organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2-anilino-2-oxoeth­yl)-1H-imidazol-3-ium chloride di­methyl­formamide monosolvate

aDepartment of Chemistry, National Changhua University of Education, Changhua, Taiwan 50058
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 25 October 2012; accepted 31 October 2012; online 3 November 2012)

In the imidazolium cation of the title compound, C19H19N4O2+·Cl·C3H7NO, the dihedral angles between the imidazole ring and the phenyl rings are 85.86 (4) and 70.26 (5)°. In the crystal, N—H⋯Cl hydrogen bonds link the imdiazo­lium cations and chloride anions into zigzag chains along [110] and together with C—H⋯Cl and C—H⋯O hydrogen bonds, which involve also the dimethyl­formamide solvent mol­ecule, form a two-dimensional network extending across the ab plane.

Related literature

For the crystal structures of the non-solvated title compound and an acetonitrile monosolvate, see: Liao & Lee (2012[Liao, C.-Y. & Lee, H. M. (2012). Acta Cryst. E68, o2232.]) and Liao & Lee (2011[Liao, C.-Y. & Lee, H. M. (2011). Acta Cryst. E67, o3362.]), respectively. For the crystal structures of nickel, palladium, and silver complexes with ligands derived from the title compound, see: Liao, Chan, Chang et al. (2007[Liao, C.-Y., Chan, K.-T., Chang, Y.-C., Chen, C.-Y., Tu, C.-Y., Hu, C.-H. & Lee, H. M. (2007). Organometallics, 26, 5826-5833.]), Liao, Chan, Zeng et al. (2007[Liao, C.-Y., Chan, K.-T., Zeng, J.-Y., Hu, C.-H., Tu, C.-Y. & Lee, H. M. (2007). Organometallics, 26, 1692-1702.]) and Liao et al. (2008[Liao, C.-Y., Chan, K.-T., Chiu, P.-L., Chen, C.-Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973-2978.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C19H19N4O2+·Cl·C3H7NO

  • Mr = 443.93

  • Triclinic, [P \overline 1]

  • a = 9.2352 (5) Å

  • b = 9.9907 (5) Å

  • c = 14.0805 (7) Å

  • α = 109.119 (3)°

  • β = 96.342 (3)°

  • γ = 107.224 (3)°

  • V = 1141.05 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 150 K

  • 0.50 × 0.32 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.883, Tmax = 0.957

  • 13404 measured reflections

  • 5676 independent reflections

  • 4849 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.06

  • 5676 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl1i 0.88 2.39 3.2696 (10) 174
N5—H5⋯Cl1ii 0.88 2.35 3.2292 (10) 172
C1—H1⋯O4iii 0.95 2.32 3.0910 (14) 138
C2—H2⋯O3iv 0.95 2.49 3.1619 (13) 128
C12—H12A⋯Cl1 0.99 2.63 3.4269 (12) 137
C12—H12B⋯O3iv 0.99 2.44 3.1544 (14) 129
C20—H20A⋯O4iv 0.99 2.52 3.2790 (15) 133
C23—H23A⋯O1iv 0.98 2.53 3.3472 (18) 141
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

The title compound, C19H19N4O2+.Cl-.C3H7NO, is the dimethylformamide solvate of a reliable ligand precusor for the preparation of transition metal complexes with N-heterocyclic carbene (NHC) ligands. We reported previously the crystal structures of the non-solvated title compound (Liao & Lee 2012) and an acetonitrile monosolvate (Liao & Lee 2011). Transition metal complexes with NHC ligands obtained from the title compound include those with nickel(II) (Liao, Chan, Chang et al. 2007), palladium(II) (Liao, Chan, Zeng et al. 2007) and silver(I) (Liao et al. 2008).

In the structure of the title compound (Fig. 1), the dihedral angles between the heterocyclic ring and the two phenyl rings in the imdiaozlium cation.are 85.86 (4)° and 70.26 (5)° and the molecular conformation is stabilized by intramolecular C7—H···O3 and C15—H···O1 interations. In the crystal, classical intermolecular hydrogen bonds of the type N—H···Cl (Table 1) involving both N4 and N5 link the cations into zigzag chains along the [110] direction and together with non-classical C—H···O and C—H···Cl hydrogen bonds further connect these chains and the DMF solvent molecules into two-dimensional layers lying on the ab plane (Fig. 2).

Related literature top

For the crystal structures of the non-solvated title compound and an acetonitrile monosolvate, see: Liao & Lee (2012) and Liao & Lee (2011), respectively. For the crystal structures of nickel, palladium, and silver complexes with ligands derived from the title compound, see: Liao, Chan, Chang et al. (2007), Liao, Chan, Zeng et al. (2007) and Liao et al. (2008), respectively.

Experimental top

The compound was prepared according to the literature procedure (Liao, Chan, Zeng et al., 2007). Suitable crystals were obtained by slow diffusion of diethyl ether into a DMF solution of the compound at room temperature.

Refinement top

All of the hydrogen atoms could have been discerned in the difference-Fourier map but were positioned geometrically and refined as riding atoms, with Caryl—H = 0.95, Cmethyl—H = 0.98, Cmethylene—H = 0.99, Cmethine—H = 0.95, and NH = 0.88 Å , with Uiso(H) = 1.2Ueq (Caryl, Cmethylene, Cmethine and N) and Uiso(H) = 1.5 Ueq (Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing viewed down the a axis, displaying the hydrogen bonds as dashed lines.
1,3-Bis(2-anilino-2-oxoethyl)-1H-imidazol-3-ium chloride dimethylformamide monosolvate top
Crystal data top
C19H19N4O2+·Cl·C3H7NOZ = 2
Mr = 443.93F(000) = 468
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2352 (5) ÅCell parameters from 6152 reflections
b = 9.9907 (5) Åθ = 2.3–28.3°
c = 14.0805 (7) ŵ = 0.20 mm1
α = 109.119 (3)°T = 150 K
β = 96.342 (3)°Plate, colourless
γ = 107.224 (3)°0.50 × 0.32 × 0.22 mm
V = 1141.05 (11) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
5676 independent reflections
Radiation source: fine-focus sealed tube4849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.883, Tmax = 0.957k = 1313
13404 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.3283P]
where P = (Fo2 + 2Fc2)/3
5676 reflections(Δ/σ)max = 0.002
282 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H19N4O2+·Cl·C3H7NOγ = 107.224 (3)°
Mr = 443.93V = 1141.05 (11) Å3
Triclinic, P1Z = 2
a = 9.2352 (5) ÅMo Kα radiation
b = 9.9907 (5) ŵ = 0.20 mm1
c = 14.0805 (7) ÅT = 150 K
α = 109.119 (3)°0.50 × 0.32 × 0.22 mm
β = 96.342 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5676 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4849 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.957Rint = 0.018
13404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
5676 reflectionsΔρmin = 0.20 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45911 (12)0.71326 (12)0.46996 (8)0.0221 (2)
H10.42070.78550.51080.027*
C20.47374 (13)0.49834 (12)0.36866 (9)0.0242 (2)
H20.44570.39430.32650.029*
C30.61439 (13)0.60839 (12)0.39059 (9)0.0242 (2)
H30.70400.59620.36720.029*
C60.96547 (12)1.12971 (12)0.77366 (9)0.0242 (2)
C70.99535 (14)1.04413 (14)0.82886 (10)0.0310 (3)
H70.95900.93680.79690.037*
C81.07892 (16)1.11709 (17)0.93125 (11)0.0392 (3)
H81.10121.05900.96860.047*
C91.12987 (17)1.27310 (18)0.97937 (11)0.0438 (3)
H91.18581.32191.04950.053*
C101.09870 (18)1.35748 (16)0.92440 (12)0.0443 (3)
H101.13321.46460.95730.053*
C111.01746 (15)1.28717 (14)0.82159 (11)0.0334 (3)
H110.99751.34600.78420.040*
C120.21858 (12)0.48847 (12)0.42117 (9)0.0228 (2)
H12A0.18540.55830.47460.027*
H12B0.21380.40040.44010.027*
C130.10731 (13)0.43442 (12)0.31724 (9)0.0229 (2)
C140.17305 (13)0.28559 (12)0.23667 (9)0.0265 (2)
C150.17370 (16)0.27958 (17)0.13651 (11)0.0406 (3)
H150.07850.31320.11690.049*
C160.31538 (19)0.2237 (2)0.06535 (13)0.0543 (4)
H160.31640.21870.00330.065*
C170.45506 (17)0.17540 (18)0.09346 (14)0.0509 (4)
H170.55110.14090.04500.061*
C180.45412 (16)0.17760 (16)0.19224 (13)0.0438 (3)
H180.54950.14160.21110.053*
C190.31349 (15)0.23256 (15)0.26377 (11)0.0350 (3)
H190.31300.23400.33160.042*
C200.72883 (13)0.88905 (12)0.50232 (9)0.0242 (2)
H20A0.69160.96930.49510.029*
H20B0.81620.88830.46750.029*
C210.78517 (12)0.92260 (12)0.61644 (9)0.0224 (2)
C220.33318 (17)0.13837 (18)0.76265 (14)0.0485 (4)
H22A0.29290.04590.70000.073*
H22B0.27500.20490.75900.073*
H22C0.32100.11180.82320.073*
C230.57161 (19)0.36610 (16)0.85242 (11)0.0437 (3)
H23A0.68170.40560.85120.066*
H23B0.56330.35960.91970.066*
H23C0.52010.43410.84100.066*
C240.57427 (14)0.15345 (14)0.70631 (10)0.0287 (2)
H240.68150.20930.71630.034*
Cl10.04385 (3)0.75405 (3)0.48455 (2)0.02976 (8)
N10.60237 (11)0.74204 (10)0.45370 (7)0.02214 (19)
N20.37871 (10)0.56600 (10)0.41932 (7)0.02100 (18)
N40.03447 (11)0.33950 (11)0.31377 (7)0.0248 (2)
H40.04120.30780.36510.030*
N50.89023 (11)1.06440 (10)0.66757 (7)0.02343 (19)
H50.91411.12150.63140.028*
N60.49695 (12)0.21613 (12)0.77134 (8)0.0311 (2)
O10.14435 (10)0.47707 (10)0.24851 (7)0.0329 (2)
O30.73894 (10)0.82875 (9)0.65467 (7)0.02789 (18)
O40.51865 (11)0.02961 (10)0.63458 (7)0.0347 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0213 (5)0.0193 (5)0.0242 (5)0.0060 (4)0.0035 (4)0.0081 (4)
C20.0243 (5)0.0198 (5)0.0264 (5)0.0085 (4)0.0042 (4)0.0062 (4)
C30.0232 (5)0.0231 (5)0.0267 (5)0.0097 (4)0.0048 (4)0.0087 (4)
C60.0173 (5)0.0235 (5)0.0273 (5)0.0039 (4)0.0055 (4)0.0070 (4)
C70.0268 (6)0.0288 (6)0.0323 (6)0.0009 (5)0.0044 (5)0.0139 (5)
C80.0329 (7)0.0482 (8)0.0321 (7)0.0020 (6)0.0057 (5)0.0214 (6)
C90.0382 (7)0.0515 (8)0.0258 (6)0.0051 (6)0.0045 (6)0.0054 (6)
C100.0399 (8)0.0323 (7)0.0411 (8)0.0093 (6)0.0010 (6)0.0047 (6)
C110.0283 (6)0.0246 (6)0.0396 (7)0.0089 (5)0.0014 (5)0.0050 (5)
C120.0187 (5)0.0229 (5)0.0255 (5)0.0043 (4)0.0038 (4)0.0104 (4)
C130.0212 (5)0.0213 (5)0.0253 (5)0.0067 (4)0.0043 (4)0.0088 (4)
C140.0214 (5)0.0226 (5)0.0304 (6)0.0050 (4)0.0018 (4)0.0073 (4)
C150.0293 (7)0.0486 (8)0.0348 (7)0.0011 (6)0.0003 (5)0.0180 (6)
C160.0431 (9)0.0620 (10)0.0418 (8)0.0000 (7)0.0096 (7)0.0227 (8)
C170.0296 (7)0.0474 (8)0.0568 (10)0.0047 (6)0.0129 (7)0.0117 (7)
C180.0218 (6)0.0399 (7)0.0531 (9)0.0055 (5)0.0044 (6)0.0034 (6)
C190.0253 (6)0.0346 (6)0.0349 (7)0.0051 (5)0.0076 (5)0.0051 (5)
C200.0208 (5)0.0186 (5)0.0282 (5)0.0016 (4)0.0032 (4)0.0083 (4)
C210.0173 (5)0.0197 (5)0.0289 (5)0.0056 (4)0.0048 (4)0.0086 (4)
C220.0321 (7)0.0494 (8)0.0585 (10)0.0109 (6)0.0224 (7)0.0128 (7)
C230.0502 (9)0.0397 (7)0.0298 (7)0.0094 (6)0.0076 (6)0.0054 (6)
C240.0228 (5)0.0331 (6)0.0324 (6)0.0101 (5)0.0065 (5)0.0147 (5)
Cl10.03040 (15)0.02890 (14)0.03696 (16)0.01106 (11)0.01239 (12)0.01916 (12)
N10.0201 (4)0.0190 (4)0.0248 (4)0.0049 (3)0.0028 (4)0.0078 (4)
N20.0188 (4)0.0193 (4)0.0235 (4)0.0056 (3)0.0025 (3)0.0082 (3)
N40.0207 (5)0.0260 (4)0.0253 (5)0.0036 (4)0.0030 (4)0.0117 (4)
N50.0212 (4)0.0192 (4)0.0275 (5)0.0028 (3)0.0034 (4)0.0103 (4)
N60.0268 (5)0.0322 (5)0.0307 (5)0.0083 (4)0.0082 (4)0.0090 (4)
O10.0255 (4)0.0406 (5)0.0300 (4)0.0028 (4)0.0039 (3)0.0189 (4)
O30.0264 (4)0.0218 (4)0.0321 (4)0.0024 (3)0.0044 (3)0.0122 (3)
O40.0314 (5)0.0316 (4)0.0381 (5)0.0131 (4)0.0075 (4)0.0078 (4)
Geometric parameters (Å, º) top
C1—N11.3306 (14)C15—C161.392 (2)
C1—N21.3316 (13)C15—H150.9500
C1—H10.9500C16—C171.387 (2)
C2—C31.3545 (16)C16—H160.9500
C2—N21.3819 (14)C17—C181.383 (2)
C2—H20.9500C17—H170.9500
C3—N11.3846 (14)C18—C191.3889 (19)
C3—H30.9500C18—H180.9500
C6—C71.3924 (17)C19—H190.9500
C6—C111.3951 (16)C20—N11.4624 (13)
C6—N51.4155 (15)C20—C211.5245 (16)
C7—C81.3922 (18)C20—H20A0.9900
C7—H70.9500C20—H20B0.9900
C8—C91.383 (2)C21—O31.2229 (13)
C8—H80.9500C21—N51.3529 (14)
C9—C101.384 (2)C22—N61.4515 (17)
C9—H90.9500C22—H22A0.9800
C10—C111.391 (2)C22—H22B0.9800
C10—H100.9500C22—H22C0.9800
C11—H110.9500C23—N61.4552 (17)
C12—N21.4598 (14)C23—H23A0.9800
C12—C131.5201 (15)C23—H23B0.9800
C12—H12A0.9900C23—H23C0.9800
C12—H12B0.9900C24—O41.2268 (15)
C13—O11.2215 (14)C24—N61.3319 (16)
C13—N41.3550 (14)C24—H240.9500
C14—C151.3912 (18)N4—H40.8800
C14—C191.3939 (17)N5—H50.8800
C14—N41.4172 (14)
N1—C1—N2108.43 (9)C16—C17—H17120.1
N1—C1—H1125.8C17—C18—C19119.86 (14)
N2—C1—H1125.8C17—C18—H18120.1
C3—C2—N2107.04 (9)C19—C18—H18120.1
C3—C2—H2126.5C18—C19—C14120.44 (13)
N2—C2—H2126.5C18—C19—H19119.8
C2—C3—N1106.80 (10)C14—C19—H19119.8
C2—C3—H3126.6N1—C20—C21110.01 (9)
N1—C3—H3126.6N1—C20—H20A109.7
C7—C6—C11119.90 (11)C21—C20—H20A109.7
C7—C6—N5122.69 (10)N1—C20—H20B109.7
C11—C6—N5117.33 (11)C21—C20—H20B109.7
C8—C7—C6119.49 (12)H20A—C20—H20B108.2
C8—C7—H7120.3O3—C21—N5125.42 (11)
C6—C7—H7120.3O3—C21—C20122.24 (10)
C9—C8—C7120.86 (13)N5—C21—C20112.34 (9)
C9—C8—H8119.6N6—C22—H22A109.5
C7—C8—H8119.6N6—C22—H22B109.5
C8—C9—C10119.40 (13)H22A—C22—H22B109.5
C8—C9—H9120.3N6—C22—H22C109.5
C10—C9—H9120.3H22A—C22—H22C109.5
C9—C10—C11120.73 (13)H22B—C22—H22C109.5
C9—C10—H10119.6N6—C23—H23A109.5
C11—C10—H10119.6N6—C23—H23B109.5
C10—C11—C6119.62 (13)H23A—C23—H23B109.5
C10—C11—H11120.2N6—C23—H23C109.5
C6—C11—H11120.2H23A—C23—H23C109.5
N2—C12—C13111.82 (9)H23B—C23—H23C109.5
N2—C12—H12A109.3O4—C24—N6125.49 (12)
C13—C12—H12A109.3O4—C24—H24117.3
N2—C12—H12B109.3N6—C24—H24117.3
C13—C12—H12B109.3C1—N1—C3108.89 (9)
H12A—C12—H12B107.9C1—N1—C20124.81 (9)
O1—C13—N4126.11 (11)C3—N1—C20126.11 (10)
O1—C13—C12122.49 (10)C1—N2—C2108.84 (9)
N4—C13—C12111.38 (9)C1—N2—C12125.25 (9)
C15—C14—C19119.73 (12)C2—N2—C12125.86 (9)
C15—C14—N4123.11 (11)C13—N4—C14127.22 (10)
C19—C14—N4117.14 (11)C13—N4—H4116.4
C14—C15—C16119.31 (14)C14—N4—H4116.4
C14—C15—H15120.3C21—N5—C6126.27 (9)
C16—C15—H15120.3C21—N5—H5116.9
C17—C16—C15120.81 (15)C6—N5—H5116.9
C17—C16—H16119.6C24—N6—C22121.12 (11)
C15—C16—H16119.6C24—N6—C23121.65 (11)
C18—C17—C16119.81 (14)C22—N6—C23117.22 (12)
C18—C17—H17120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.882.393.2696 (10)174
N5—H5···Cl1ii0.882.353.2292 (10)172
C1—H1···O4iii0.952.323.0910 (14)138
C2—H2···O3iv0.952.493.1619 (13)128
C12—H12A···Cl10.992.633.4269 (12)137
C12—H12B···O3iv0.992.443.1544 (14)129
C20—H20A···O4iv0.992.523.2790 (15)133
C23—H23A···O1iv0.982.533.3472 (18)141
C22—H22A···O40.982.402.8049 (18)104
C15—H15···O10.952.352.9178 (16)118
C7—H7···O30.952.392.9147 (15)115
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H19N4O2+·Cl·C3H7NO
Mr443.93
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.2352 (5), 9.9907 (5), 14.0805 (7)
α, β, γ (°)109.119 (3), 96.342 (3), 107.224 (3)
V3)1141.05 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.50 × 0.32 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.883, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
13404, 5676, 4849
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.06
No. of reflections5676
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.882.393.2696 (10)174
N5—H5···Cl1ii0.882.353.2292 (10)172
C1—H1···O4iii0.952.323.0910 (14)138
C2—H2···O3iv0.952.493.1619 (13)128
C12—H12A···Cl10.992.633.4269 (12)137
C12—H12B···O3iv0.992.443.1544 (14)129
C20—H20A···O4iv0.992.523.2790 (15)133
C23—H23A···O1iv0.982.533.3472 (18)141
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

We thank the National Science Council of Taiwan for financial support of this work.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiao, C.-Y., Chan, K.-T., Chang, Y.-C., Chen, C.-Y., Tu, C.-Y., Hu, C.-H. & Lee, H. M. (2007). Organometallics, 26, 5826–5833.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, C.-Y., Chan, K.-T., Chiu, P.-L., Chen, C.-Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973–2978.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, C.-Y., Chan, K.-T., Zeng, J.-Y., Hu, C.-H., Tu, C.-Y. & Lee, H. M. (2007). Organometallics, 26, 1692–1702.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, C.-Y. & Lee, H. M. (2011). Acta Cryst. E67, o3362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiao, C.-Y. & Lee, H. M. (2012). Acta Cryst. E68, o2232.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds