00 2.67 3.513 (3) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (v) x-1, y+1, z.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Isocyanides are important organic reagents used in multicomponent reactions such as, e.g., Ugi and Passerini reactions (Banfi & Riva, 2005). Metal complexes of isocyanides could be used as precursors for the generation of coordinated N-heterocyclic carbenes (NHC's) and acyclic diaminocarbenes (ADS's) (Slaughter, 2012). In turn, PdII-NHC and PdII-ADC systems are particularly interesting since they are used as catalysts in a wide range of cross-coupling reactions (Boyarskiy et al., 2012). Recently, it was observed that the coupling of PdII-bound isocyanides and various nucleophiles leads to the formation of cyclic carbenes (Luzyanin et al., 2009b) and ADC complexes (Luzyanin et al., 2009a; Tskhovrebov et al., 2011; Chay et al., 2012), which could not be obtained by the common methods for the generation of metal carbenes. Here we report the structure of a new isocyanide complex that could be used as a starting material for generation of various palladium carbenes.

In the title compound, the isocyanide ligands are mutually in the cis-position (Fig. 1) insofar as the ligated RNC species exhibit higher trans-effect than the chlorides (Davies et al., 1996). The fragments C–N–C–Pd in both complexes are almost linear, viz., the angles N1–C1–Pd1 and N2–C16–Pd1 are 174.2 (2)° and 177.4 (3)°, respectively. The angles C2–N1–C1 and C17–N2–C16 are 174.3 (3)° and 172.0 (3)°, correspondingly. In the isocyanide moieties, the CN triple bonds [C1–N1 1.141 (3) Å and C16–N2 1.150 (3) Å] are close to those in some other palladium-isocyanide complexes (Bertani et al., 1991; Bonati & Minghetti, 1970; Luzyanin et al., 2009a,b; Michelin et al., 1988a,b; Orpen et al., 1989; Rourke, 2007). The molecular conformation is stabilized by π-π stacking interactions [shortest centroid-centroid distance = 3.600 (1) Å] between the substituted benzene rings C9–C15 and C17–C22 of different ligands. The crystal packing is characterized by intermolecular C-H···O and C-H···Cl interactions involving the chloroform solvent molecules (Table 1).

Related literature top

For further information on acyclic diaminocarbenes, see: Slaughter (2012); Boyarskiy et al. (2012). For background to the Passerini reaction, see: Banfi & Riva (2005). For novel metal-mediated coupling as a route to cyclic carbenes and aminocarbene complexes, see: Luzyanin et al. (2009a,b); Tskhovrebov et al. (2011); Chay et al. (2012). For related structures, see: Davies et al. (1996); Bertani et al. (1991); Bonati & Minghetti (1970); Luzyanin et al. (2009a,b); Michelin et al. (1988a,b); Rourke (2007). For bond lengths in coordination complexes, see: Orpen et al. (1989).

Experimental top

The title compound was synthesized by the addition of 2 equiv of 2-isocyanophenyl-4-methoxybenzoate into a chloroform solution of [PdCl2(MeCN)2]. The solid product was dissolved and recrystallized by slow evaporation from a solution of Et2O/CHCl3 (1:1, v/v).

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso = 1.2Ueq(C) for aromatic H atoms, with C—H = 1.00 Å and Uiso = 1.2Ueq(C) for methine H atoms, and with C—H = 0.98 Å and Uiso = 1.5Ueq(C) for methyl H atoms. The highest peak is located 1.28 Å from atom Cl6 and the deepest hole is located 0.78 Å from atom Pd1.

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
cis-Dichloridobis(2-isocyanophenyl 4-methoxybenzoate)palladium(II) chloroform monosolvate top
Crystal data top
[PdCl2(C15H11NO3)2]·CHCl3F(000) = 1608
Mr = 803.16Dx = 1.635 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 24908 reflections
a = 7.4457 (1) Åθ = 3.2–30.0°
b = 12.1352 (4) ŵ = 1.02 mm1
c = 36.1109 (11) ÅT = 100 K
V = 3262.80 (15) Å3Block, colourless
Z = 40.35 × 0.23 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
9228 independent reflections
Radiation source: fine-focus sealed tube7397 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.046
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 3.2°
ϕ scans and ω scans with κ offseth = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1715
Tmin = 0.717, Tmax = 0.903l = 5041
24908 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0262P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.004
9228 reflectionsΔρmax = 0.61 e Å3
408 parametersΔρmin = 0.79 e Å3
0 restraintsAbsolute structure: Flack (1983), 3936 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (17)
Crystal data top
[PdCl2(C15H11NO3)2]·CHCl3V = 3262.80 (15) Å3
Mr = 803.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4457 (1) ŵ = 1.02 mm1
b = 12.1352 (4) ÅT = 100 K
c = 36.1109 (11) Å0.35 × 0.23 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
9228 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
7397 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.903Rint = 0.046
24908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.61 e Å3
S = 1.01Δρmin = 0.79 e Å3
9228 reflectionsAbsolute structure: Flack (1983), 3936 Friedel pairs
408 parametersAbsolute structure parameter: 0.011 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.70069 (3)0.468290 (17)0.888077 (5)0.01742 (5)
Cl10.77179 (10)0.36814 (6)0.940105 (18)0.02588 (17)
Cl20.78655 (11)0.32749 (5)0.849385 (18)0.02437 (15)
Cl30.19677 (12)1.19482 (6)0.947449 (18)0.02811 (16)
Cl40.16546 (10)1.10483 (7)0.873361 (19)0.03021 (18)
Cl50.30198 (14)1.32462 (7)0.88439 (2)0.0512 (2)
O10.7349 (2)0.81404 (15)0.82187 (5)0.0201 (4)
O20.5584 (2)0.96590 (18)0.81736 (5)0.0243 (4)
O30.8859 (2)0.99125 (16)0.98090 (5)0.0236 (5)
O40.3493 (2)0.79408 (15)0.89629 (5)0.0176 (4)
O50.1775 (3)0.65489 (16)0.91802 (5)0.0243 (5)
O60.0757 (3)0.58547 (17)0.74567 (5)0.0231 (5)
N10.6421 (3)0.60184 (19)0.81643 (6)0.0197 (5)
N20.5755 (3)0.66170 (19)0.93709 (6)0.0181 (5)
C10.6542 (3)0.5533 (2)0.84336 (8)0.0202 (6)
C20.6443 (3)0.6656 (2)0.78406 (7)0.0181 (6)
C30.6047 (4)0.6183 (3)0.75010 (7)0.0213 (6)
H30.57600.54220.74840.026*
C40.6076 (4)0.6834 (3)0.71872 (8)0.0242 (7)
H40.58020.65220.69530.029*
C50.6502 (4)0.7939 (3)0.72142 (8)0.0246 (7)
H50.65050.83830.69970.030*
C60.6925 (4)0.8410 (2)0.75529 (7)0.0220 (6)
H60.72450.91660.75670.026*
C70.6877 (4)0.7772 (2)0.78685 (7)0.0175 (6)
C80.6627 (4)0.9124 (2)0.83496 (7)0.0175 (6)
C90.7281 (3)0.9349 (2)0.87254 (7)0.0158 (6)
C100.6814 (3)1.0340 (2)0.88931 (7)0.0187 (5)
H100.61371.08670.87580.022*
C110.7323 (3)1.0570 (2)0.92547 (7)0.0186 (6)
H110.70031.12520.93660.022*
C120.8307 (3)0.9794 (2)0.94535 (7)0.0185 (6)
C130.8259 (4)1.0869 (2)1.00095 (7)0.0293 (7)
H13A0.86861.15360.98840.044*
H13B0.87391.08471.02620.044*
H13C0.69441.08751.00190.044*
C140.8794 (3)0.8798 (2)0.92857 (7)0.0176 (6)
H140.94650.82670.94210.021*
C150.8303 (3)0.8586 (2)0.89253 (7)0.0173 (6)
H150.86620.79160.88110.021*
C160.6242 (4)0.5885 (2)0.91953 (7)0.0194 (6)
C170.5048 (4)0.7558 (2)0.95387 (7)0.0165 (6)
C180.5512 (3)0.7851 (2)0.98970 (7)0.0176 (6)
H180.63060.74031.00380.021*
C190.4803 (3)0.8805 (2)1.00472 (7)0.0173 (6)
H190.51050.90151.02930.021*
C200.3652 (3)0.9456 (2)0.98394 (7)0.0176 (6)
H200.31701.01100.99440.021*
C210.3197 (4)0.9165 (2)0.94812 (7)0.0171 (6)
H210.24070.96170.93410.021*
C220.3893 (3)0.8223 (2)0.93303 (7)0.0152 (6)
C230.2352 (3)0.7055 (2)0.89214 (8)0.0182 (6)
C240.1980 (4)0.6801 (2)0.85274 (7)0.0153 (5)
C250.1211 (4)0.5787 (2)0.84476 (7)0.0198 (6)
H250.09400.52930.86440.024*
C260.0834 (3)0.5485 (2)0.80881 (7)0.0203 (6)
H260.03490.47780.80350.024*
C270.1174 (3)0.6232 (2)0.78018 (7)0.0185 (6)
C280.1047 (4)0.6582 (3)0.71486 (7)0.0269 (7)
H28A0.03540.72600.71850.040*
H28B0.06580.62210.69200.040*
H28C0.23270.67630.71310.040*
C290.1902 (4)0.7258 (2)0.78777 (7)0.0185 (6)
H290.21170.77650.76820.022*
C300.2316 (3)0.7546 (2)0.82398 (7)0.0182 (6)
H300.28250.82470.82920.022*
C310.1513 (4)1.2255 (2)0.90068 (7)0.0237 (7)
H310.02671.25570.89880.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02268 (10)0.01504 (10)0.01454 (9)0.00299 (10)0.00058 (9)0.00068 (9)
Cl10.0409 (4)0.0209 (4)0.0159 (3)0.0074 (3)0.0020 (3)0.0008 (3)
Cl20.0353 (4)0.0195 (3)0.0184 (3)0.0051 (4)0.0003 (3)0.0039 (3)
Cl30.0448 (4)0.0220 (4)0.0175 (3)0.0023 (4)0.0028 (4)0.0009 (3)
Cl40.0401 (4)0.0340 (4)0.0165 (3)0.0044 (4)0.0049 (3)0.0018 (3)
Cl50.0628 (5)0.0512 (6)0.0397 (5)0.0301 (5)0.0031 (6)0.0165 (4)
O10.0291 (11)0.0193 (10)0.0119 (9)0.0024 (9)0.0041 (8)0.0030 (8)
O20.0310 (11)0.0232 (11)0.0186 (11)0.0062 (11)0.0058 (8)0.0005 (10)
O30.0283 (10)0.0287 (13)0.0139 (10)0.0011 (9)0.0028 (8)0.0068 (9)
O40.0247 (10)0.0177 (10)0.0104 (10)0.0043 (8)0.0010 (7)0.0006 (7)
O50.0324 (11)0.0296 (12)0.0109 (9)0.0083 (10)0.0024 (9)0.0012 (8)
O60.0312 (11)0.0284 (12)0.0097 (10)0.0021 (10)0.0025 (8)0.0009 (9)
N10.0214 (12)0.0170 (13)0.0207 (13)0.0035 (10)0.0028 (10)0.0013 (10)
N20.0240 (12)0.0146 (13)0.0157 (12)0.0036 (10)0.0030 (10)0.0016 (10)
C10.0197 (14)0.0167 (16)0.0240 (15)0.0023 (11)0.0033 (11)0.0053 (12)
C20.0170 (13)0.0228 (16)0.0145 (14)0.0005 (12)0.0000 (11)0.0000 (12)
C30.0226 (14)0.0219 (16)0.0194 (15)0.0021 (13)0.0001 (12)0.0042 (13)
C40.0263 (15)0.0324 (19)0.0138 (15)0.0011 (14)0.0004 (12)0.0041 (13)
C50.0286 (16)0.0288 (17)0.0165 (15)0.0035 (14)0.0008 (12)0.0008 (13)
C60.0283 (14)0.0202 (15)0.0176 (14)0.0023 (15)0.0017 (14)0.0017 (11)
C70.0188 (13)0.0208 (14)0.0128 (12)0.0011 (13)0.0010 (12)0.0037 (11)
C80.0210 (15)0.0163 (14)0.0150 (13)0.0017 (12)0.0016 (11)0.0010 (11)
C90.0185 (13)0.0153 (13)0.0137 (12)0.0027 (11)0.0008 (11)0.0002 (10)
C100.0196 (12)0.0157 (12)0.0207 (13)0.0019 (13)0.0011 (13)0.0053 (13)
C110.0232 (14)0.0135 (14)0.0190 (13)0.0018 (11)0.0029 (11)0.0015 (10)
C120.0182 (13)0.0235 (15)0.0138 (13)0.0040 (13)0.0001 (10)0.0022 (12)
C130.0363 (18)0.0322 (18)0.0192 (15)0.0030 (16)0.0014 (14)0.0105 (13)
C140.0184 (13)0.0176 (15)0.0169 (14)0.0011 (12)0.0009 (11)0.0029 (12)
C150.0167 (13)0.0175 (14)0.0177 (14)0.0002 (11)0.0003 (11)0.0001 (11)
C160.0210 (14)0.0214 (16)0.0158 (14)0.0002 (13)0.0001 (11)0.0043 (12)
C170.0188 (13)0.0155 (14)0.0152 (14)0.0003 (12)0.0039 (11)0.0017 (12)
C180.0159 (13)0.0190 (15)0.0180 (15)0.0010 (12)0.0002 (11)0.0040 (12)
C190.0202 (14)0.0214 (16)0.0103 (13)0.0052 (13)0.0006 (11)0.0004 (12)
C200.0220 (13)0.0147 (15)0.0160 (13)0.0004 (11)0.0026 (11)0.0011 (11)
C210.0196 (13)0.0166 (14)0.0153 (13)0.0003 (12)0.0002 (11)0.0005 (11)
C220.0204 (13)0.0166 (15)0.0087 (13)0.0034 (12)0.0002 (10)0.0009 (11)
C230.0189 (13)0.0194 (14)0.0162 (14)0.0025 (11)0.0020 (11)0.0006 (12)
C240.0158 (12)0.0183 (13)0.0118 (12)0.0001 (13)0.0002 (12)0.0015 (10)
C250.0218 (14)0.0222 (16)0.0154 (14)0.0002 (12)0.0018 (11)0.0032 (12)
C260.0214 (13)0.0196 (17)0.0198 (14)0.0043 (13)0.0008 (11)0.0002 (13)
C270.0157 (13)0.0248 (16)0.0151 (14)0.0033 (13)0.0006 (11)0.0011 (12)
C280.0300 (16)0.038 (2)0.0127 (14)0.0025 (15)0.0032 (13)0.0035 (13)
C290.0196 (13)0.0231 (15)0.0128 (12)0.0003 (14)0.0006 (12)0.0032 (11)
C300.0205 (14)0.0184 (14)0.0157 (13)0.0004 (12)0.0012 (11)0.0024 (11)
C310.0267 (15)0.0252 (17)0.0192 (15)0.0005 (13)0.0039 (12)0.0044 (12)
Geometric parameters (Å, º) top
Pd1—C161.935 (3)C10—H100.9500
Pd1—C11.947 (3)C11—C121.393 (4)
Pd1—Cl22.2979 (7)C11—H110.9500
Pd1—Cl12.2994 (7)C12—C141.400 (4)
Cl3—C311.762 (3)C13—H13A0.9800
Cl4—C311.768 (3)C13—H13B0.9800
Cl5—C311.747 (3)C13—H13C0.9800
O1—C71.387 (3)C14—C151.376 (4)
O1—C81.392 (3)C14—H140.9500
O2—C81.195 (3)C15—H150.9500
O3—C121.356 (3)C17—C181.386 (4)
O3—C131.439 (3)C17—C221.400 (4)
O4—C231.379 (3)C18—C191.383 (4)
O4—C221.402 (3)C18—H180.9500
O5—C231.198 (3)C19—C201.386 (4)
O6—C271.364 (3)C19—H190.9500
O6—C281.437 (3)C20—C211.383 (3)
N1—C11.141 (3)C20—H200.9500
N1—C21.402 (3)C21—C221.368 (3)
N2—C161.150 (3)C21—H210.9500
N2—C171.395 (3)C23—C241.482 (3)
C2—C31.386 (4)C24—C251.387 (4)
C2—C71.396 (4)C24—C301.400 (3)
C3—C41.382 (4)C25—C261.378 (3)
C3—H30.9500C25—H250.9500
C4—C51.381 (4)C26—C271.398 (4)
C4—H40.9500C26—H260.9500
C5—C61.386 (4)C27—C291.385 (4)
C5—H50.9500C28—H28A0.9800
C6—C71.378 (3)C28—H28B0.9800
C6—H60.9500C28—H28C0.9800
C8—C91.467 (3)C29—C301.388 (3)
C9—C101.391 (3)C29—H290.9500
C9—C151.399 (4)C30—H300.9500
C10—C111.388 (3)C31—H311.0000
C16—Pd1—C192.00 (12)C14—C15—C9120.6 (3)
C16—Pd1—Cl2178.37 (8)C14—C15—H15119.7
C1—Pd1—Cl286.52 (8)C9—C15—H15119.7
C16—Pd1—Cl189.24 (8)N2—C16—Pd1177.4 (3)
C1—Pd1—Cl1176.91 (8)C18—C17—N2121.4 (2)
Cl2—Pd1—Cl192.28 (3)C18—C17—C22120.5 (3)
C7—O1—C8119.2 (2)N2—C17—C22118.1 (2)
C12—O3—C13117.9 (2)C19—C18—C17119.1 (3)
C23—O4—C22115.11 (19)C19—C18—H18120.5
C27—O6—C28117.8 (2)C17—C18—H18120.5
C1—N1—C2174.3 (3)C18—C19—C20120.0 (3)
C16—N2—C17172.0 (3)C18—C19—H19120.0
N1—C1—Pd1174.2 (2)C20—C19—H19120.0
C3—C2—C7121.0 (3)C21—C20—C19120.8 (3)
C3—C2—N1120.5 (3)C21—C20—H20119.6
C7—C2—N1118.5 (2)C19—C20—H20119.6
C4—C3—C2119.1 (3)C22—C21—C20119.5 (2)
C4—C3—H3120.5C22—C21—H21120.2
C2—C3—H3120.5C20—C21—H21120.2
C5—C4—C3120.1 (3)C21—C22—C17120.0 (2)
C5—C4—H4120.0C21—C22—O4120.1 (2)
C3—C4—H4120.0C17—C22—O4119.9 (2)
C4—C5—C6120.9 (3)O5—C23—O4122.4 (3)
C4—C5—H5119.5O5—C23—C24125.2 (2)
C6—C5—H5119.5O4—C23—C24112.4 (2)
C7—C6—C5119.5 (3)C25—C24—C30119.5 (2)
C7—C6—H6120.2C25—C24—C23117.4 (2)
C5—C6—H6120.2C30—C24—C23123.0 (2)
C6—C7—O1124.5 (2)C26—C25—C24121.1 (3)
C6—C7—C2119.4 (2)C26—C25—H25119.5
O1—C7—C2115.9 (2)C24—C25—H25119.5
O2—C8—O1122.4 (2)C25—C26—C27119.1 (3)
O2—C8—C9127.3 (3)C25—C26—H26120.4
O1—C8—C9110.2 (2)C27—C26—H26120.4
C10—C9—C15118.9 (2)O6—C27—C29124.9 (2)
C10—C9—C8118.7 (2)O6—C27—C26114.6 (2)
C15—C9—C8122.3 (2)C29—C27—C26120.5 (2)
C11—C10—C9121.0 (2)O6—C28—H28A109.5
C11—C10—H10119.5O6—C28—H28B109.5
C9—C10—H10119.5H28A—C28—H28B109.5
C10—C11—C12119.5 (2)O6—C28—H28C109.5
C10—C11—H11120.3H28A—C28—H28C109.5
C12—C11—H11120.3H28B—C28—H28C109.5
O3—C12—C11125.1 (2)C27—C29—C30120.0 (2)
O3—C12—C14115.0 (2)C27—C29—H29120.0
C11—C12—C14119.8 (2)C30—C29—H29120.0
O3—C13—H13A109.5C29—C30—C24119.8 (3)
O3—C13—H13B109.5C29—C30—H30120.1
H13A—C13—H13B109.5C24—C30—H30120.1
O3—C13—H13C109.5Cl5—C31—Cl3110.17 (15)
H13A—C13—H13C109.5Cl5—C31—Cl4110.14 (15)
H13B—C13—H13C109.5Cl3—C31—Cl4110.39 (16)
C15—C14—C12120.1 (3)Cl5—C31—H31108.7
C15—C14—H14119.9Cl3—C31—H31108.7
C12—C14—H14119.9Cl4—C31—H31108.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.533.193 (4)127
C6—H6···O6ii0.952.533.433 (4)158
C19—H19···O5iii0.952.373.182 (3)143
C20—H20···Cl1iv0.952.803.622 (3)145
C31—H31···Cl1v1.002.773.607 (3)141
C31—H31···Cl2v1.002.673.513 (3)142
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1/2, y+3/2, z+2; (iv) x1/2, y+3/2, z+2; (v) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[PdCl2(C15H11NO3)2]·CHCl3
Mr803.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.4457 (1), 12.1352 (4), 36.1109 (11)
V3)3262.80 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.35 × 0.23 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.717, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
24908, 9228, 7397
Rint0.046
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.067, 1.01
No. of reflections9228
No. of parameters408
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.79
Absolute structureFlack (1983), 3936 Friedel pairs
Absolute structure parameter0.011 (17)

Computer programs: COLLECT (Nonius, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Selected bond lengths (Å) top
Pd1—C161.935 (3)Pd1—Cl22.2979 (7)
Pd1—C11.947 (3)Pd1—Cl12.2994 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.533.193 (4)127.3
C6—H6···O6ii0.952.533.433 (4)158.0
C19—H19···O5iii0.952.373.182 (3)142.7
C20—H20···Cl1iv0.952.803.622 (3)145.0
C31—H31···Cl1v1.002.773.607 (3)141.2
C31—H31···Cl2v1.002.673.513 (3)141.8
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1/2, y+3/2, z+2; (iv) x1/2, y+3/2, z+2; (v) x1, y+1, z.
 

Acknowledgements

This work was supported by the Russian Fund for Basic Research (grant 12–03-00076).

References

First citationBanfi, L. & Riva, R. (2005). Org. React. pp. 1–140.  Google Scholar
First citationBertani, R., Mozzon, M., Michelin, R. A., Benetollo, F., Bombieri, G., Castilho, T. J. & Pombeiro, A. J. L. (1991). Inorg. Chim. Acta, 189, 175–187.  CSD CrossRef CAS Web of Science Google Scholar
First citationBonati, F. & Minghetti, G. (1970). J. Organomet. Chem. 24, 251–256.  CrossRef CAS Web of Science Google Scholar
First citationBoyarskiy, V. P., Luzyanin, K. V. & Kukushkin, V. Y. (2012). Coord. Chem. Rev. 256, 2029–2056.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChay, R. S., Luzyanin, K. V., Kukushkin, V. Y., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2012). Organometallics, 31, 2379–2387.  Web of Science CSD CrossRef CAS Google Scholar
First citationDavies, J. A., Hockensmith, C. M., Kukushkin, V. Y. & Kukushkin, Y. N. (1996). In Synthetic Coordination Chemistry: Principles and Practice. Singapore: World Scientific.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLuzyanin, K. V., Tskhovrebov, A. G., Carias, M. C., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2009a). Organometallics, 28, 6559–6566.  Web of Science CrossRef CAS Google Scholar
First citationLuzyanin, K. V., Tskhovrebov, A. G., Guedes da Silva, M. F. C., Haukka, M., Pombeiro, A. J. L. & Kukushkin, V. Y. (2009b). Chem. Eur. J. 15, 5969–5978.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMichelin, R. A., Zanotto, L., Braga, D., Sabatino, P. & Angelici, R. J. (1988a). Inorg. Chem. 27, 85–92.  CSD CrossRef CAS Web of Science Google Scholar
First citationMichelin, R. A., Zanotto, L., Braga, D., Sabatino, P. & Angelici, R. J. (1988b). Inorg. Chem. 27, 93–99.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRourke, J. P. (2007). In Comprehensive Organometallic Chemistry III, 1st ed., edited by A. Canty, Vol. 8, ch. 8.07, pp. 405–444. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlaughter, L. M. (2012). ACS Catal. 2, 1802–1816.  Web of Science CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Luzyanin, K. V., Dolgushin, F. M., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2011). Organometallics, 30, 3362–3370.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1476-m1477
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds