organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Meth­­oxy-2-benzo­furan-1(3H)-one

aInstituto de Química–UFU, Uberlândia, MG, Brazil, and bDepartamento de Química–UFV, Viçosa, MG, Brazil
*Correspondence e-mail: silvana@ufu.br, robsonr.teixeira@ufv.br

(Received 16 October 2012; accepted 29 October 2012; online 7 November 2012)

In the title compound, C9H8O3, the mol­ecular skeleton is almost planar, with an r.m.s. deviation of 0.010 (2) Å. In the crystal, weak C—H⋯O hydrogen bonds connect the mol­ecules into a two-dimensional network parallel to the ac plane.

Related literature

For the biological activity of isobenzofuran-1(3H)-one, see: Ma et al. (2012[Ma, F., Gao, Y., Qiao, H., Hu, X. & Chang, J. (2012). J. Thromb. Thrombolysis, 33, 64-73.]); Huang et al. (2012[Huang, X.-Z., Zhu, Y., Guan, X.-L., Tian, K., Guo, J.-M., Wang, H.-B. & Fu, G.-M. (2012). Molecules, 17, 4219-4224.]); Zhao et al. (2012[Zhao, N., Ji, M.-X., Xu, L. & Ji, B.-S. (2012). Drug. Dev. Res. 73, 11-17.]); Arnone et al. (2002[Arnone, A., Assante, G., Nasini, G., Strada, S. & Vercesi, A. (2002). J. Nat. Prod. 65, 48-50.]). For the synthesis, see: Zhang et al. (2009[Zhang, Y.-H., Shi, B.-F. & Yu, J.-Q. (2009). Angew. Chem. Int. Ed. 48, 6097-6100.]). For related structures, see: Sun et al. (2009[Sun, M.-X., Li, X., Liu, W.-Y. & Xiao, K. (2009). Acta Cryst. E65, o2146.]); Mendenhall et al. (2003[Mendenhall, G. D., Luck, R. L., Bohn, R. K. & Castejon, H. J. (2003). J. Mol. Struct. 645, 249-258.]); Pereira et al. (2012[Pereira, J. L., Teixeira, R. R., Guilardi, S. & Paixão, D. A. (2012). Acta Cryst. E68, o2995.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8O3

  • Mr = 164.15

  • Monoclinic, P 21 /c

  • a = 8.1819 (9) Å

  • b = 10.4285 (18) Å

  • c = 9.2965 (9) Å

  • β = 99.962 (8)°

  • V = 781.26 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.18 × 0.16 mm

Data collection
  • Enraf–Nonius KappaCCD diffractometer

  • 14100 measured reflections

  • 1587 independent reflections

  • 1101 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.147

  • S = 1.06

  • 1587 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.54 3.419 (2) 157
C8—H8A⋯O2ii 0.97 2.52 3.372 (2) 146
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Isobenzofuran-1(3H)-ones (phthalides) are a class of heterocyclic compounds which occur in several natural products and have been investigated for several biological properties, such as antiplatelet (Ma et al., 2012) and antioxidant activities (Huang et al., 2012), inhibition of glutamate induced cytotoxicity in PC12 cells (Zhao et al., 2012) and phytotoxicity (Arnone et al., 2002). The title compound, C9H8O3 was obtained as an intermediate in a synthetic route in the preparation of compounds endowed with phytotoxic activity and we report the crystal structure of it in a continuation of our work on the synthesis of phthalides (Pereira et al., 2012).

The title molecule (Fig. 1) is essentially planar with a mean deviation of 0.010 (2) Å from the least squares plane traced by 12 non-H atoms. All bond distances and angles agree well with those reported in the related compounds (Sun et al., 2009; Mendenhall et al., 2003; Pereira et al., 2012). In the crystal, molecules are linked via weak C6—H6···O1 hydrogen bonds (Table 1) forming chains along the ac plane. These layers are extended by C8—H8A···O2 hydrogen bonds into a two-dimensional network structure (Fig. 2).

Related literature top

For the biological activity of isobenzofuran-1(3H)-one, see: Ma et al. (2012); Huang et al. (2012); Zhao et al. (2012); Arnone et al. (2002). For the synthesis, see: Zhang et al. (2009). For related structures, see: Sun et al. (2009); Mendenhall et al. (2003); Pereira et al. (2012).

Experimental top

Starting materials were commercially available from Sigma Aldrich (USA) and were used without further purification. 5-Methoxyisobenzofuran-1(3H)-one was prepared as follows (Zhang et al., 2009). A tube of 40 ml equipped with a magnetic stir bar was charged with palladium(II) acetate (67.3 mg, 0.30 mmol), potassium bicarbonate (750 mg, 7.50 mmol), 4-methoxybenzoic acid (456 mg, 3.00 mmol) and dibromomethane (12 ml). The tube was sealed with a teflon cap and the reaction mixture was stirred at 140 °C for 18 h. After this time, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography eluted with hexane: ethyl acetate (2:1 v/v) to afford 5-methoxyisobenzofuran-1(3H)-one in 33% yield (164 mg, 1.00 mmol). The crystals suitable for X-ray crystallographic analysis were obtained by slow evaporation from acetone solution at room temperature as a yellow solid; m.p. 113.4–114.7 °C. IR (selected bands, cm-1): 3032, 2922, 2852, 1736, 1601, 1489, 1452, 1361, 1333, 1261, 1146, 1036, 986, 773. 1H NMR (300 MHz, CDCl3): δ 3.89 (s, 3H, H9), 5.25 (s, 2H, H8), 6.91 (d, 1H, J = 0.6 Hz, H6), 7.02 (dd, 1H, J = 8.4, 0.6 Hz, H4), 7.80 (d, 1H, J = 8.4 Hz, H3). 13C NMR (75 MHz, CDCl3): δ 56.1 (C9), 69.3 (C8), 106.2 (C6), 116.7 (C4), 118.2 (C2), 127.4 (C3), 149.6 (C7), 164.9 (C5), 171.1 (C1). HREIMS m/z (M+H+): Calcd for C9H8O3, 165.0552; found: 165.0606.

Refinement top

Hydrogen atoms were included in the refinement at calculated positions (C—H = 0.93–0.98 Å), with Uiso(H) = 1.2Ueq(C)(aromatic and methylene) or 1.5Ueq(C)(methyl), using a riding-model approximation.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labeling and displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
5-Methoxy-2-benzofuran-1(3H)-one top
Crystal data top
C9H8O3Dx = 1.396 Mg m3
Mr = 164.15Melting point = 386.4–386.7 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.1819 (9) ÅCell parameters from 1685 reflections
b = 10.4285 (18) Åθ = 3.2–26.4°
c = 9.2965 (9) ŵ = 0.11 mm1
β = 99.962 (8)°T = 293 K
V = 781.26 (18) Å3Prism, yellow
Z = 40.30 × 0.18 × 0.16 mm
F(000) = 344
Data collection top
Enraf–Nonius KappaCCD
diffractometer
1101 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590 X-ray sourceRint = 0.049
Graphite monochromatorθmax = 26.4°, θmin = 3.2°
Detector resolution: 9 pixels mm-1h = 010
CCD rotation images, thick slices scansk = 013
14100 measured reflectionsl = 1111
1587 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.0576P]
where P = (Fo2 + 2Fc2)/3
1587 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C9H8O3V = 781.26 (18) Å3
Mr = 164.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1819 (9) ŵ = 0.11 mm1
b = 10.4285 (18) ÅT = 293 K
c = 9.2965 (9) Å0.30 × 0.18 × 0.16 mm
β = 99.962 (8)°
Data collection top
Enraf–Nonius KappaCCD
diffractometer
1101 reflections with I > 2σ(I)
14100 measured reflectionsRint = 0.049
1587 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
1587 reflectionsΔρmin = 0.13 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.37522 (15)0.24147 (11)0.61307 (13)0.0781 (4)
O10.05757 (18)0.21719 (13)0.30246 (15)0.0903 (5)
C70.16866 (17)0.02605 (15)0.40441 (16)0.0577 (4)
C50.32245 (19)0.12294 (14)0.56458 (16)0.0591 (4)
C30.3507 (2)0.10279 (17)0.61788 (19)0.0691 (5)
H30.39710.170.67690.083*
C60.20840 (18)0.10008 (15)0.43826 (16)0.0578 (4)
H60.16090.16690.37910.069*
O20.1929 (2)0.35524 (13)0.46580 (19)0.1117 (6)
C40.39278 (19)0.02130 (16)0.65283 (17)0.0662 (4)
H40.46940.03880.73670.079*
C20.2366 (2)0.12584 (14)0.49162 (18)0.0631 (4)
C80.0518 (2)0.07991 (17)0.27798 (19)0.0757 (5)
H8A0.08740.05870.18660.091*
H8B0.05950.04710.27570.091*
C90.3066 (3)0.34911 (17)0.5294 (2)0.0956 (7)
H9A0.35340.42660.57480.143*
H9B0.33180.34320.43250.143*
H9C0.18840.35010.52440.143*
C10.1678 (3)0.24532 (17)0.4269 (2)0.0804 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0902 (8)0.0618 (7)0.0735 (7)0.0057 (6)0.0102 (6)0.0080 (5)
O10.1053 (10)0.0749 (9)0.0911 (9)0.0277 (7)0.0182 (8)0.0207 (7)
C70.0555 (8)0.0608 (9)0.0574 (8)0.0033 (6)0.0117 (6)0.0053 (6)
C50.0602 (8)0.0573 (10)0.0576 (8)0.0000 (6)0.0046 (7)0.0042 (6)
C30.0743 (10)0.0658 (10)0.0678 (10)0.0129 (8)0.0144 (8)0.0104 (8)
C60.0582 (8)0.0576 (9)0.0555 (8)0.0025 (6)0.0038 (6)0.0010 (6)
O20.1675 (16)0.0565 (9)0.1221 (12)0.0114 (8)0.0560 (12)0.0022 (7)
C40.0636 (9)0.0742 (11)0.0575 (8)0.0091 (7)0.0008 (7)0.0032 (7)
C20.0676 (9)0.0564 (10)0.0687 (10)0.0011 (6)0.0210 (8)0.0008 (7)
C80.0778 (11)0.0768 (12)0.0706 (10)0.0153 (9)0.0074 (8)0.0127 (8)
C90.1225 (17)0.0552 (11)0.0988 (14)0.0070 (10)0.0099 (12)0.0016 (9)
C10.1003 (14)0.0612 (11)0.0877 (13)0.0118 (9)0.0391 (11)0.0066 (9)
Geometric parameters (Å, º) top
O3—C51.3603 (18)C3—H30.93
O3—C91.425 (2)C6—H60.93
O1—C11.370 (3)O2—C11.209 (2)
O1—C81.449 (2)C4—H40.93
C7—C21.376 (2)C2—C11.454 (2)
C7—C61.378 (2)C8—H8A0.97
C7—C81.491 (2)C8—H8B0.97
C5—C61.388 (2)C9—H9A0.96
C5—C41.402 (2)C9—H9B0.96
C3—C41.364 (2)C9—H9C0.96
C3—C21.388 (2)
C5—O3—C9117.55 (14)C7—C2—C1108.43 (16)
C1—O1—C8110.05 (13)C3—C2—C1130.82 (16)
C2—C7—C6122.13 (14)O1—C8—C7104.45 (14)
C2—C7—C8108.56 (14)O1—C8—H8A110.9
C6—C7—C8129.31 (14)C7—C8—H8A110.9
O3—C5—C6124.38 (14)O1—C8—H8B110.9
O3—C5—C4114.75 (14)C7—C8—H8B110.9
C6—C5—C4120.87 (15)H8A—C8—H8B108.9
C4—C3—C2118.08 (15)O3—C9—H9A109.5
C4—C3—H3121O3—C9—H9B109.5
C2—C3—H3121H9A—C9—H9B109.5
C7—C6—C5117.03 (14)O3—C9—H9C109.5
C7—C6—H6121.5H9A—C9—H9C109.5
C5—C6—H6121.5H9B—C9—H9C109.5
C3—C4—C5121.14 (15)O2—C1—O1120.56 (18)
C3—C4—H4119.4O2—C1—C2131.0 (2)
C5—C4—H4119.4O1—C1—C2108.49 (15)
C7—C2—C3120.75 (15)
C9—O3—C5—C61.0 (2)C8—C7—C2—C10.17 (17)
C9—O3—C5—C4179.11 (15)C4—C3—C2—C70.2 (2)
C2—C7—C6—C50.6 (2)C4—C3—C2—C1179.72 (15)
C8—C7—C6—C5179.90 (15)C1—O1—C8—C71.42 (18)
O3—C5—C6—C7179.79 (13)C2—C7—C8—O10.95 (16)
C4—C5—C6—C70.1 (2)C6—C7—C8—O1178.38 (14)
C2—C3—C4—C50.3 (2)C8—O1—C1—O2178.93 (16)
O3—C5—C4—C3179.70 (13)C8—O1—C1—C21.36 (19)
C6—C5—C4—C30.4 (2)C7—C2—C1—O2179.60 (18)
C6—C7—C2—C30.7 (2)C3—C2—C1—O20.5 (3)
C8—C7—C2—C3179.91 (15)C7—C2—C1—O10.73 (19)
C6—C7—C2—C1179.22 (13)C3—C2—C1—O1179.17 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.543.419 (2)157
C8—H8A···O2ii0.972.523.372 (2)146
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H8O3
Mr164.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1819 (9), 10.4285 (18), 9.2965 (9)
β (°) 99.962 (8)
V3)781.26 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.18 × 0.16
Data collection
DiffractometerEnraf–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14100, 1587, 1101
Rint0.049
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.147, 1.06
No. of reflections1587
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.543.419 (2)157
C8—H8A···O2ii0.972.523.372 (2)146
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Professor Dr Javier Ellena of the IFSC, USP, Brazil, for the X-ray data collection. This work was supported financially by CAPES, CNPq, FUNARBE and FAPEMIG. This work is also a collaboration research project of members of the Rede Mineira de Química (RQ - MG) also supported by FAPEMIG.

References

First citationArnone, A., Assante, G., Nasini, G., Strada, S. & Vercesi, A. (2002). J. Nat. Prod. 65, 48–50.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, X.-Z., Zhu, Y., Guan, X.-L., Tian, K., Guo, J.-M., Wang, H.-B. & Fu, G.-M. (2012). Molecules, 17, 4219–4224.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMa, F., Gao, Y., Qiao, H., Hu, X. & Chang, J. (2012). J. Thromb. Thrombolysis, 33, 64–73.  Web of Science CrossRef PubMed Google Scholar
First citationMendenhall, G. D., Luck, R. L., Bohn, R. K. & Castejon, H. J. (2003). J. Mol. Struct. 645, 249–258.  CSD CrossRef Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPereira, J. L., Teixeira, R. R., Guilardi, S. & Paixão, D. A. (2012). Acta Cryst. E68, o2995.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, M.-X., Li, X., Liu, W.-Y. & Xiao, K. (2009). Acta Cryst. E65, o2146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-H., Shi, B.-F. & Yu, J.-Q. (2009). Angew. Chem. Int. Ed. 48, 6097–6100.  Web of Science CrossRef CAS Google Scholar
First citationZhao, N., Ji, M.-X., Xu, L. & Ji, B.-S. (2012). Drug. Dev. Res. 73, 11–17.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds