organic compounds
3,3-Dinitroazetidinium chloride
aSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000 Shaanxi, People's Republic of China, and bSchool of Chemical Engineering, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
*Correspondence e-mail: donghuhai@qq.com
In the title gem-dinitroazetidinium chloride salt, C3H6N3O4+·Cl−, the cations and anions lie on a mirror plane. The azetidine ring is virtually planar, with a mean deviation from the plane of 0.0569 Å. The dihedral angle between the two nitro groups is 90.00 (5)°. In the crystal, the ions are linked by N—H⋯Cl interactions, forming a chain along the c-axis direction, and C—H⋯O interactions, forming a layer parallel to (010).
Related literature
For 1,3,3-trinitroazetidine and compounds prepared from its derivative 3,3-dinitroazetidine, see: Archibald et al. (1990); Hiskey et al. (1992); Ma et al. (2009a,b, 2011); Yan et al. (2009, 2010); Gao et al. (2009). For related structures, see: Gao et al. (2010); Ma et al. (2010). For the synthesis, see: Li et al. (2004).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812046302/zq2187sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812046302/zq2187Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812046302/zq2187Isup3.cml
The title compound was synthesized and purified by a reported method (Li et al., 2004). The compound was then dissolved in water and colorless crystals were isolated after 1 d.
Elemental analysis calculated for C3H6N3O4Cl: C 19.63, N 22.89, H 3.29%; found: C 19.74, N 23.10, H 3.19%.
IR (KBr, cm-1): 3057, 2623, 1588, 1406, 1333, 850, 808.
H atoms were placed at calculated idealized positions and refined using a riding model, with C—H = 0.97 Å and N—H = 0.90 Å [and Uiso(H) = 1.2Ueq(C,N)].
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C3H6N3O4+·Cl− | Z = 4 |
Mr = 183.56 | F(000) = 376 |
Orthorhombic, Cmc21 | Dx = 1.753 Mg m−3 |
Hall symbol: C 2c -2 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6807 (17) Å | µ = 0.52 mm−1 |
b = 10.4409 (17) Å | T = 293 K |
c = 9.9707 (19) Å | Block, colourless |
V = 695.5 (2) Å3 | 0.35 × 0.34 × 0.30 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 708 independent reflections |
Radiation source: fine-focus sealed tube | 696 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
phi and ω scans | θmax = 27.9°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −8→8 |
Tmin = 0.839, Tmax = 0.860 | k = −13→12 |
1968 measured reflections | l = −11→13 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.0313P)2 + 0.199P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.055 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.18 e Å−3 |
708 reflections | Δρmin = −0.16 e Å−3 |
62 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.227 (9) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 252 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.09 (7) |
C3H6N3O4+·Cl− | V = 695.5 (2) Å3 |
Mr = 183.56 | Z = 4 |
Orthorhombic, Cmc21 | Mo Kα radiation |
a = 6.6807 (17) Å | µ = 0.52 mm−1 |
b = 10.4409 (17) Å | T = 293 K |
c = 9.9707 (19) Å | 0.35 × 0.34 × 0.30 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 708 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 696 reflections with I > 2σ(I) |
Tmin = 0.839, Tmax = 0.860 | Rint = 0.019 |
1968 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.055 | Δρmax = 0.18 e Å−3 |
S = 1.10 | Δρmin = −0.16 e Å−3 |
708 reflections | Absolute structure: Flack (1983), 252 Friedel pairs |
62 parameters | Absolute structure parameter: 0.09 (7) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.0000 | 0.34257 (4) | 0.24339 (6) | 0.03211 (19) | |
N2 | 0.0000 | 0.14030 (15) | 0.5026 (2) | 0.0277 (4) | |
O3 | 0.0000 | 0.07128 (19) | 0.7449 (3) | 0.0571 (6) | |
C1 | 0.1613 (2) | 0.35120 (12) | 0.57848 (17) | 0.0255 (3) | |
H1A | 0.2305 | 0.3773 | 0.6596 | 0.031* | |
H1B | 0.2557 | 0.3293 | 0.5081 | 0.031* | |
N3 | 0.0000 | 0.1881 (2) | 0.7388 (3) | 0.0354 (4) | |
N1 | 0.0000 | 0.44299 (15) | 0.5346 (2) | 0.0269 (4) | |
H1C | 0.0000 | 0.4581 | 0.4457 | 0.032* | |
H1D | 0.0000 | 0.5170 | 0.5808 | 0.032* | |
O4 | 0.0000 | 0.2614 (3) | 0.8318 (2) | 0.0536 (6) | |
O1 | 0.16253 (18) | 0.10036 (10) | 0.46749 (16) | 0.0425 (4) | |
C2 | 0.0000 | 0.24966 (18) | 0.6017 (2) | 0.0217 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0359 (3) | 0.0347 (3) | 0.0258 (3) | 0.000 | 0.000 | 0.0048 (3) |
N2 | 0.0314 (9) | 0.0207 (8) | 0.0309 (11) | 0.000 | 0.000 | 0.0002 (7) |
O3 | 0.0562 (12) | 0.0522 (10) | 0.0629 (14) | 0.000 | 0.000 | 0.0373 (12) |
C1 | 0.0226 (7) | 0.0236 (7) | 0.0304 (8) | −0.0015 (5) | 0.0008 (6) | −0.0013 (5) |
N3 | 0.0232 (8) | 0.0556 (11) | 0.0273 (9) | 0.000 | 0.000 | 0.0133 (13) |
N1 | 0.0323 (10) | 0.0202 (7) | 0.0283 (9) | 0.000 | 0.000 | −0.0012 (7) |
O4 | 0.0463 (12) | 0.0904 (16) | 0.0240 (9) | 0.000 | 0.000 | −0.0017 (9) |
O1 | 0.0365 (7) | 0.0362 (6) | 0.0549 (9) | 0.0117 (4) | −0.0002 (7) | −0.0136 (6) |
C2 | 0.0218 (9) | 0.0215 (9) | 0.0217 (11) | 0.000 | 0.000 | 0.0007 (7) |
N2—O1i | 1.2147 (14) | C1—H1B | 0.9700 |
N2—O1 | 1.2147 (14) | N3—O4 | 1.203 (4) |
N2—C2 | 1.510 (3) | N3—C2 | 1.511 (3) |
O3—N3 | 1.221 (3) | N1—C1i | 1.5073 (19) |
C1—N1 | 1.5073 (18) | N1—H1C | 0.9000 |
C1—C2 | 1.5294 (19) | N1—H1D | 0.9000 |
C1—H1A | 0.9700 | C2—C1i | 1.5294 (19) |
O1i—N2—O1 | 126.74 (19) | O4—N3—C2 | 115.2 (2) |
O1i—N2—C2 | 116.63 (9) | O3—N3—C2 | 118.0 (3) |
O1—N2—C2 | 116.63 (9) | C1—N1—C1i | 91.30 (15) |
N1—C1—C2 | 88.89 (11) | C1—N1—H1C | 113.4 |
N1—C1—H1A | 113.8 | C1—N1—H1D | 113.4 |
C2—C1—H1A | 113.8 | H1C—N1—H1D | 110.7 |
N1—C1—H1B | 113.8 | N2—C2—N3 | 105.67 (17) |
C2—C1—H1B | 113.8 | N2—C2—C1 | 115.17 (13) |
H1A—C1—H1B | 111.1 | N3—C2—C1 | 115.58 (13) |
O4—N3—O3 | 126.7 (3) | C1—C2—C1i | 89.62 (15) |
C2—C1—N1—C1i | 8.66 (17) | O3—N3—C2—N2 | 0.0 |
O1i—N2—C2—N3 | 89.58 (16) | O4—N3—C2—C1 | 51.39 (11) |
O1—N2—C2—N3 | −89.58 (16) | O3—N3—C2—C1 | −128.61 (11) |
O1i—N2—C2—C1 | −141.56 (16) | O4—N3—C2—C1i | −51.39 (11) |
O1—N2—C2—C1 | 39.3 (2) | O3—N3—C2—C1i | 128.61 (11) |
O1i—N2—C2—C1i | −39.3 (2) | N1—C1—C2—N2 | 109.30 (15) |
O1—N2—C2—C1i | 141.56 (16) | N1—C1—C2—N3 | −126.93 (15) |
O4—N3—C2—N2 | 180.0 | N1—C1—C2—C1i | −8.53 (17) |
Symmetry code: (i) −x, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···Cl | 0.90 | 2.35 | 3.087 (2) | 139 |
N1—H1D···Clii | 0.90 | 2.19 | 3.0575 (19) | 163 |
C1—H1B···O1 | 0.97 | 2.50 | 2.8432 (19) | 100 |
C1—H1B···O4iii | 0.97 | 2.58 | 3.543 (2) | 172 |
Symmetry codes: (ii) −x, −y+1, z+1/2; (iii) x+1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C3H6N3O4+·Cl− |
Mr | 183.56 |
Crystal system, space group | Orthorhombic, Cmc21 |
Temperature (K) | 293 |
a, b, c (Å) | 6.6807 (17), 10.4409 (17), 9.9707 (19) |
V (Å3) | 695.5 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.52 |
Crystal size (mm) | 0.35 × 0.34 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.839, 0.860 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1968, 708, 696 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.055, 1.10 |
No. of reflections | 708 |
No. of parameters | 62 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.16 |
Absolute structure | Flack (1983), 252 Friedel pairs |
Absolute structure parameter | 0.09 (7) |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···Cl | 0.90 | 2.35 | 3.087 (2) | 139 |
N1—H1D···Cli | 0.90 | 2.19 | 3.0575 (19) | 163 |
C1—H1B···O4ii | 0.97 | 2.58 | 3.543 (2) | 172 |
Symmetry codes: (i) −x, −y+1, z+1/2; (ii) x+1/2, −y+1/2, z−1/2. |
Acknowledgements
We thank the National Natural Science Foundation of China (grant No. 21073141), the Education Committee Foundation of Shaanxi Province (grant Nos. 11 JK0564 and 11J K0582) and the Project sponsored by SRF for AT, YLU (No. 09GK019) for generously supporting this study.
References
Archibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920–2924. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577–582. CAS Google Scholar
Gao, R., Yan, B., Mai, T., Hu, Y. & Guan, Y.-L. (2010). Acta Cryst. E66, o3036. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hiskey, M. A., Coburn, M. D., Mitchell, M. A. & Benicewicz, B. C. (1992). J. Heterocycl. Chem. 29, 1855–1856. CrossRef CAS Google Scholar
Li, H. Z., Shu, Y. J., Huang, Y. G., Liu, S. J. & Jiang, Q. (2004). Chin. J. Org. Chem. 24, 775–777. CAS Google Scholar
Ma, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009a). J. Hazard. Mater. 169, 1068–1073. Web of Science CrossRef PubMed CAS Google Scholar
Ma, H. X., Yan, B., Li, J. F., Ren, Y. H., Chen, Y. S., Zhao, F. Q., Song, J. R. & Hu, R. Z. (2010). J. Mol. Struct. 981, 103–110. Web of Science CSD CrossRef CAS Google Scholar
Ma, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009b). J. Therm. Anal. Calorim. 95, 437–444. Web of Science CrossRef CAS Google Scholar
Ma, H. X., Yan, B., Ren, Y. H., Guan, Y. L., Zhao, F. Q., Song, J. R. & Hu, R. Z. (2011). J. Therm. Anal. Calorim. 103, 569–575. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2000). SADABS . University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yan, B., Ma, H.-X., Hu, Y., Guan, Y.-L. & Song, J.-R. (2009). Acta Cryst. E65, o3215. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yan, B., Ma, H.-X., Li, J.-F., Guan, Y.-L. & Song, J.-R. (2010). Acta Cryst. E66, o57. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dinitro- and trinitro-derivatives of azetidine are of interest because they contain strained ring systems. This makes them good candidates for energetic materials (propellants or explosives). Azetidine-based explosives, such as 1,3,3-trinitroazetidine (TNAZ) (Archibald et al., 1990) demonstrate excellent performance partly because of the high strain associated with the four-membered ring. As one of the important derivates of TNAZ, 3,3-dinitroazetidine (DNAZ) (Hiskey et al., 1992) can prepare a variety of solid energetic materials with high oxygen-balance (Ma et al., 2009a; Ma et al., 2009b; Yan et al., 2009; Gao et al., 2009; Yan et al., 2010; Ma et al., 2010; Gao et al., 2010; Ma et al., 2011). This paper reports the crystal structure of the title DNAZ salt, C3H6N3O4+.Cl-.
In the title dinitroazetidinium chloride salt, cations and anions lie on a mirror plane. The azetidine ring is virtually planar, with a mean deviation from the plane of 0.0569 Å. The dihedral angle between the two nitro groups is 90.00 (5)°. In the crystal, the ions are linked by N–H···Cl and C–H···O interactions.