metal-organic compounds
cis-Dichloridobis(2-isocyanophenyl 4-methoxybenzoate)palladium(II) chloroform monosolvate
aDepartment of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and bUniversity of Jyväskylä, Department of Chemistry, PO Box 35, 40014 University of Jyväskylä, Finland
*Correspondence e-mail: matti.o.haukka@jyu.fi
In the title compound, [PdCl2(C15H11NO3)2]·CHCl3, the PdII atom adopts a slightly distorted square-planar coordination geometry composed of two Cl atoms in cis positions and two C atoms from isocyanophenyl ligands. The molecular conformation is stabilized by π–π stacking interactions [shortest centroid–centroid distance = 3.600 (1) Å] between substituted benzene rings of different ligands. The crystal packing is characterized by C—H⋯O and C—H⋯Cl interactions involving the chloroform solvent molecules.
Related literature
For further information on acyclic diaminocarbenes, see: Slaughter (2012); Boyarskiy et al. (2012). For background to the Passerini reaction, see: Banfi & Riva (2005). For novel metal-mediated coupling as a route to cyclic and aminocarbene complexes, see: Luzyanin et al. (2009a,b); Tskhovrebov et al. (2011); Chay et al. (2012). For related structures, see: Davies et al. (1996); Bertani et al. (1991); Bonati & Minghetti (1970); Luzyanin et al. (2009a,b); Michelin et al. (1988a,b); Rourke (2007). For bond lengths in coordination complexes, see: Orpen et al. (1989).
Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 1997); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812045801/zq2184sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812045801/zq2184Isup2.hkl
The title compound was synthesized by the addition of 2 equiv of 2-isocyanophenyl-4-methoxybenzoate into a chloroform solution of [PdCl2(MeCN)2]. The solid product was dissolved and recrystallized by slow evaporation from a solution of Et2O/CHCl3 (1:1, v/v).
All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso = 1.2Ueq(C) for aromatic H atoms, with C—H = 1.00 Å and Uiso = 1.2Ueq(C) for methine H atoms, and with C—H = 0.98 Å and Uiso = 1.5Ueq(C) for methyl H atoms. The highest peak is located 1.28 Å from atom Cl6 and the deepest hole is located 0.78 Å from atom Pd1.
Data collection: COLLECT (Nonius, 1997); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. |
[PdCl2(C15H11NO3)2]·CHCl3 | F(000) = 1608 |
Mr = 803.16 | Dx = 1.635 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 24908 reflections |
a = 7.4457 (1) Å | θ = 3.2–30.0° |
b = 12.1352 (4) Å | µ = 1.02 mm−1 |
c = 36.1109 (11) Å | T = 100 K |
V = 3262.80 (15) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.23 × 0.10 mm |
Nonius KappaCCD diffractometer | 9228 independent reflections |
Radiation source: fine-focus sealed tube | 7397 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.046 |
Detector resolution: 9 pixels mm-1 | θmax = 30.0°, θmin = 3.2° |
ϕ scans and ω scans with κ offset | h = −10→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | k = −17→15 |
Tmin = 0.717, Tmax = 0.903 | l = −50→41 |
24908 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0262P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.004 |
9228 reflections | Δρmax = 0.61 e Å−3 |
408 parameters | Δρmin = −0.79 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 3936 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.011 (17) |
[PdCl2(C15H11NO3)2]·CHCl3 | V = 3262.80 (15) Å3 |
Mr = 803.16 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.4457 (1) Å | µ = 1.02 mm−1 |
b = 12.1352 (4) Å | T = 100 K |
c = 36.1109 (11) Å | 0.35 × 0.23 × 0.10 mm |
Nonius KappaCCD diffractometer | 9228 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 7397 reflections with I > 2σ(I) |
Tmin = 0.717, Tmax = 0.903 | Rint = 0.046 |
24908 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.067 | Δρmax = 0.61 e Å−3 |
S = 1.01 | Δρmin = −0.79 e Å−3 |
9228 reflections | Absolute structure: Flack (1983), 3936 Friedel pairs |
408 parameters | Absolute structure parameter: −0.011 (17) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.70069 (3) | 0.468290 (17) | 0.888077 (5) | 0.01742 (5) | |
Cl1 | 0.77179 (10) | 0.36814 (6) | 0.940105 (18) | 0.02588 (17) | |
Cl2 | 0.78655 (11) | 0.32749 (5) | 0.849385 (18) | 0.02437 (15) | |
Cl3 | 0.19677 (12) | 1.19482 (6) | 0.947449 (18) | 0.02811 (16) | |
Cl4 | 0.16546 (10) | 1.10483 (7) | 0.873361 (19) | 0.03021 (18) | |
Cl5 | 0.30198 (14) | 1.32462 (7) | 0.88439 (2) | 0.0512 (2) | |
O1 | 0.7349 (2) | 0.81404 (15) | 0.82187 (5) | 0.0201 (4) | |
O2 | 0.5584 (2) | 0.96590 (18) | 0.81736 (5) | 0.0243 (4) | |
O3 | 0.8859 (2) | 0.99125 (16) | 0.98090 (5) | 0.0236 (5) | |
O4 | 0.3493 (2) | 0.79408 (15) | 0.89629 (5) | 0.0176 (4) | |
O5 | 0.1775 (3) | 0.65489 (16) | 0.91802 (5) | 0.0243 (5) | |
O6 | 0.0757 (3) | 0.58547 (17) | 0.74567 (5) | 0.0231 (5) | |
N1 | 0.6421 (3) | 0.60184 (19) | 0.81643 (6) | 0.0197 (5) | |
N2 | 0.5755 (3) | 0.66170 (19) | 0.93709 (6) | 0.0181 (5) | |
C1 | 0.6542 (3) | 0.5533 (2) | 0.84336 (8) | 0.0202 (6) | |
C2 | 0.6443 (3) | 0.6656 (2) | 0.78406 (7) | 0.0181 (6) | |
C3 | 0.6047 (4) | 0.6183 (3) | 0.75010 (7) | 0.0213 (6) | |
H3 | 0.5760 | 0.5422 | 0.7484 | 0.026* | |
C4 | 0.6076 (4) | 0.6834 (3) | 0.71872 (8) | 0.0242 (7) | |
H4 | 0.5802 | 0.6522 | 0.6953 | 0.029* | |
C5 | 0.6502 (4) | 0.7939 (3) | 0.72142 (8) | 0.0246 (7) | |
H5 | 0.6505 | 0.8383 | 0.6997 | 0.030* | |
C6 | 0.6925 (4) | 0.8410 (2) | 0.75529 (7) | 0.0220 (6) | |
H6 | 0.7245 | 0.9166 | 0.7567 | 0.026* | |
C7 | 0.6877 (4) | 0.7772 (2) | 0.78685 (7) | 0.0175 (6) | |
C8 | 0.6627 (4) | 0.9124 (2) | 0.83496 (7) | 0.0175 (6) | |
C9 | 0.7281 (3) | 0.9349 (2) | 0.87254 (7) | 0.0158 (6) | |
C10 | 0.6814 (3) | 1.0340 (2) | 0.88931 (7) | 0.0187 (5) | |
H10 | 0.6137 | 1.0867 | 0.8758 | 0.022* | |
C11 | 0.7323 (3) | 1.0570 (2) | 0.92547 (7) | 0.0186 (6) | |
H11 | 0.7003 | 1.1252 | 0.9366 | 0.022* | |
C12 | 0.8307 (3) | 0.9794 (2) | 0.94535 (7) | 0.0185 (6) | |
C13 | 0.8259 (4) | 1.0869 (2) | 1.00095 (7) | 0.0293 (7) | |
H13A | 0.8686 | 1.1536 | 0.9884 | 0.044* | |
H13B | 0.8739 | 1.0847 | 1.0262 | 0.044* | |
H13C | 0.6944 | 1.0875 | 1.0019 | 0.044* | |
C14 | 0.8794 (3) | 0.8798 (2) | 0.92857 (7) | 0.0176 (6) | |
H14 | 0.9465 | 0.8267 | 0.9421 | 0.021* | |
C15 | 0.8303 (3) | 0.8586 (2) | 0.89253 (7) | 0.0173 (6) | |
H15 | 0.8662 | 0.7916 | 0.8811 | 0.021* | |
C16 | 0.6242 (4) | 0.5885 (2) | 0.91953 (7) | 0.0194 (6) | |
C17 | 0.5048 (4) | 0.7558 (2) | 0.95387 (7) | 0.0165 (6) | |
C18 | 0.5512 (3) | 0.7851 (2) | 0.98970 (7) | 0.0176 (6) | |
H18 | 0.6306 | 0.7403 | 1.0038 | 0.021* | |
C19 | 0.4803 (3) | 0.8805 (2) | 1.00472 (7) | 0.0173 (6) | |
H19 | 0.5105 | 0.9015 | 1.0293 | 0.021* | |
C20 | 0.3652 (3) | 0.9456 (2) | 0.98394 (7) | 0.0176 (6) | |
H20 | 0.3170 | 1.0110 | 0.9944 | 0.021* | |
C21 | 0.3197 (4) | 0.9165 (2) | 0.94812 (7) | 0.0171 (6) | |
H21 | 0.2407 | 0.9617 | 0.9341 | 0.021* | |
C22 | 0.3893 (3) | 0.8223 (2) | 0.93303 (7) | 0.0152 (6) | |
C23 | 0.2352 (3) | 0.7055 (2) | 0.89214 (8) | 0.0182 (6) | |
C24 | 0.1980 (4) | 0.6801 (2) | 0.85274 (7) | 0.0153 (5) | |
C25 | 0.1211 (4) | 0.5787 (2) | 0.84476 (7) | 0.0198 (6) | |
H25 | 0.0940 | 0.5293 | 0.8644 | 0.024* | |
C26 | 0.0834 (3) | 0.5485 (2) | 0.80881 (7) | 0.0203 (6) | |
H26 | 0.0349 | 0.4778 | 0.8035 | 0.024* | |
C27 | 0.1174 (3) | 0.6232 (2) | 0.78018 (7) | 0.0185 (6) | |
C28 | 0.1047 (4) | 0.6582 (3) | 0.71486 (7) | 0.0269 (7) | |
H28A | 0.0354 | 0.7260 | 0.7185 | 0.040* | |
H28B | 0.0658 | 0.6221 | 0.6920 | 0.040* | |
H28C | 0.2327 | 0.6763 | 0.7131 | 0.040* | |
C29 | 0.1902 (4) | 0.7258 (2) | 0.78777 (7) | 0.0185 (6) | |
H29 | 0.2117 | 0.7765 | 0.7682 | 0.022* | |
C30 | 0.2316 (3) | 0.7546 (2) | 0.82398 (7) | 0.0182 (6) | |
H30 | 0.2825 | 0.8247 | 0.8292 | 0.022* | |
C31 | 0.1513 (4) | 1.2255 (2) | 0.90068 (7) | 0.0237 (7) | |
H31 | 0.0267 | 1.2557 | 0.8988 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.02268 (10) | 0.01504 (10) | 0.01454 (9) | 0.00299 (10) | 0.00058 (9) | −0.00068 (9) |
Cl1 | 0.0409 (4) | 0.0209 (4) | 0.0159 (3) | 0.0074 (3) | −0.0020 (3) | −0.0008 (3) |
Cl2 | 0.0353 (4) | 0.0195 (3) | 0.0184 (3) | 0.0051 (4) | 0.0003 (3) | −0.0039 (3) |
Cl3 | 0.0448 (4) | 0.0220 (4) | 0.0175 (3) | 0.0023 (4) | −0.0028 (4) | 0.0009 (3) |
Cl4 | 0.0401 (4) | 0.0340 (4) | 0.0165 (3) | 0.0044 (4) | −0.0049 (3) | −0.0018 (3) |
Cl5 | 0.0628 (5) | 0.0512 (6) | 0.0397 (5) | −0.0301 (5) | −0.0031 (6) | 0.0165 (4) |
O1 | 0.0291 (11) | 0.0193 (10) | 0.0119 (9) | 0.0024 (9) | −0.0041 (8) | −0.0030 (8) |
O2 | 0.0310 (11) | 0.0232 (11) | 0.0186 (11) | 0.0062 (11) | −0.0058 (8) | 0.0005 (10) |
O3 | 0.0283 (10) | 0.0287 (13) | 0.0139 (10) | 0.0011 (9) | −0.0028 (8) | −0.0068 (9) |
O4 | 0.0247 (10) | 0.0177 (10) | 0.0104 (10) | −0.0043 (8) | −0.0010 (7) | 0.0006 (7) |
O5 | 0.0324 (11) | 0.0296 (12) | 0.0109 (9) | −0.0083 (10) | 0.0024 (9) | −0.0012 (8) |
O6 | 0.0312 (11) | 0.0284 (12) | 0.0097 (10) | −0.0021 (10) | −0.0025 (8) | −0.0009 (9) |
N1 | 0.0214 (12) | 0.0170 (13) | 0.0207 (13) | 0.0035 (10) | 0.0028 (10) | 0.0013 (10) |
N2 | 0.0240 (12) | 0.0146 (13) | 0.0157 (12) | 0.0036 (10) | 0.0030 (10) | 0.0016 (10) |
C1 | 0.0197 (14) | 0.0167 (16) | 0.0240 (15) | 0.0023 (11) | 0.0033 (11) | −0.0053 (12) |
C2 | 0.0170 (13) | 0.0228 (16) | 0.0145 (14) | 0.0005 (12) | 0.0000 (11) | 0.0000 (12) |
C3 | 0.0226 (14) | 0.0219 (16) | 0.0194 (15) | −0.0021 (13) | 0.0001 (12) | −0.0042 (13) |
C4 | 0.0263 (15) | 0.0324 (19) | 0.0138 (15) | −0.0011 (14) | 0.0004 (12) | −0.0041 (13) |
C5 | 0.0286 (16) | 0.0288 (17) | 0.0165 (15) | −0.0035 (14) | 0.0008 (12) | 0.0008 (13) |
C6 | 0.0283 (14) | 0.0202 (15) | 0.0176 (14) | −0.0023 (15) | 0.0017 (14) | −0.0017 (11) |
C7 | 0.0188 (13) | 0.0208 (14) | 0.0128 (12) | 0.0011 (13) | −0.0010 (12) | −0.0037 (11) |
C8 | 0.0210 (15) | 0.0163 (14) | 0.0150 (13) | −0.0017 (12) | 0.0016 (11) | 0.0010 (11) |
C9 | 0.0185 (13) | 0.0153 (13) | 0.0137 (12) | −0.0027 (11) | 0.0008 (11) | −0.0002 (10) |
C10 | 0.0196 (12) | 0.0157 (12) | 0.0207 (13) | 0.0019 (13) | −0.0011 (13) | 0.0053 (13) |
C11 | 0.0232 (14) | 0.0135 (14) | 0.0190 (13) | −0.0018 (11) | 0.0029 (11) | −0.0015 (10) |
C12 | 0.0182 (13) | 0.0235 (15) | 0.0138 (13) | −0.0040 (13) | −0.0001 (10) | −0.0022 (12) |
C13 | 0.0363 (18) | 0.0322 (18) | 0.0192 (15) | −0.0030 (16) | 0.0014 (14) | −0.0105 (13) |
C14 | 0.0184 (13) | 0.0176 (15) | 0.0169 (14) | 0.0011 (12) | −0.0009 (11) | 0.0029 (12) |
C15 | 0.0167 (13) | 0.0175 (14) | 0.0177 (14) | −0.0002 (11) | 0.0003 (11) | −0.0001 (11) |
C16 | 0.0210 (14) | 0.0214 (16) | 0.0158 (14) | 0.0002 (13) | 0.0001 (11) | 0.0043 (12) |
C17 | 0.0188 (13) | 0.0155 (14) | 0.0152 (14) | 0.0003 (12) | 0.0039 (11) | 0.0017 (12) |
C18 | 0.0159 (13) | 0.0190 (15) | 0.0180 (15) | 0.0010 (12) | 0.0002 (11) | 0.0040 (12) |
C19 | 0.0202 (14) | 0.0214 (16) | 0.0103 (13) | −0.0052 (13) | 0.0006 (11) | −0.0004 (12) |
C20 | 0.0220 (13) | 0.0147 (15) | 0.0160 (13) | 0.0004 (11) | 0.0026 (11) | −0.0011 (11) |
C21 | 0.0196 (13) | 0.0166 (14) | 0.0153 (13) | 0.0003 (12) | 0.0002 (11) | 0.0005 (11) |
C22 | 0.0204 (13) | 0.0166 (15) | 0.0087 (13) | −0.0034 (12) | 0.0002 (10) | 0.0009 (11) |
C23 | 0.0189 (13) | 0.0194 (14) | 0.0162 (14) | 0.0025 (11) | 0.0020 (11) | 0.0006 (12) |
C24 | 0.0158 (12) | 0.0183 (13) | 0.0118 (12) | −0.0001 (13) | −0.0002 (12) | 0.0015 (10) |
C25 | 0.0218 (14) | 0.0222 (16) | 0.0154 (14) | −0.0002 (12) | 0.0018 (11) | 0.0032 (12) |
C26 | 0.0214 (13) | 0.0196 (17) | 0.0198 (14) | −0.0043 (13) | 0.0008 (11) | 0.0002 (13) |
C27 | 0.0157 (13) | 0.0248 (16) | 0.0151 (14) | 0.0033 (13) | −0.0006 (11) | −0.0011 (12) |
C28 | 0.0300 (16) | 0.038 (2) | 0.0127 (14) | 0.0025 (15) | −0.0032 (13) | 0.0035 (13) |
C29 | 0.0196 (13) | 0.0231 (15) | 0.0128 (12) | 0.0003 (14) | −0.0006 (12) | 0.0032 (11) |
C30 | 0.0205 (14) | 0.0184 (14) | 0.0157 (13) | −0.0004 (12) | 0.0012 (11) | −0.0024 (11) |
C31 | 0.0267 (15) | 0.0252 (17) | 0.0192 (15) | 0.0005 (13) | −0.0039 (12) | 0.0044 (12) |
Pd1—C16 | 1.935 (3) | C10—H10 | 0.9500 |
Pd1—C1 | 1.947 (3) | C11—C12 | 1.393 (4) |
Pd1—Cl2 | 2.2979 (7) | C11—H11 | 0.9500 |
Pd1—Cl1 | 2.2994 (7) | C12—C14 | 1.400 (4) |
Cl3—C31 | 1.762 (3) | C13—H13A | 0.9800 |
Cl4—C31 | 1.768 (3) | C13—H13B | 0.9800 |
Cl5—C31 | 1.747 (3) | C13—H13C | 0.9800 |
O1—C7 | 1.387 (3) | C14—C15 | 1.376 (4) |
O1—C8 | 1.392 (3) | C14—H14 | 0.9500 |
O2—C8 | 1.195 (3) | C15—H15 | 0.9500 |
O3—C12 | 1.356 (3) | C17—C18 | 1.386 (4) |
O3—C13 | 1.439 (3) | C17—C22 | 1.400 (4) |
O4—C23 | 1.379 (3) | C18—C19 | 1.383 (4) |
O4—C22 | 1.402 (3) | C18—H18 | 0.9500 |
O5—C23 | 1.198 (3) | C19—C20 | 1.386 (4) |
O6—C27 | 1.364 (3) | C19—H19 | 0.9500 |
O6—C28 | 1.437 (3) | C20—C21 | 1.383 (3) |
N1—C1 | 1.141 (3) | C20—H20 | 0.9500 |
N1—C2 | 1.402 (3) | C21—C22 | 1.368 (3) |
N2—C16 | 1.150 (3) | C21—H21 | 0.9500 |
N2—C17 | 1.395 (3) | C23—C24 | 1.482 (3) |
C2—C3 | 1.386 (4) | C24—C25 | 1.387 (4) |
C2—C7 | 1.396 (4) | C24—C30 | 1.400 (3) |
C3—C4 | 1.382 (4) | C25—C26 | 1.378 (3) |
C3—H3 | 0.9500 | C25—H25 | 0.9500 |
C4—C5 | 1.381 (4) | C26—C27 | 1.398 (4) |
C4—H4 | 0.9500 | C26—H26 | 0.9500 |
C5—C6 | 1.386 (4) | C27—C29 | 1.385 (4) |
C5—H5 | 0.9500 | C28—H28A | 0.9800 |
C6—C7 | 1.378 (3) | C28—H28B | 0.9800 |
C6—H6 | 0.9500 | C28—H28C | 0.9800 |
C8—C9 | 1.467 (3) | C29—C30 | 1.388 (3) |
C9—C10 | 1.391 (3) | C29—H29 | 0.9500 |
C9—C15 | 1.399 (4) | C30—H30 | 0.9500 |
C10—C11 | 1.388 (3) | C31—H31 | 1.0000 |
C16—Pd1—C1 | 92.00 (12) | C14—C15—C9 | 120.6 (3) |
C16—Pd1—Cl2 | 178.37 (8) | C14—C15—H15 | 119.7 |
C1—Pd1—Cl2 | 86.52 (8) | C9—C15—H15 | 119.7 |
C16—Pd1—Cl1 | 89.24 (8) | N2—C16—Pd1 | 177.4 (3) |
C1—Pd1—Cl1 | 176.91 (8) | C18—C17—N2 | 121.4 (2) |
Cl2—Pd1—Cl1 | 92.28 (3) | C18—C17—C22 | 120.5 (3) |
C7—O1—C8 | 119.2 (2) | N2—C17—C22 | 118.1 (2) |
C12—O3—C13 | 117.9 (2) | C19—C18—C17 | 119.1 (3) |
C23—O4—C22 | 115.11 (19) | C19—C18—H18 | 120.5 |
C27—O6—C28 | 117.8 (2) | C17—C18—H18 | 120.5 |
C1—N1—C2 | 174.3 (3) | C18—C19—C20 | 120.0 (3) |
C16—N2—C17 | 172.0 (3) | C18—C19—H19 | 120.0 |
N1—C1—Pd1 | 174.2 (2) | C20—C19—H19 | 120.0 |
C3—C2—C7 | 121.0 (3) | C21—C20—C19 | 120.8 (3) |
C3—C2—N1 | 120.5 (3) | C21—C20—H20 | 119.6 |
C7—C2—N1 | 118.5 (2) | C19—C20—H20 | 119.6 |
C4—C3—C2 | 119.1 (3) | C22—C21—C20 | 119.5 (2) |
C4—C3—H3 | 120.5 | C22—C21—H21 | 120.2 |
C2—C3—H3 | 120.5 | C20—C21—H21 | 120.2 |
C5—C4—C3 | 120.1 (3) | C21—C22—C17 | 120.0 (2) |
C5—C4—H4 | 120.0 | C21—C22—O4 | 120.1 (2) |
C3—C4—H4 | 120.0 | C17—C22—O4 | 119.9 (2) |
C4—C5—C6 | 120.9 (3) | O5—C23—O4 | 122.4 (3) |
C4—C5—H5 | 119.5 | O5—C23—C24 | 125.2 (2) |
C6—C5—H5 | 119.5 | O4—C23—C24 | 112.4 (2) |
C7—C6—C5 | 119.5 (3) | C25—C24—C30 | 119.5 (2) |
C7—C6—H6 | 120.2 | C25—C24—C23 | 117.4 (2) |
C5—C6—H6 | 120.2 | C30—C24—C23 | 123.0 (2) |
C6—C7—O1 | 124.5 (2) | C26—C25—C24 | 121.1 (3) |
C6—C7—C2 | 119.4 (2) | C26—C25—H25 | 119.5 |
O1—C7—C2 | 115.9 (2) | C24—C25—H25 | 119.5 |
O2—C8—O1 | 122.4 (2) | C25—C26—C27 | 119.1 (3) |
O2—C8—C9 | 127.3 (3) | C25—C26—H26 | 120.4 |
O1—C8—C9 | 110.2 (2) | C27—C26—H26 | 120.4 |
C10—C9—C15 | 118.9 (2) | O6—C27—C29 | 124.9 (2) |
C10—C9—C8 | 118.7 (2) | O6—C27—C26 | 114.6 (2) |
C15—C9—C8 | 122.3 (2) | C29—C27—C26 | 120.5 (2) |
C11—C10—C9 | 121.0 (2) | O6—C28—H28A | 109.5 |
C11—C10—H10 | 119.5 | O6—C28—H28B | 109.5 |
C9—C10—H10 | 119.5 | H28A—C28—H28B | 109.5 |
C10—C11—C12 | 119.5 (2) | O6—C28—H28C | 109.5 |
C10—C11—H11 | 120.3 | H28A—C28—H28C | 109.5 |
C12—C11—H11 | 120.3 | H28B—C28—H28C | 109.5 |
O3—C12—C11 | 125.1 (2) | C27—C29—C30 | 120.0 (2) |
O3—C12—C14 | 115.0 (2) | C27—C29—H29 | 120.0 |
C11—C12—C14 | 119.8 (2) | C30—C29—H29 | 120.0 |
O3—C13—H13A | 109.5 | C29—C30—C24 | 119.8 (3) |
O3—C13—H13B | 109.5 | C29—C30—H30 | 120.1 |
H13A—C13—H13B | 109.5 | C24—C30—H30 | 120.1 |
O3—C13—H13C | 109.5 | Cl5—C31—Cl3 | 110.17 (15) |
H13A—C13—H13C | 109.5 | Cl5—C31—Cl4 | 110.14 (15) |
H13B—C13—H13C | 109.5 | Cl3—C31—Cl4 | 110.39 (16) |
C15—C14—C12 | 120.1 (3) | Cl5—C31—H31 | 108.7 |
C15—C14—H14 | 119.9 | Cl3—C31—H31 | 108.7 |
C12—C14—H14 | 119.9 | Cl4—C31—H31 | 108.7 |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.95 | 2.53 | 3.193 (4) | 127 |
C6—H6···O6ii | 0.95 | 2.53 | 3.433 (4) | 158 |
C19—H19···O5iii | 0.95 | 2.37 | 3.182 (3) | 143 |
C20—H20···Cl1iv | 0.95 | 2.80 | 3.622 (3) | 145 |
C31—H31···Cl1v | 1.00 | 2.77 | 3.607 (3) | 141 |
C31—H31···Cl2v | 1.00 | 2.67 | 3.513 (3) | 142 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2; (iii) x+1/2, −y+3/2, −z+2; (iv) x−1/2, −y+3/2, −z+2; (v) x−1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [PdCl2(C15H11NO3)2]·CHCl3 |
Mr | 803.16 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 7.4457 (1), 12.1352 (4), 36.1109 (11) |
V (Å3) | 3262.80 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.02 |
Crystal size (mm) | 0.35 × 0.23 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.717, 0.903 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24908, 9228, 7397 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.067, 1.01 |
No. of reflections | 9228 |
No. of parameters | 408 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.79 |
Absolute structure | Flack (1983), 3936 Friedel pairs |
Absolute structure parameter | −0.011 (17) |
Computer programs: COLLECT (Nonius, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.95 | 2.53 | 3.193 (4) | 127.3 |
C6—H6···O6ii | 0.95 | 2.53 | 3.433 (4) | 158.0 |
C19—H19···O5iii | 0.95 | 2.37 | 3.182 (3) | 142.7 |
C20—H20···Cl1iv | 0.95 | 2.80 | 3.622 (3) | 145.0 |
C31—H31···Cl1v | 1.00 | 2.77 | 3.607 (3) | 141.2 |
C31—H31···Cl2v | 1.00 | 2.67 | 3.513 (3) | 141.8 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2; (iii) x+1/2, −y+3/2, −z+2; (iv) x−1/2, −y+3/2, −z+2; (v) x−1, y+1, z. |
Acknowledgements
This work was supported by the Russian Fund for Basic Research (grant 12–03-00076).
References
Banfi, L. & Riva, R. (2005). Org. React. pp. 1–140. Google Scholar
Bertani, R., Mozzon, M., Michelin, R. A., Benetollo, F., Bombieri, G., Castilho, T. J. & Pombeiro, A. J. L. (1991). Inorg. Chim. Acta, 189, 175–187. CSD CrossRef CAS Web of Science Google Scholar
Bonati, F. & Minghetti, G. (1970). J. Organomet. Chem. 24, 251–256. CrossRef CAS Web of Science Google Scholar
Boyarskiy, V. P., Luzyanin, K. V. & Kukushkin, V. Y. (2012). Coord. Chem. Rev. 256, 2029–2056. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chay, R. S., Luzyanin, K. V., Kukushkin, V. Y., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2012). Organometallics, 31, 2379–2387. Web of Science CSD CrossRef CAS Google Scholar
Davies, J. A., Hockensmith, C. M., Kukushkin, V. Y. & Kukushkin, Y. N. (1996). In Synthetic Coordination Chemistry: Principles and Practice. Singapore: World Scientific. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Luzyanin, K. V., Tskhovrebov, A. G., Carias, M. C., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2009a). Organometallics, 28, 6559–6566. Web of Science CrossRef CAS Google Scholar
Luzyanin, K. V., Tskhovrebov, A. G., Guedes da Silva, M. F. C., Haukka, M., Pombeiro, A. J. L. & Kukushkin, V. Y. (2009b). Chem. Eur. J. 15, 5969–5978. Web of Science CSD CrossRef PubMed CAS Google Scholar
Michelin, R. A., Zanotto, L., Braga, D., Sabatino, P. & Angelici, R. J. (1988a). Inorg. Chem. 27, 85–92. CSD CrossRef CAS Web of Science Google Scholar
Michelin, R. A., Zanotto, L., Braga, D., Sabatino, P. & Angelici, R. J. (1988b). Inorg. Chem. 27, 93–99. CSD CrossRef CAS Web of Science Google Scholar
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83. CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rourke, J. P. (2007). In Comprehensive Organometallic Chemistry III, 1st ed., edited by A. Canty, Vol. 8, ch. 8.07, pp. 405–444. Oxford: Elsevier. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Slaughter, L. M. (2012). ACS Catal. 2, 1802–1816. Web of Science CrossRef CAS Google Scholar
Tskhovrebov, A. G., Luzyanin, K. V., Dolgushin, F. M., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2011). Organometallics, 30, 3362–3370. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Isocyanides are important organic reagents used in multicomponent reactions such as, e.g., Ugi and Passerini reactions (Banfi & Riva, 2005). Metal complexes of isocyanides could be used as precursors for the generation of coordinated N-heterocyclic carbenes (NHC's) and acyclic diaminocarbenes (ADS's) (Slaughter, 2012). In turn, PdII-NHC and PdII-ADC systems are particularly interesting since they are used as catalysts in a wide range of cross-coupling reactions (Boyarskiy et al., 2012). Recently, it was observed that the coupling of PdII-bound isocyanides and various nucleophiles leads to the formation of cyclic carbenes (Luzyanin et al., 2009b) and ADC complexes (Luzyanin et al., 2009a; Tskhovrebov et al., 2011; Chay et al., 2012), which could not be obtained by the common methods for the generation of metal carbenes. Here we report the structure of a new isocyanide complex that could be used as a starting material for generation of various palladium carbenes.
In the title compound, the isocyanide ligands are mutually in the cis-position (Fig. 1) insofar as the ligated RNC species exhibit higher trans-effect than the chlorides (Davies et al., 1996). The fragments C–N–C–Pd in both complexes are almost linear, viz., the angles N1–C1–Pd1 and N2–C16–Pd1 are 174.2 (2)° and 177.4 (3)°, respectively. The angles C2–N1–C1 and C17–N2–C16 are 174.3 (3)° and 172.0 (3)°, correspondingly. In the isocyanide moieties, the C≡N triple bonds [C1–N1 1.141 (3) Å and C16–N2 1.150 (3) Å] are close to those in some other palladium-isocyanide complexes (Bertani et al., 1991; Bonati & Minghetti, 1970; Luzyanin et al., 2009a,b; Michelin et al., 1988a,b; Orpen et al., 1989; Rourke, 2007). The molecular conformation is stabilized by π-π stacking interactions [shortest centroid-centroid distance = 3.600 (1) Å] between the substituted benzene rings C9–C15 and C17–C22 of different ligands. The crystal packing is characterized by intermolecular C-H···O and C-H···Cl interactions involving the chloroform solvent molecules (Table 1).