metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1565-m1566

Di-μ-chlorido-bis­­({8-[bis­­(naphthalen-1-yl)phosphan­yl]naphthalen-1-yl-κ2C1,P}palladium(II)) di­chloro­methane disolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 19 November 2012; accepted 24 November 2012; online 30 November 2012)

The title compound, [Pd2{P(C10H7)2(C10H6)}2Cl2]·2CH2Cl2, shows cyclo­metalation of one naphthalen-1-yl substituent of each of the phosphane ligands to the Pd dimer in a trans orientation; the complete dimer is generated by a centre of inversion. Two dichloro­methane solvent mol­ecules create C—H⋯Cl inter­actions with the metal complex, generating supermolecular layers in the ab plane. Additional C—H⋯π and ππ [centroid–centroid distances = 3.713 (3), 3.850 (4) and 3.926 (3) Å] inter­actions join these planes into a three-dimensional supermolecular network.

Related literature

For background to palladium compounds in catalysis, see: Dunina et al. (2008[Dunina, V. V., Turubanova, E. I., Livantsov, M. V., Lyssenko, K. A. & Grishin, Y. K. (2008). Tetrahedron Asymmetry 19, 1519-1522.], 2009[Dunina, V. V., Zykov, P. A., Livantsov, M. V., Glukhov, I. V., Kochetkov, K. A., Gloriozov, I. P. & Grishin, Y. K. (2009). Organometallics, 28, 425-432.]); Bedford et al. (2004[Bedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283-2321.]); Morales-Morales et al. (2002[Morales-Morales, D., Cramer, R. E. & Jensen, C. M. (2002). J. Organomet. Chem. 654, 44-50.]). For the synthesis of the starting materials, see: Drew & Doyle (1990[Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2(C30H20P)2Cl2]·2CH2Cl2

  • Mr = 1276.41

  • Triclinic, [P \overline 1]

  • a = 9.4823 (8) Å

  • b = 11.4272 (9) Å

  • c = 12.343 (1) Å

  • α = 80.652 (2)°

  • β = 76.592 (2)°

  • γ = 89.013 (2)°

  • V = 1283.42 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 100 K

  • 0.33 × 0.13 × 0.13 mm

Data collection
  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.709, Tmax = 0.868

  • 40200 measured reflections

  • 6340 independent reflections

  • 5675 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.154

  • S = 1.07

  • 6340 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 1.59 e Å−3

  • Δρmin = −2.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C15/C20, C21–C25/C30, Pd1/Cl1/Pd1′/Cl1′ and C1/C2/C7–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cl3 0.95 2.72 3.536 (7) 145
C31—H31A⋯Cl3i 0.99 2.52 3.366 (16) 143
C9—H9⋯Cg1ii 0.95 2.83 3.666 (5) 148
C18—H18⋯Cg2iii 0.95 2.91 3.788 (6) 154
C26—H26⋯Cg3iv 0.95 2.59 3.535 (5) 172
C31—H31BCg4ii 0.99 2.75 3.632 (15) 148
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In the past few decades, phosphapalladacycles have attracted extensive attention due to their activity as catalysts in C—C bond formation scenarios (Dunina et al., 2008, 2009; Bedford et al., 2004; Morales-Morales et al., 2002). [PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. Reported here is the product of the reaction between tris(naphthalen-1-yl)phosphane and [PdCl2(COD)], which shows dimerization of the PdII metal as well as chelation of one naphthalen-1-yl substituent of each of the phosphane ligands to the Pd dimer.

The title compound (Fig.1) crystallizes in the triclinic space group P1 (Z = 1), situated around an inversion centre and accompanied by two dichloromethane solvate molecules in the unit cell. The coordination centre for each PdII centre is distorted due to the strained five membered chelation of the naphthalen-1-yl ligand to each metal centre in a trans orientation. This distortion is noted most prominently in the displacement of the P and C donor atoms from the plane formed by the Pd and bridged Cl atoms (C3 and P1 displaced 0.2811 (4) and -0.2508 (12) Å, respectively).

Crystal packing reveals a 2-dimentional network generated by C—H···Cl interactions between the cyclo-metalated Pd complex and the dichloromethane solvates (see Fig. 2, table 1). In addition to the above several C—H···π interactions (see Fig. 3, table 1) and ππ stacking (see Fig. 4; centroid to centroid distances = 3.713 (3), 3.850 (4), 3.926 (3) Å) are observed, linking the 2-dimentional layers into 3-dimentional network.

Related literature top

For background to palladium compounds in catalysis, see: Dunina et al. (2008, 2009); Bedford et al. (2004); Morales-Morales et al. (2002). For the synthesis of the starting materials, see: Drew & Doyle (1990).

Experimental top

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl2(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). Tris(naphthalen-1-yl)phosphane (15 mg, 0.036 mmol) was dissolved in CH2Cl2 (5 cm3). A solution of [Pd(COD)Cl2] (5.2 mg, 0.018 mmol) in CH2Cl2 (5 cm3) was added to the phosphane solution. The mixture was stirred for 6hr at room temperature, after which the solution was left to slowly evaporate giving a yellow powder in 65% yield. Yellow crystals of the title compound suitable for a single-crystal X-ray study were obtained after recrystallization from a CH2Cl2/DMSO solution.

31P NMR (CDCl3, 162.0 MHz): δ (p.p.m.) 24.91 (s, 1P).

FTIR (cm-1):2199, 2162, 1712, 1630, 1560, 1507, 1252, 1165, 1043, 929, 794, 769, 720, 668, 622.

Refinement top

The aromatic and methylene H atoms were placed in geometrically idealized positions (C—H = 0.95 and 0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The deepest residual electron-density hole (-2.36 e.Å3) is located at 0.7 Å from C31 and the highest peak (1.59 e.Å3) 1.12 Å from Cl3, both associated with the solvate molecule and representing no physical meaning.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids (H atoms omitted for clarity). Accented lettering indicate atoms generated by symmetry code i = 1-x, -y, 1-z.
[Figure 2] Fig. 2. Packing diagram showing the 2-dimentional network generated by C—H···Cl interactions (indicated by red dashed lines) between the metal complex and the dichloromethane solvates (H atoms not involved in interactions are omitted for clarity).
[Figure 3] Fig. 3. Packing diagram showing the C—H···π interactions (indicated by red dashed lines). H atoms not involved in interactions are omitted for clarity.
[Figure 4] Fig. 4. Packing diagram showing the ππ interactions (indicated by red dashed lines). H atoms are omitted for clarity.
Di-µ-chlorido-bis({8-[bis(naphthalen-1-yl)phosphanyl]naphthalen-1-yl- κ2C1,P}palladium(II)) dichloromethane disolvate top
Crystal data top
[Pd2(C30H20P)2Cl2]·2CH2Cl2Z = 1
Mr = 1276.41F(000) = 640
Triclinic, P1Dx = 1.651 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4823 (8) ÅCell parameters from 9967 reflections
b = 11.4272 (9) Åθ = 2.3–28.4°
c = 12.343 (1) ŵ = 1.12 mm1
α = 80.652 (2)°T = 100 K
β = 76.592 (2)°Needle, yellow
γ = 89.013 (2)°0.33 × 0.13 × 0.13 mm
V = 1283.42 (18) Å3
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
6340 independent reflections
Radiation source: sealed tube5675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.4 pixels mm-1θmax = 28.4°, θmin = 1.7°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1515
Tmin = 0.709, Tmax = 0.868l = 1616
40200 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0813P)2 + 7.0269P]
where P = (Fo2 + 2Fc2)/3
6340 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 1.59 e Å3
0 restraintsΔρmin = 2.36 e Å3
Crystal data top
[Pd2(C30H20P)2Cl2]·2CH2Cl2γ = 89.013 (2)°
Mr = 1276.41V = 1283.42 (18) Å3
Triclinic, P1Z = 1
a = 9.4823 (8) ÅMo Kα radiation
b = 11.4272 (9) ŵ = 1.12 mm1
c = 12.343 (1) ÅT = 100 K
α = 80.652 (2)°0.33 × 0.13 × 0.13 mm
β = 76.592 (2)°
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
6340 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5675 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.868Rint = 0.030
40200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.07Δρmax = 1.59 e Å3
6340 reflectionsΔρmin = 2.36 e Å3
325 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 3976 frames were collected with a frame width of 0.5° covering up to θ = 28.38° with 98.6% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.48238 (3)0.07664 (2)0.36232 (2)0.01412 (11)
P10.37614 (12)0.23315 (9)0.28438 (8)0.0156 (2)
Cl10.42468 (11)0.10775 (9)0.55808 (8)0.0192 (2)
Cl20.0088 (5)0.7412 (4)0.0879 (3)0.1348 (16)
Cl30.1322 (4)0.5129 (4)0.0838 (4)0.1423 (16)
C30.5601 (5)0.0555 (4)0.2007 (4)0.0222 (9)
C20.5448 (6)0.1477 (4)0.1105 (4)0.0252 (9)
C10.4615 (5)0.2484 (4)0.1354 (4)0.0230 (9)
C210.1836 (5)0.1992 (4)0.2977 (4)0.0181 (8)
C300.0811 (5)0.1809 (3)0.4047 (3)0.0179 (8)
C250.0606 (5)0.1358 (4)0.4107 (4)0.0212 (8)
C240.0963 (6)0.1117 (4)0.3107 (4)0.0278 (10)
H240.18990.08060.31440.033*
C230.0024 (6)0.1326 (4)0.2095 (4)0.0272 (10)
H230.02370.11780.1430.033*
C220.1425 (5)0.1759 (4)0.2030 (4)0.0234 (9)
H220.21030.18930.1320.028*
C260.1636 (5)0.1163 (4)0.5160 (4)0.0271 (10)
H260.25820.08740.51940.033*
C270.1295 (5)0.1381 (4)0.6122 (4)0.0272 (10)
H270.19910.12330.68220.033*
C280.0099 (5)0.1829 (4)0.6070 (4)0.0243 (9)
H280.03360.19830.67420.029*
C290.1120 (5)0.2047 (4)0.5068 (4)0.0197 (8)
H290.20460.23610.50540.024*
C110.3889 (5)0.3794 (3)0.3228 (3)0.0183 (8)
C200.5266 (5)0.4266 (4)0.3270 (3)0.0199 (8)
C190.6584 (5)0.3643 (4)0.3056 (4)0.0249 (9)
H190.65750.28620.28850.03*
C180.7875 (6)0.4152 (4)0.3092 (5)0.0324 (11)
H180.87410.37150.29540.039*
C170.7928 (6)0.5312 (5)0.3332 (5)0.0340 (11)
H170.88260.56580.33450.041*
C160.6669 (6)0.5941 (4)0.3549 (4)0.0277 (10)
H160.67050.67220.37140.033*
C150.5323 (6)0.5443 (4)0.3528 (4)0.0227 (9)
C140.4021 (6)0.6095 (4)0.3743 (4)0.0252 (9)
H140.40530.68670.3930.03*
C130.2732 (6)0.5630 (4)0.3684 (4)0.0260 (9)
H130.18780.60830.38220.031*
C120.2659 (5)0.4472 (4)0.3418 (4)0.0227 (9)
H120.17570.4160.3370.027*
C100.4477 (6)0.3402 (4)0.0525 (4)0.0314 (11)
H100.3930.40750.07120.038*
C90.5155 (8)0.3341 (5)0.0616 (4)0.0399 (14)
H90.50630.39750.11960.048*
C80.5943 (9)0.2369 (5)0.0882 (4)0.0468 (16)
H80.63750.23320.16510.056*
C70.6129 (7)0.1420 (5)0.0042 (4)0.0373 (13)
C60.6978 (9)0.0412 (6)0.0281 (4)0.0526 (19)
H60.74440.03510.10390.063*
C50.7122 (9)0.0463 (6)0.0572 (5)0.0504 (18)
H50.77010.11250.04020.061*
C40.6423 (6)0.0409 (5)0.1719 (4)0.0323 (11)
H40.65220.10450.22930.039*
C310.1100 (14)0.6358 (15)0.0065 (11)0.116 (5)
H31A0.05790.61980.05060.139*
H31B0.20610.67110.03410.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01857 (17)0.01053 (16)0.01332 (16)0.00039 (11)0.00303 (11)0.00303 (10)
P10.0217 (5)0.0111 (4)0.0135 (4)0.0009 (4)0.0031 (4)0.0021 (3)
Cl10.0273 (5)0.0162 (4)0.0152 (4)0.0083 (4)0.0056 (4)0.0051 (3)
Cl20.137 (3)0.177 (4)0.0702 (17)0.055 (3)0.0036 (18)0.004 (2)
Cl30.098 (2)0.131 (3)0.182 (4)0.005 (2)0.037 (3)0.026 (3)
C30.033 (2)0.0179 (19)0.0147 (18)0.0011 (17)0.0013 (16)0.0054 (15)
C20.037 (3)0.020 (2)0.0160 (19)0.0006 (18)0.0004 (17)0.0045 (16)
C10.033 (2)0.0167 (19)0.0162 (18)0.0011 (17)0.0009 (16)0.0023 (15)
C210.021 (2)0.0132 (17)0.0208 (19)0.0030 (15)0.0060 (15)0.0036 (14)
C300.022 (2)0.0120 (17)0.0199 (18)0.0023 (15)0.0063 (15)0.0021 (14)
C250.021 (2)0.0129 (18)0.030 (2)0.0025 (15)0.0073 (17)0.0042 (16)
C240.029 (2)0.020 (2)0.040 (3)0.0016 (18)0.017 (2)0.0067 (18)
C230.037 (3)0.023 (2)0.029 (2)0.0030 (19)0.019 (2)0.0101 (18)
C220.033 (2)0.020 (2)0.0189 (19)0.0044 (18)0.0092 (17)0.0065 (16)
C260.021 (2)0.018 (2)0.039 (3)0.0015 (16)0.0007 (18)0.0025 (18)
C270.026 (2)0.020 (2)0.029 (2)0.0052 (17)0.0047 (18)0.0029 (17)
C280.030 (2)0.020 (2)0.022 (2)0.0069 (17)0.0052 (17)0.0054 (16)
C290.022 (2)0.0166 (18)0.0212 (19)0.0023 (15)0.0053 (16)0.0060 (15)
C110.029 (2)0.0115 (17)0.0139 (17)0.0004 (15)0.0051 (15)0.0019 (13)
C200.031 (2)0.0129 (18)0.0161 (18)0.0007 (16)0.0056 (16)0.0024 (14)
C190.031 (2)0.0147 (19)0.030 (2)0.0002 (17)0.0086 (18)0.0056 (16)
C180.033 (3)0.022 (2)0.043 (3)0.001 (2)0.010 (2)0.006 (2)
C170.038 (3)0.023 (2)0.045 (3)0.005 (2)0.016 (2)0.006 (2)
C160.043 (3)0.0158 (19)0.028 (2)0.0017 (19)0.014 (2)0.0059 (17)
C150.040 (3)0.0112 (17)0.0172 (18)0.0013 (17)0.0083 (17)0.0014 (14)
C140.042 (3)0.0126 (18)0.021 (2)0.0024 (18)0.0071 (18)0.0038 (15)
C130.037 (3)0.0133 (19)0.027 (2)0.0066 (17)0.0046 (19)0.0042 (16)
C120.033 (2)0.0147 (19)0.0203 (19)0.0017 (17)0.0056 (17)0.0025 (15)
C100.051 (3)0.018 (2)0.021 (2)0.005 (2)0.002 (2)0.0014 (17)
C90.071 (4)0.025 (2)0.017 (2)0.000 (3)0.002 (2)0.0041 (18)
C80.083 (5)0.030 (3)0.018 (2)0.007 (3)0.003 (3)0.001 (2)
C70.060 (4)0.030 (3)0.015 (2)0.007 (2)0.003 (2)0.0045 (18)
C60.088 (5)0.045 (3)0.015 (2)0.025 (3)0.006 (3)0.007 (2)
C50.084 (5)0.040 (3)0.023 (2)0.027 (3)0.001 (3)0.014 (2)
C40.049 (3)0.030 (2)0.017 (2)0.013 (2)0.005 (2)0.0074 (18)
C310.095 (9)0.176 (14)0.092 (8)0.047 (9)0.043 (7)0.044 (9)
Geometric parameters (Å, º) top
Pd1—C32.013 (4)C11—C121.385 (6)
Pd1—P12.2288 (10)C11—C201.436 (6)
Pd1—Cl1i2.4180 (10)C20—C191.420 (6)
Pd1—Cl12.4337 (10)C20—C151.435 (6)
P1—C11.811 (4)C19—C181.377 (7)
P1—C111.823 (4)C19—H190.95
P1—C211.838 (4)C18—C171.408 (7)
Cl1—Pd1i2.4180 (10)C18—H180.95
Cl2—C311.813 (14)C17—C161.378 (8)
Cl3—C311.604 (15)C17—H170.95
C3—C41.384 (6)C16—C151.414 (7)
C3—C21.435 (6)C16—H160.95
C2—C11.419 (6)C15—C141.425 (7)
C2—C71.424 (6)C14—C131.363 (7)
C1—C101.368 (6)C14—H140.95
C21—C221.380 (6)C13—C121.420 (6)
C21—C301.433 (6)C13—H130.95
C30—C291.426 (6)C12—H120.95
C30—C251.429 (6)C10—C91.418 (7)
C25—C261.421 (6)C10—H100.95
C25—C241.422 (7)C9—C81.370 (8)
C24—C231.365 (7)C9—H90.95
C24—H240.95C8—C71.413 (8)
C23—C221.406 (7)C8—H80.95
C23—H230.95C7—C61.425 (8)
C22—H220.95C6—C51.359 (8)
C26—C271.362 (7)C6—H60.95
C26—H260.95C5—C41.428 (7)
C27—C281.409 (7)C5—H50.95
C27—H270.95C4—H40.95
C28—C291.372 (6)C31—H31A0.99
C28—H280.95C31—H31B0.99
C29—H290.95
C3—Pd1—P183.19 (13)C19—C20—C15117.8 (4)
C3—Pd1—Cl1i95.05 (13)C19—C20—C11123.8 (4)
P1—Pd1—Cl1i173.01 (4)C15—C20—C11118.4 (4)
C3—Pd1—Cl1171.70 (15)C18—C19—C20121.1 (4)
P1—Pd1—Cl1100.16 (3)C18—C19—H19119.5
Cl1i—Pd1—Cl182.51 (3)C20—C19—H19119.5
C1—P1—C11105.94 (19)C19—C18—C17120.9 (5)
C1—P1—C21106.2 (2)C19—C18—H18119.5
C11—P1—C21107.83 (19)C17—C18—H18119.5
C1—P1—Pd1103.99 (15)C16—C17—C18119.6 (5)
C11—P1—Pd1121.53 (14)C16—C17—H17120.2
C21—P1—Pd1110.23 (13)C18—C17—H17120.2
Pd1i—Cl1—Pd197.49 (3)C17—C16—C15121.0 (4)
C4—C3—C2117.3 (4)C17—C16—H16119.5
C4—C3—Pd1122.1 (3)C15—C16—H16119.5
C2—C3—Pd1120.2 (3)C16—C15—C14121.1 (4)
C1—C2—C7118.6 (4)C16—C15—C20119.6 (4)
C1—C2—C3119.6 (4)C14—C15—C20119.3 (5)
C7—C2—C3121.7 (4)C13—C14—C15121.0 (4)
C10—C1—C2121.6 (4)C13—C14—H14119.5
C10—C1—P1127.1 (4)C15—C14—H14119.5
C2—C1—P1111.2 (3)C14—C13—C12120.4 (4)
C22—C21—C30119.6 (4)C14—C13—H13119.8
C22—C21—P1117.7 (3)C12—C13—H13119.8
C30—C21—P1122.1 (3)C11—C12—C13120.6 (5)
C29—C30—C25117.5 (4)C11—C12—H12119.7
C29—C30—C21123.9 (4)C13—C12—H12119.7
C25—C30—C21118.7 (4)C1—C10—C9119.6 (5)
C26—C25—C24121.0 (4)C1—C10—H10120.2
C26—C25—C30119.7 (4)C9—C10—H10120.2
C24—C25—C30119.3 (4)C8—C9—C10120.0 (5)
C23—C24—C25120.7 (5)C8—C9—H9120
C23—C24—H24119.6C10—C9—H9120
C25—C24—H24119.6C9—C8—C7121.7 (5)
C24—C23—C22120.3 (4)C9—C8—H8119.2
C24—C23—H23119.8C7—C8—H8119.2
C22—C23—H23119.8C8—C7—C2118.5 (5)
C21—C22—C23121.3 (4)C8—C7—C6123.3 (5)
C21—C22—H22119.3C2—C7—C6118.2 (5)
C23—C22—H22119.3C5—C6—C7120.1 (5)
C27—C26—C25121.3 (5)C5—C6—H6119.9
C27—C26—H26119.4C7—C6—H6119.9
C25—C26—H26119.4C6—C5—C4121.5 (5)
C26—C27—C28119.5 (4)C6—C5—H5119.3
C26—C27—H27120.3C4—C5—H5119.3
C28—C27—H27120.3C3—C4—C5121.1 (5)
C29—C28—C27121.2 (4)C3—C4—H4119.4
C29—C28—H28119.4C5—C4—H4119.4
C27—C28—H28119.4Cl3—C31—Cl2112.5 (8)
C28—C29—C30121.0 (4)Cl3—C31—H31A109.1
C28—C29—H29119.5Cl2—C31—H31A109.1
C30—C29—H29119.5Cl3—C31—H31B109.1
C12—C11—C20120.2 (4)Cl2—C31—H31B109.1
C12—C11—P1119.3 (3)H31A—C31—H31B107.8
C20—C11—P1120.4 (3)
C3—Pd1—P1—C111.1 (2)C25—C26—C27—C281.1 (7)
Cl1—Pd1—P1—C1161.18 (17)C26—C27—C28—C290.1 (7)
C3—Pd1—P1—C11130.1 (2)C27—C28—C29—C301.0 (7)
Cl1—Pd1—P1—C1142.19 (17)C25—C30—C29—C281.1 (6)
C3—Pd1—P1—C21102.4 (2)C21—C30—C29—C28178.7 (4)
Cl1—Pd1—P1—C2185.31 (15)C1—P1—C11—C12106.0 (4)
P1—Pd1—Cl1—Pd1i173.47 (4)C21—P1—C11—C127.4 (4)
Cl1i—Pd1—Cl1—Pd1i0Pd1—P1—C11—C12135.9 (3)
P1—Pd1—C3—C4175.6 (5)C1—P1—C11—C2070.5 (4)
Cl1i—Pd1—C3—C42.4 (5)C21—P1—C11—C20176.1 (3)
P1—Pd1—C3—C211.2 (4)Pd1—P1—C11—C2047.6 (4)
Cl1i—Pd1—C3—C2175.6 (4)C12—C11—C20—C19178.3 (4)
C4—C3—C2—C1179.9 (5)P1—C11—C20—C191.8 (6)
Pd1—C3—C2—C16.5 (7)C12—C11—C20—C150.8 (6)
C4—C3—C2—C71.0 (8)P1—C11—C20—C15177.3 (3)
Pd1—C3—C2—C7172.6 (4)C15—C20—C19—C180.1 (7)
C7—C2—C1—C101.2 (8)C11—C20—C19—C18178.9 (4)
C3—C2—C1—C10177.9 (5)C20—C19—C18—C170.6 (8)
C7—C2—C1—P1176.5 (4)C19—C18—C17—C160.9 (8)
C3—C2—C1—P14.4 (6)C18—C17—C16—C150.3 (8)
C11—P1—C1—C1042.0 (6)C17—C16—C15—C14179.5 (5)
C21—P1—C1—C1072.5 (5)C17—C16—C15—C200.4 (7)
Pd1—P1—C1—C10171.1 (5)C19—C20—C15—C160.6 (6)
C11—P1—C1—C2140.5 (4)C11—C20—C15—C16178.5 (4)
C21—P1—C1—C2105.0 (4)C19—C20—C15—C14179.8 (4)
Pd1—P1—C1—C211.4 (4)C11—C20—C15—C140.6 (6)
C1—P1—C21—C228.5 (4)C16—C15—C14—C13177.7 (4)
C11—P1—C21—C22121.7 (3)C20—C15—C14—C131.4 (7)
Pd1—P1—C21—C22103.6 (3)C15—C14—C13—C120.7 (7)
C1—P1—C21—C30179.9 (3)C20—C11—C12—C131.5 (6)
C11—P1—C21—C3066.9 (4)P1—C11—C12—C13178.0 (3)
Pd1—P1—C21—C3067.9 (3)C14—C13—C12—C110.8 (7)
C22—C21—C30—C29178.7 (4)C2—C1—C10—C91.3 (9)
P1—C21—C30—C2910.1 (6)P1—C1—C10—C9176.0 (5)
C22—C21—C30—C251.5 (6)C1—C10—C9—C80.0 (10)
P1—C21—C30—C25169.7 (3)C10—C9—C8—C71.3 (11)
C29—C30—C25—C260.2 (6)C9—C8—C7—C21.3 (11)
C21—C30—C25—C26179.6 (4)C9—C8—C7—C6178.0 (7)
C29—C30—C25—C24179.5 (4)C1—C2—C7—C80.1 (9)
C21—C30—C25—C240.6 (6)C3—C2—C7—C8179.2 (6)
C26—C25—C24—C23178.9 (4)C1—C2—C7—C6179.2 (6)
C30—C25—C24—C230.9 (7)C3—C2—C7—C60.1 (9)
C25—C24—C23—C221.5 (7)C8—C7—C6—C5179.3 (8)
C30—C21—C22—C231.0 (6)C2—C7—C6—C50.0 (12)
P1—C21—C22—C23170.7 (3)C7—C6—C5—C40.8 (13)
C24—C23—C22—C210.6 (7)C2—C3—C4—C51.8 (9)
C24—C25—C26—C27179.4 (4)Pd1—C3—C4—C5171.6 (5)
C30—C25—C26—C270.9 (6)C6—C5—C4—C31.8 (11)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C15/C20, C21–C25/C30, Pd1/Cl1/Pd1'/Cl1' and C1/C2/C7–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl30.952.723.536 (7)145
C31—H31A···Cl3ii0.992.523.366 (16)143
C9—H9···Cg1iii0.952.833.666 (5)148
C18—H18···Cg2iv0.952.913.788 (6)154
C26—H26···Cg3v0.952.593.535 (5)172
C31—H31B···Cg4iii0.992.753.632 (15)148
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Pd2(C30H20P)2Cl2]·2CH2Cl2
Mr1276.41
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.4823 (8), 11.4272 (9), 12.343 (1)
α, β, γ (°)80.652 (2), 76.592 (2), 89.013 (2)
V3)1283.42 (18)
Z1
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.33 × 0.13 × 0.13
Data collection
DiffractometerBruker APEX DUO 4K-CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.709, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
40200, 6340, 5675
Rint0.030
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.154, 1.07
No. of reflections6340
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.59, 2.36

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C15/C20, C21–C25/C30, Pd1/Cl1/Pd1'/Cl1' and C1/C2/C7–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl30.952.723.536 (7)145
C31—H31A···Cl3i0.992.523.366 (16)143.3
C9—H9···Cg1ii0.952.833.666 (5)148
C18—H18···Cg2iii0.952.913.788 (6)154
C26—H26···Cg3iv0.952.593.535 (5)172
C31—H31B···Cg4ii0.992.753.632 (15)148
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y, z+1.
 

Acknowledgements

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283–2321.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.  CrossRef CAS Web of Science Google Scholar
First citationDunina, V. V., Turubanova, E. I., Livantsov, M. V., Lyssenko, K. A. & Grishin, Y. K. (2008). Tetrahedron Asymmetry 19, 1519–1522.  Web of Science CSD CrossRef CAS Google Scholar
First citationDunina, V. V., Zykov, P. A., Livantsov, M. V., Glukhov, I. V., Kochetkov, K. A., Gloriozov, I. P. & Grishin, Y. K. (2009). Organometallics, 28, 425–432.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorales-Morales, D., Cramer, R. E. & Jensen, C. M. (2002). J. Organomet. Chem. 654, 44–50.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1565-m1566
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds