organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,2,3,4-tetra­hydro­quinoline-1-thio­carbon­yl) di­sulfide

aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, India, and bDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 21 October 2012; accepted 17 November 2012; online 24 November 2012)

In the title compound, C20H20N2S4, the N-containing six-membered rings of the two tetra­hydro­quinoline moieties adopt half-chair conformations. Intra­molecular C—H⋯S hydrogen bonding stabilizes the mol­ecular structure. In the crystal, mol­ecules associate via weak C—H⋯π inter­actions.

Related literature

For general background to the title compound, see: Von Deuten et al. (1980[Von Deuten, K., Schnabel, W. & Klar, G. (1980). Phosphorus Sulfur Silicon Relat. Elem. 9, 93-98.]); Kumar et al. (1990[Kumar, V., Aravamudan, G. & Seshasayee, M. (1990). Acta Cryst. C46, 674-676.]); Fun et al. (2001[Fun, H.-K., Chantrapromma, S., Razak, I. A., Bei, F.-L., Jian, F.-F., Yang, X.-J., Lu, L. & Wang, X. (2001). Acta Cryst. E57, o717-o718.]). For preparation of the title compound, see: Garg et al. (1993[Garg, B. S., Garg, R. K. & Reddy, M. J. (1993). Indian J. Chem. Sect. A, 32, 697-700.]). For related structures, see: Ivanov et al. (2003[Ivanov, A. V., Larionov, S. A., Forsling, W., Antzutkin, O. N. & Kritikos, M. (2003). Russ. J. Coord. Chem. 29, 142-150]); Jian et al. (1999[Jian, F., Jiang, L., Fun, H.-K., Chinnakali, K., Razak, I. A. & You, X. (1999). Acta Cryst. C55, 573-574.]); Fun et al. (2001[Fun, H.-K., Chantrapromma, S., Razak, I. A., Bei, F.-L., Jian, F.-F., Yang, X.-J., Lu, L. & Wang, X. (2001). Acta Cryst. E57, o717-o718.]). For ring-puckering parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2S4

  • Mr = 416.62

  • Monoclinic, P 21 /c

  • a = 8.1019 (4) Å

  • b = 20.3208 (11) Å

  • c = 12.3647 (6) Å

  • β = 104.371 (2)°

  • V = 1971.99 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 292 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.867, Tmax = 0.909

  • 44844 measured reflections

  • 4941 independent reflections

  • 4036 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.03

  • 4941 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯S4 0.97 2.53 3.028 (2) 112
C18—H18⋯Cg1i   2.74 3.604 (2) 154
Symmetry code: (i) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The bis(dialkylthiocarbomyl)disulfide compounds are the immediate oxidation products of dithiocarbamic acids and are known to be formed as one of the products during redox complexation reactions of dithiocarbamates with metal ions like TeIV, SeIV, LaIII etc··· (Von Deuten et al., 1980; Kumar et al., 1990; Fun et al., 2001). In the course of our investigations on the sodium salt of 1,2,3,4-tetrahydroquinolinecarbodithioate, we noticed the formation of bis(1,2,3,4-tetrahydroquinolinethiocarbomyl)disulphide. To study the structural features of this compound, we have undertaken its crystal structure determination and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity as illustrated in Fig. 1. The S—S bond distance of 1.9958 (6) Å is close to the related literature value (Ivanov et al., 2003; Jian et al., 1999; Fun et al., 2001). Two sets of significantly different C—S distances are observed and these distances are clearly corresponding to single and double bonded C—S distances. The two C=S bonds are trans to each other. The N-containing six membered rings of the two tetrahydroquinoline moieties have a half-chair conformation with the lowest asymmetry parameters of ΔC2(N1-C9) = 0.038 (1)° and ΔC2(C12-N2) = 0.080 (1)° (Nardelli, 1983).

The molecular structure is influenced by an intramolecular C—H···S hydrogen bond (Fig. 2 and Table 1). In addition, intermolecular C—H···π interactions are observed with H18···Cg1i = 2.74 Å, C18—H18···Cg1i = 154°, and C18···Cg1i = 3.604 (2) Å [Cg1 is the centroid of the phenyl ring (C4-C9) and the symmetry operation i corresponds to -x, -y, 2-z] (Fig. 2).

Related literature top

For general background to the title compound, see: Von Deuten et al. (1980); Kumar et al. (1990); Fun et al. (2001). For preparation of the title compound, see: Garg et al. (1993). For related structures, see: Ivanov et al. (2003); Jian et al. (1999); Fun et al. (2001). For ring-puckering parameters, see: Nardelli (1983).

Experimental top

Recrystallization of sodium 1,2,3,4-tetrahydroquinolinecarbodithioate (Garg et al., 1993) from a chloroform solution yielded the title compound as pale yellow crystals.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93-0.97 Å, and Uiso(H) = 1.2Ueq(C) for H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis (H-bonds are shown as dashed lines). For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
Bis(1,2,3,4-tetrahydroquinoline-1-thiocarbonyl) disulfide top
Crystal data top
C20H20N2S4F(000) = 872
Mr = 416.62Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8987 reflections
a = 8.1019 (4) Åθ = 2.5–28.3°
b = 20.3208 (11) ŵ = 0.49 mm1
c = 12.3647 (6) ÅT = 292 K
β = 104.371 (2)°Block, yellow
V = 1971.99 (17) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
4941 independent reflections
Radiation source: fine-focus sealed tube4036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.867, Tmax = 0.909k = 2527
44844 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.8147P]
where P = (Fo2 + 2Fc2)/3
4941 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H20N2S4V = 1971.99 (17) Å3
Mr = 416.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1019 (4) ŵ = 0.49 mm1
b = 20.3208 (11) ÅT = 292 K
c = 12.3647 (6) Å0.30 × 0.25 × 0.20 mm
β = 104.371 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
4941 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4036 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.909Rint = 0.031
44844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.53 e Å3
4941 reflectionsΔρmin = 0.26 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7070 (2)0.12620 (11)0.98073 (17)0.0529 (5)
H1A0.71490.14790.91240.064*
H1B0.73560.08020.97490.064*
C20.8343 (3)0.15668 (13)1.0777 (2)0.0640 (6)
H2A0.84370.20341.06420.077*
H2B0.94530.13691.08420.077*
C30.7814 (3)0.14684 (12)1.18582 (18)0.0585 (5)
H3A0.76670.10041.19880.070*
H3B0.86740.16441.24820.070*
C40.6170 (2)0.18262 (8)1.17373 (15)0.0425 (4)
C50.5862 (3)0.22676 (9)1.25173 (16)0.0510 (5)
H50.66770.23241.31880.061*
C60.4374 (3)0.26245 (9)1.23197 (18)0.0555 (5)
H60.41680.29041.28670.067*
C70.3195 (3)0.25670 (9)1.13155 (18)0.0520 (5)
H70.21920.28101.11820.062*
C80.3489 (2)0.21484 (8)1.04965 (16)0.0437 (4)
H80.27190.21270.98000.052*
C90.4944 (2)0.17619 (8)1.07291 (13)0.0367 (3)
C100.4118 (2)0.09180 (8)0.92624 (13)0.0383 (3)
C110.0542 (2)0.09836 (8)0.76717 (14)0.0380 (3)
C120.2722 (3)0.12260 (12)0.59730 (19)0.0682 (6)
H12A0.39390.11450.58130.082*
H12B0.25080.16770.62250.082*
C130.2106 (5)0.11167 (18)0.4968 (2)0.1054 (11)
H13A0.09110.12370.51270.126*
H13B0.27240.14050.43800.126*
C140.2300 (5)0.04240 (16)0.4557 (2)0.0900 (9)
H14A0.13770.03250.42110.108*
H14B0.33590.03890.39840.108*
C150.2305 (3)0.00897 (12)0.54424 (17)0.0596 (5)
C160.2603 (4)0.07527 (14)0.5177 (2)0.0752 (7)
H160.26930.08900.44480.090*
C170.2768 (3)0.12063 (13)0.5960 (2)0.0734 (7)
H170.29270.16480.57640.088*
C180.2701 (3)0.10132 (11)0.70323 (19)0.0586 (5)
H180.28440.13200.75590.070*
C190.2420 (2)0.03635 (9)0.73215 (16)0.0455 (4)
H190.24130.02270.80400.055*
C200.2147 (2)0.00878 (9)0.65492 (14)0.0422 (4)
N10.52917 (18)0.13106 (7)0.99185 (12)0.0385 (3)
N20.18060 (19)0.07682 (7)0.68409 (13)0.0444 (3)
S10.22177 (6)0.08105 (2)0.97636 (3)0.04264 (12)
S20.06107 (6)0.03269 (2)0.85363 (4)0.04694 (13)
S30.44036 (8)0.05131 (3)0.81800 (4)0.06045 (16)
S40.00011 (7)0.17623 (2)0.79093 (5)0.05336 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0466 (10)0.0613 (12)0.0562 (11)0.0073 (9)0.0229 (9)0.0019 (9)
C20.0405 (10)0.0747 (15)0.0793 (15)0.0006 (10)0.0196 (10)0.0060 (12)
C30.0498 (11)0.0644 (13)0.0549 (11)0.0057 (9)0.0009 (9)0.0048 (10)
C40.0478 (9)0.0367 (8)0.0431 (9)0.0052 (7)0.0116 (7)0.0007 (7)
C50.0648 (12)0.0434 (10)0.0436 (10)0.0123 (9)0.0111 (9)0.0067 (8)
C60.0783 (14)0.0384 (9)0.0570 (12)0.0083 (9)0.0304 (11)0.0139 (8)
C70.0597 (11)0.0366 (9)0.0651 (12)0.0079 (8)0.0258 (10)0.0026 (8)
C80.0490 (10)0.0371 (9)0.0460 (9)0.0039 (7)0.0135 (8)0.0008 (7)
C90.0442 (9)0.0309 (7)0.0377 (8)0.0020 (6)0.0155 (7)0.0003 (6)
C100.0448 (9)0.0364 (8)0.0343 (8)0.0076 (7)0.0111 (7)0.0011 (6)
C110.0365 (8)0.0398 (8)0.0393 (8)0.0039 (6)0.0125 (7)0.0081 (7)
C120.0667 (14)0.0599 (13)0.0633 (13)0.0076 (11)0.0118 (11)0.0170 (11)
C130.150 (3)0.102 (2)0.0621 (16)0.012 (2)0.0215 (18)0.0363 (16)
C140.119 (2)0.112 (2)0.0363 (11)0.0270 (19)0.0133 (13)0.0061 (13)
C150.0585 (12)0.0782 (15)0.0382 (10)0.0094 (11)0.0045 (8)0.0036 (9)
C160.0833 (17)0.0879 (18)0.0507 (13)0.0143 (14)0.0095 (12)0.0266 (12)
C170.0784 (16)0.0589 (13)0.0758 (16)0.0134 (12)0.0056 (13)0.0232 (12)
C180.0581 (12)0.0505 (11)0.0625 (12)0.0118 (9)0.0060 (10)0.0009 (9)
C190.0436 (9)0.0501 (10)0.0423 (9)0.0058 (8)0.0099 (7)0.0012 (8)
C200.0357 (8)0.0508 (10)0.0376 (8)0.0013 (7)0.0046 (7)0.0003 (7)
N10.0401 (7)0.0385 (7)0.0389 (7)0.0036 (6)0.0134 (6)0.0019 (6)
N20.0421 (8)0.0454 (8)0.0421 (8)0.0009 (6)0.0035 (6)0.0090 (6)
S10.0451 (2)0.0481 (2)0.0342 (2)0.00396 (18)0.00894 (17)0.00092 (17)
S20.0513 (3)0.0346 (2)0.0467 (2)0.00014 (18)0.00342 (19)0.00393 (17)
S30.0659 (3)0.0696 (3)0.0481 (3)0.0074 (3)0.0184 (2)0.0206 (2)
S40.0521 (3)0.0362 (2)0.0681 (3)0.00046 (19)0.0078 (2)0.0086 (2)
Geometric parameters (Å, º) top
C1—N11.484 (2)C11—S41.6491 (18)
C1—C21.508 (3)C11—S21.8167 (16)
C1—H1A0.9700C12—C131.467 (4)
C1—H1B0.9700C12—N21.474 (2)
C2—C31.515 (3)C12—H12A0.9700
C2—H2A0.9700C12—H12B0.9700
C2—H2B0.9700C13—C141.492 (5)
C3—C41.492 (3)C13—H13A0.9700
C3—H3A0.9700C13—H13B0.9700
C3—H3B0.9700C14—C151.514 (3)
C4—C51.384 (3)C14—H14A0.9700
C4—C91.394 (2)C14—H14B0.9700
C5—C61.376 (3)C15—C201.390 (3)
C5—H50.9300C15—C161.393 (4)
C6—C71.371 (3)C16—C171.367 (4)
C6—H60.9300C16—H160.9300
C7—C81.388 (3)C17—C181.371 (3)
C7—H70.9300C17—H170.9300
C8—C91.386 (2)C18—C191.372 (3)
C8—H80.9300C18—H180.9300
C9—N11.437 (2)C19—C201.381 (3)
C10—N11.347 (2)C19—H190.9300
C10—S31.6355 (17)C20—N21.438 (2)
C10—S11.8102 (18)S1—S21.9958 (6)
C11—N21.332 (2)
N1—C1—C2112.79 (16)C13—C12—H12A110.2
N1—C1—H1A109.0N2—C12—H12A110.2
C2—C1—H1A109.0C13—C12—H12B110.2
N1—C1—H1B109.0N2—C12—H12B110.2
C2—C1—H1B109.0H12A—C12—H12B108.5
H1A—C1—H1B107.8C12—C13—C14113.7 (3)
C1—C2—C3111.09 (18)C12—C13—H13A108.8
C1—C2—H2A109.4C14—C13—H13A108.8
C3—C2—H2A109.4C12—C13—H13B108.8
C1—C2—H2B109.4C14—C13—H13B108.8
C3—C2—H2B109.4H13A—C13—H13B107.7
H2A—C2—H2B108.0C13—C14—C15115.0 (2)
C4—C3—C2106.76 (18)C13—C14—H14A108.5
C4—C3—H3A110.4C15—C14—H14A108.5
C2—C3—H3A110.4C13—C14—H14B108.5
C4—C3—H3B110.4C15—C14—H14B108.5
C2—C3—H3B110.4H14A—C14—H14B107.5
H3A—C3—H3B108.6C20—C15—C16116.8 (2)
C5—C4—C9118.17 (17)C20—C15—C14121.1 (2)
C5—C4—C3123.85 (18)C16—C15—C14121.9 (2)
C9—C4—C3117.65 (16)C17—C16—C15121.8 (2)
C6—C5—C4121.30 (18)C17—C16—H16119.1
C6—C5—H5119.3C15—C16—H16119.1
C4—C5—H5119.3C16—C17—C18120.3 (2)
C7—C6—C5119.92 (18)C16—C17—H17119.9
C7—C6—H6120.0C18—C17—H17119.9
C5—C6—H6120.0C17—C18—C19119.5 (2)
C6—C7—C8120.40 (19)C17—C18—H18120.3
C6—C7—H7119.8C19—C18—H18120.3
C8—C7—H7119.8C18—C19—C20120.24 (19)
C9—C8—C7119.15 (18)C18—C19—H19119.9
C9—C8—H8120.4C20—C19—H19119.9
C7—C8—H8120.4C19—C20—C15121.13 (19)
C8—C9—C4120.86 (16)C19—C20—N2121.26 (16)
C8—C9—N1121.37 (15)C15—C20—N2117.47 (17)
C4—C9—N1117.66 (15)C10—N1—C9124.53 (14)
N1—C10—S3124.66 (13)C10—N1—C1117.45 (14)
N1—C10—S1113.48 (12)C9—N1—C1118.02 (14)
S3—C10—S1121.63 (11)C11—N2—C20124.92 (14)
N2—C11—S4124.95 (13)C11—N2—C12120.41 (16)
N2—C11—S2113.40 (13)C20—N2—C12113.17 (15)
S4—C11—S2121.64 (10)C10—S1—S2104.42 (6)
C13—C12—N2107.8 (2)C11—S2—S1103.22 (6)
N1—C1—C2—C334.8 (3)C16—C15—C20—N2178.84 (19)
C1—C2—C3—C463.3 (2)C14—C15—C20—N26.2 (3)
C2—C3—C4—C5129.7 (2)S3—C10—N1—C9167.43 (13)
C2—C3—C4—C943.5 (2)S1—C10—N1—C918.1 (2)
C9—C4—C5—C61.4 (3)S3—C10—N1—C113.8 (2)
C3—C4—C5—C6174.54 (19)S1—C10—N1—C1160.63 (13)
C4—C5—C6—C72.8 (3)C8—C9—N1—C1042.2 (2)
C5—C6—C7—C80.3 (3)C4—C9—N1—C10141.44 (17)
C6—C7—C8—C93.6 (3)C8—C9—N1—C1139.04 (17)
C7—C8—C9—C45.0 (3)C4—C9—N1—C137.3 (2)
C7—C8—C9—N1178.73 (16)C2—C1—N1—C10163.64 (18)
C5—C4—C9—C82.6 (3)C2—C1—N1—C915.2 (2)
C3—C4—C9—C8171.03 (17)S4—C11—N2—C20171.86 (14)
C5—C4—C9—N1178.96 (15)S2—C11—N2—C206.8 (2)
C3—C4—C9—N15.4 (2)S4—C11—N2—C126.8 (3)
N2—C12—C13—C1456.7 (4)S2—C11—N2—C12171.84 (16)
C12—C13—C14—C1526.7 (4)C19—C20—N2—C1156.4 (3)
C13—C14—C15—C200.4 (4)C15—C20—N2—C11127.8 (2)
C13—C14—C15—C16175.1 (3)C19—C20—N2—C12137.60 (19)
C20—C15—C16—C171.3 (4)C15—C20—N2—C1238.2 (2)
C14—C15—C16—C17173.7 (3)C13—C12—N2—C11103.4 (3)
C15—C16—C17—C182.3 (4)C13—C12—N2—C2063.3 (3)
C16—C17—C18—C191.8 (4)N1—C10—S1—S2172.06 (11)
C17—C18—C19—C202.3 (3)S3—C10—S1—S213.32 (12)
C18—C19—C20—C156.0 (3)N2—C11—S2—S1174.41 (12)
C18—C19—C20—N2178.37 (17)S4—C11—S2—S16.88 (12)
C16—C15—C20—C195.4 (3)C10—S1—S2—C1190.59 (8)
C14—C15—C20—C19169.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···S40.972.533.028 (2)112
C18—H18···Cg1i2.743.604 (2)154
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H20N2S4
Mr416.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)8.1019 (4), 20.3208 (11), 12.3647 (6)
β (°) 104.371 (2)
V3)1971.99 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.867, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
44844, 4941, 4036
Rint0.031
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.03
No. of reflections4941
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···S40.972.533.028 (2)112
C18—H18···Cg1i.2.743.604 (2)154
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

The authors thank the SAIF, Indian Institute of Technology, Chennai, for the data collection.

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Razak, I. A., Bei, F.-L., Jian, F.-F., Yang, X.-J., Lu, L. & Wang, X. (2001). Acta Cryst. E57, o717–o718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGarg, B. S., Garg, R. K. & Reddy, M. J. (1993). Indian J. Chem. Sect. A, 32, 697–700.  Google Scholar
First citationIvanov, A. V., Larionov, S. A., Forsling, W., Antzutkin, O. N. & Kritikos, M. (2003). Russ. J. Coord. Chem. 29, 142–150  Web of Science CrossRef CAS Google Scholar
First citationJian, F., Jiang, L., Fun, H.-K., Chinnakali, K., Razak, I. A. & You, X. (1999). Acta Cryst. C55, 573–574.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKumar, V., Aravamudan, G. & Seshasayee, M. (1990). Acta Cryst. C46, 674–676.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVon Deuten, K., Schnabel, W. & Klar, G. (1980). Phosphorus Sulfur Silicon Relat. Elem. 9, 93–98.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds