organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Ethyl 2-hy­dr­oxy-2,7,7-tri­methyl-4-(4-nitro­phen­yl)-5-oxo-3,4,5,6,7,8-hexa­hydro-2H-chromene-3-carboxyl­ate

aBaku State University, Baku, Z. Khalilov St 23, AZ-1148, Azerbaijan, and bVladimir State University, 600000 Vladimir, Gor'ky St 87, Russian Federation
*Correspondence e-mail: orglab@mail.ru

(Received 14 November 2012; accepted 12 December 2012; online 15 December 2012)

The title mol­ecule, C21H25NO7, has four stereogenic centres and crystallized as a racemate. It consists of enanti­omeric pairs with the relative configuration rac-(1R*,2S*,3R*). The cyclo­hexenone ring adopts an envelope conformation; the dimethyl-substituted C atom lies 0.640 (1) Å out of the mean plane formed by the rest of the ring atoms (r.m.s. deviation = 0.016 Å). The oxacyclo­hexene ring adopts a half-chair conformation, the hy­droxy- and carboxyl-substituted C atoms lying −0.336 (1) and 0.419 (1) Å, respectively, out of the mean plane formed by the rest of the ring atoms (r.m.s. deviation = 0.002 Å). In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into a chain along the c-axis direction.

Related literature

For general background to 2H-chromenes and their derivatives, see: Cai (2008[Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For their anti­cancer activity, see: Afanti­tis et al. (2006[Afantitis, A., Melagraki, G., Sarimveis, H., Koutentis, P. A., Markopoulosd, J. & Igglessi-Markopoulou, O. (2006). Bioorg. Med. Chem. 14, 6686-6694.]); Cai (2007[Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO7

  • Mr = 403.42

  • Monoclinic, P 21 /c

  • a = 10.4163 (8) Å

  • b = 24.2608 (18) Å

  • c = 8.0796 (6) Å

  • β = 96.437 (2)°

  • V = 2028.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.980

  • 23423 measured reflections

  • 5078 independent reflections

  • 4084 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.00

  • 5078 reflections

  • 266 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 (2) 2.08 (2) 2.8881 (15) 172 (2)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2H-chromenes and their derivatives possess various biological and pharmacological properties such as anti-viral, anti-fungal, anti-inflammatory, antidiabetic, cardionthonic, anti-anaphylactic and anti-cancer activity (Cai, 2008; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). 2H-chromenes are a new series of apoptosis inducers, which exhibit potent anticancer activity (Afantitis et al., 2006; Cai, 2007;). Considering the importance of 2H-chromene-3-carboxylate derivatives, a single-crystal X-ray diffraction study on the title compound was carried out and analyzed.

A simple synthesis of new and biologically active ethyl 2-hydroxy-2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-3,4,5,6,7,8-hexahydro-2H- chromene-3-carboxylate (Fig. 1) was carried out using cyclocondensation reaction of 4-nitrobenzaldehyde, acetoacetic ether and dimedone with allylamine as catalizator at room temperature. The title molecule is chiral with four stereogenic centres. The crystal is a racemate and consists of enantiomeric pairs with the relative configuration rac-(1R*, 2S*, 3R*). The cyclohexenone ring adopt a envelope conformation, C7 lies 0.640 (1) Å out of the plane formed by the rest of the ring atoms (r.m.s. deviation = 0.016 Å). The oxacyclohexene ring adopt a half-chair conformation, C1 and C2 lie -0.336 (1) and 0.419 (1) Å respectively out of the plane formed by the rest of the ring (r.m.s. deviation = 0.002 Å). The 4-nitrophenyl ring is in a pseudo-equatorial position. The torsion angle between the ethoxycarbonyl group and the 4-nirtophenyl substituent C11–C2–C3–C14 is -65.16 (13) ° that indicates the pseudo-axial location of hydrogen atoms at C2 and C3. Intermolecular O—H···O hydrogen bonds link molecules into a chain along the c axis (Table 1, Fig. 2).

Related literature top

For general background to 2H-chromenes and their derivatives, see: Cai (2008); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007). For their anticancer activity, see: Afantitis et al. (2006); Cai (2007). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Dimedone (5 mmol), 4-nitrobenzaldehyde (5 mmol) and acetoacetic ether (5 mmol) were dissolved in ethanol (15 ml). Then allylamine (0.4 ml) was added and mixture was stirred at 300 K for 3 h. Obtained yellow crystals were filtered and washed with ethanol. The crystals were dissolved in ethanol (20 ml) and recrystallized to yield yellow crystals of the title compound suitable for X-ray analysis.

Refinement top

Hydrogen atom of the OH group was found in difference-Fourier maps and included in the refinement with isotropic displacement parameter. The other hydrogen atoms were placed in calculated positions and refined in the riding mode with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C)].

Structure description top

2H-chromenes and their derivatives possess various biological and pharmacological properties such as anti-viral, anti-fungal, anti-inflammatory, antidiabetic, cardionthonic, anti-anaphylactic and anti-cancer activity (Cai, 2008; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). 2H-chromenes are a new series of apoptosis inducers, which exhibit potent anticancer activity (Afantitis et al., 2006; Cai, 2007;). Considering the importance of 2H-chromene-3-carboxylate derivatives, a single-crystal X-ray diffraction study on the title compound was carried out and analyzed.

A simple synthesis of new and biologically active ethyl 2-hydroxy-2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-3,4,5,6,7,8-hexahydro-2H- chromene-3-carboxylate (Fig. 1) was carried out using cyclocondensation reaction of 4-nitrobenzaldehyde, acetoacetic ether and dimedone with allylamine as catalizator at room temperature. The title molecule is chiral with four stereogenic centres. The crystal is a racemate and consists of enantiomeric pairs with the relative configuration rac-(1R*, 2S*, 3R*). The cyclohexenone ring adopt a envelope conformation, C7 lies 0.640 (1) Å out of the plane formed by the rest of the ring atoms (r.m.s. deviation = 0.016 Å). The oxacyclohexene ring adopt a half-chair conformation, C1 and C2 lie -0.336 (1) and 0.419 (1) Å respectively out of the plane formed by the rest of the ring (r.m.s. deviation = 0.002 Å). The 4-nitrophenyl ring is in a pseudo-equatorial position. The torsion angle between the ethoxycarbonyl group and the 4-nirtophenyl substituent C11–C2–C3–C14 is -65.16 (13) ° that indicates the pseudo-axial location of hydrogen atoms at C2 and C3. Intermolecular O—H···O hydrogen bonds link molecules into a chain along the c axis (Table 1, Fig. 2).

For general background to 2H-chromenes and their derivatives, see: Cai (2008); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007). For their anticancer activity, see: Afantitis et al. (2006); Cai (2007). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen-bonded (dashed lines) packing in the title compound (a view perpendicular to the bc plane); H-atoms not involved in hydrogen bonding are omitted for clarity.
rac-Ethyl 2-hydroxy-2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-3,4,5,6,7,8-hexahydro- 2H-chromene-3-carboxylate top
Crystal data top
C21H25NO7F(000) = 856
Mr = 403.42Dx = 1.321 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6760 reflections
a = 10.4163 (8) Åθ = 2.7–28.5°
b = 24.2608 (18) ŵ = 0.10 mm1
c = 8.0796 (6) ÅT = 296 K
β = 96.437 (2)°Prism, yellow
V = 2028.9 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5078 independent reflections
Radiation source: fine-focus sealed tube4084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1313
Tmin = 0.971, Tmax = 0.980k = 3232
23423 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.7463P]
where P = (Fo2 + 2Fc2)/3
5078 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H25NO7V = 2028.9 (3) Å3
Mr = 403.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4163 (8) ŵ = 0.10 mm1
b = 24.2608 (18) ÅT = 296 K
c = 8.0796 (6) Å0.30 × 0.20 × 0.20 mm
β = 96.437 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5078 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4084 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.980Rint = 0.022
23423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
5078 reflectionsΔρmin = 0.20 e Å3
266 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06693 (9)0.68270 (4)0.29152 (11)0.0360 (2)
O20.04636 (10)0.74080 (4)0.10075 (13)0.0383 (2)
H20.080 (2)0.7620 (9)0.162 (3)0.061 (6)*
O30.17047 (10)0.67735 (4)0.21204 (13)0.0427 (3)
O40.23488 (9)0.60735 (4)0.06145 (12)0.0366 (2)
O50.23965 (18)0.44094 (6)0.4474 (2)0.0829 (5)
O60.16430 (16)0.49162 (6)0.65423 (17)0.0721 (4)
O70.35300 (11)0.66576 (5)0.11760 (13)0.0508 (3)
N10.18908 (15)0.48317 (6)0.5053 (2)0.0522 (4)
C10.04561 (12)0.68823 (6)0.16883 (16)0.0314 (3)
C20.03255 (12)0.64615 (5)0.03021 (15)0.0297 (3)
H2A0.02440.60950.08120.036*
C30.08949 (12)0.65704 (5)0.05552 (16)0.0303 (3)
H3A0.07580.69080.12180.036*
C40.20193 (13)0.66649 (6)0.07676 (16)0.0322 (3)
C50.33285 (14)0.66857 (6)0.02822 (18)0.0370 (3)
C60.44363 (14)0.67805 (8)0.1622 (2)0.0467 (4)
H6A0.46660.71680.16160.056*
H6B0.51760.65730.13350.056*
C70.41940 (14)0.66238 (7)0.33864 (19)0.0411 (3)
C80.29096 (13)0.68842 (7)0.37109 (18)0.0393 (3)
H8A0.26600.67400.47480.047*
H8B0.30280.72790.38420.047*
C90.18422 (12)0.67797 (5)0.23553 (17)0.0323 (3)
C100.15932 (14)0.67843 (7)0.26566 (19)0.0432 (3)
H10A0.16090.70630.34980.065*
H10B0.15140.64280.31740.065*
H10C0.23790.68000.19140.065*
C110.15205 (12)0.64616 (5)0.09602 (16)0.0310 (3)
C120.35486 (14)0.60395 (7)0.17297 (19)0.0407 (3)
H12A0.33630.60050.28750.049*
H12B0.40620.63690.16340.049*
C130.42646 (19)0.55435 (8)0.1231 (3)0.0638 (5)
H13A0.50620.55090.19440.096*
H13B0.44430.55830.00970.096*
H13C0.37480.52200.13330.096*
C140.11142 (13)0.60989 (6)0.17235 (16)0.0325 (3)
C150.08635 (14)0.61724 (6)0.34299 (17)0.0371 (3)
H15A0.05400.65080.38470.044*
C160.10879 (15)0.57534 (6)0.45185 (18)0.0410 (3)
H16A0.09150.58040.56630.049*
C170.15694 (14)0.52615 (6)0.38837 (19)0.0396 (3)
C180.17904 (16)0.51659 (6)0.2196 (2)0.0456 (4)
H18A0.20940.48260.17880.055*
C190.15505 (16)0.55868 (6)0.11237 (18)0.0428 (3)
H19A0.16830.55270.00200.051*
C200.41427 (19)0.59983 (8)0.3586 (3)0.0623 (5)
H20A0.49560.58410.33800.093*
H20B0.34670.58500.28060.093*
H20C0.39730.59100.46990.093*
C210.52760 (16)0.68578 (9)0.4625 (2)0.0565 (5)
H21A0.60840.66940.44270.085*
H21B0.51010.67760.57400.085*
H21C0.53220.72500.44850.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0287 (5)0.0509 (6)0.0282 (4)0.0038 (4)0.0028 (4)0.0004 (4)
O20.0428 (6)0.0338 (5)0.0386 (5)0.0051 (4)0.0056 (4)0.0010 (4)
O30.0407 (6)0.0451 (6)0.0406 (5)0.0048 (4)0.0030 (4)0.0116 (4)
O40.0338 (5)0.0386 (5)0.0367 (5)0.0063 (4)0.0001 (4)0.0030 (4)
O50.1139 (14)0.0500 (8)0.0884 (11)0.0253 (8)0.0266 (10)0.0098 (7)
O60.0927 (11)0.0727 (9)0.0532 (8)0.0037 (8)0.0182 (7)0.0222 (7)
O70.0390 (6)0.0750 (8)0.0403 (6)0.0008 (5)0.0130 (5)0.0018 (5)
N10.0546 (8)0.0424 (8)0.0626 (9)0.0018 (6)0.0190 (7)0.0137 (7)
C10.0268 (6)0.0373 (7)0.0303 (6)0.0010 (5)0.0037 (5)0.0006 (5)
C20.0287 (6)0.0310 (6)0.0296 (6)0.0016 (5)0.0035 (5)0.0019 (5)
C30.0291 (6)0.0326 (6)0.0293 (6)0.0035 (5)0.0043 (5)0.0014 (5)
C40.0277 (6)0.0348 (7)0.0341 (6)0.0019 (5)0.0036 (5)0.0006 (5)
C50.0322 (7)0.0394 (7)0.0399 (7)0.0011 (5)0.0065 (6)0.0009 (6)
C60.0292 (7)0.0652 (10)0.0461 (8)0.0052 (7)0.0053 (6)0.0018 (7)
C70.0297 (7)0.0498 (9)0.0429 (8)0.0030 (6)0.0002 (6)0.0019 (6)
C80.0324 (7)0.0495 (8)0.0349 (7)0.0022 (6)0.0005 (5)0.0021 (6)
C90.0277 (6)0.0341 (7)0.0348 (7)0.0029 (5)0.0027 (5)0.0024 (5)
C100.0341 (7)0.0583 (9)0.0389 (8)0.0044 (6)0.0111 (6)0.0066 (7)
C110.0301 (6)0.0311 (6)0.0322 (6)0.0009 (5)0.0050 (5)0.0018 (5)
C120.0315 (7)0.0476 (8)0.0418 (7)0.0025 (6)0.0008 (6)0.0028 (6)
C130.0486 (10)0.0582 (11)0.0821 (13)0.0178 (8)0.0033 (9)0.0004 (10)
C140.0294 (6)0.0362 (7)0.0321 (6)0.0027 (5)0.0047 (5)0.0005 (5)
C150.0412 (7)0.0371 (7)0.0336 (7)0.0074 (6)0.0073 (6)0.0021 (5)
C160.0461 (8)0.0454 (8)0.0324 (7)0.0014 (6)0.0087 (6)0.0019 (6)
C170.0379 (7)0.0371 (7)0.0453 (8)0.0003 (6)0.0112 (6)0.0077 (6)
C180.0509 (9)0.0348 (7)0.0509 (9)0.0091 (6)0.0041 (7)0.0015 (6)
C190.0517 (9)0.0407 (8)0.0349 (7)0.0074 (7)0.0001 (6)0.0028 (6)
C200.0519 (10)0.0541 (11)0.0790 (13)0.0110 (8)0.0003 (9)0.0108 (9)
C210.0344 (8)0.0817 (13)0.0508 (9)0.0015 (8)0.0066 (7)0.0023 (9)
Geometric parameters (Å, º) top
O1—C91.3544 (16)C8—C91.4924 (18)
O1—C11.4541 (15)C8—H8A0.9700
O2—C11.3885 (17)C8—H8B0.9700
O2—H20.82 (2)C10—H10A0.9600
O3—C111.2032 (16)C10—H10B0.9600
O4—C111.3278 (16)C10—H10C0.9600
O4—C121.4588 (17)C12—C131.494 (2)
O5—N11.221 (2)C12—H12A0.9700
O6—N11.219 (2)C12—H12B0.9700
O7—C51.2216 (17)C13—H13A0.9600
N1—C171.4706 (19)C13—H13B0.9600
C1—C101.5096 (19)C13—H13C0.9600
C1—C21.5328 (18)C14—C151.3857 (19)
C2—C111.5182 (18)C14—C191.391 (2)
C2—C31.5373 (18)C15—C161.381 (2)
C2—H2A0.9800C15—H15A0.9300
C3—C41.5119 (18)C16—C171.372 (2)
C3—C141.5166 (18)C16—H16A0.9300
C3—H3A0.9800C17—C181.377 (2)
C4—C91.3454 (19)C18—C191.380 (2)
C4—C51.4615 (19)C18—H18A0.9300
C5—C61.509 (2)C19—H19A0.9300
C6—C71.524 (2)C20—H20A0.9600
C6—H6A0.9700C20—H20B0.9600
C6—H6B0.9700C20—H20C0.9600
C7—C201.528 (2)C21—H21A0.9600
C7—C81.529 (2)C21—H21B0.9600
C7—C211.530 (2)C21—H21C0.9600
C9—O1—C1117.94 (10)C1—C10—H10A109.5
C1—O2—H2108.7 (15)C1—C10—H10B109.5
C11—O4—C12116.24 (11)H10A—C10—H10B109.5
O6—N1—O5123.61 (15)C1—C10—H10C109.5
O6—N1—C17118.46 (15)H10A—C10—H10C109.5
O5—N1—C17117.93 (15)H10B—C10—H10C109.5
O2—C1—O1108.85 (11)O3—C11—O4124.00 (12)
O2—C1—C10112.34 (12)O3—C11—C2124.80 (12)
O1—C1—C10104.57 (11)O4—C11—C2111.20 (11)
O2—C1—C2108.62 (10)O4—C12—C13107.34 (13)
O1—C1—C2107.81 (10)O4—C12—H12A110.2
C10—C1—C2114.38 (11)C13—C12—H12A110.2
C11—C2—C1110.94 (10)O4—C12—H12B110.2
C11—C2—C3110.76 (10)C13—C12—H12B110.2
C1—C2—C3111.12 (11)H12A—C12—H12B108.5
C11—C2—H2A108.0C12—C13—H13A109.5
C1—C2—H2A108.0C12—C13—H13B109.5
C3—C2—H2A108.0H13A—C13—H13B109.5
C4—C3—C14113.29 (11)C12—C13—H13C109.5
C4—C3—C2108.77 (10)H13A—C13—H13C109.5
C14—C3—C2109.91 (11)H13B—C13—H13C109.5
C4—C3—H3A108.2C15—C14—C19118.63 (13)
C14—C3—H3A108.2C15—C14—C3119.84 (12)
C2—C3—H3A108.2C19—C14—C3121.53 (12)
C9—C4—C5118.72 (12)C16—C15—C14120.83 (13)
C9—C4—C3121.82 (12)C16—C15—H15A119.6
C5—C4—C3119.19 (12)C14—C15—H15A119.6
O7—C5—C4121.55 (13)C17—C16—C15118.89 (13)
O7—C5—C6120.01 (13)C17—C16—H16A120.6
C4—C5—C6118.32 (12)C15—C16—H16A120.6
C5—C6—C7116.08 (13)C16—C17—C18122.03 (13)
C5—C6—H6A108.3C16—C17—N1118.47 (14)
C7—C6—H6A108.3C18—C17—N1119.48 (14)
C5—C6—H6B108.3C17—C18—C19118.37 (14)
C7—C6—H6B108.3C17—C18—H18A120.8
H6A—C6—H6B107.4C19—C18—H18A120.8
C6—C7—C20111.00 (15)C18—C19—C14121.16 (14)
C6—C7—C8107.29 (12)C18—C19—H19A119.4
C20—C7—C8110.53 (14)C14—C19—H19A119.4
C6—C7—C21109.40 (14)C7—C20—H20A109.5
C20—C7—C21109.35 (14)C7—C20—H20B109.5
C8—C7—C21109.22 (13)H20A—C20—H20B109.5
C9—C8—C7113.47 (12)C7—C20—H20C109.5
C9—C8—H8A108.9H20A—C20—H20C109.5
C7—C8—H8A108.9H20B—C20—H20C109.5
C9—C8—H8B108.9C7—C21—H21A109.5
C7—C8—H8B108.9C7—C21—H21B109.5
H8A—C8—H8B107.7H21A—C21—H21B109.5
C4—C9—O1124.14 (12)C7—C21—H21C109.5
C4—C9—C8124.36 (12)H21A—C21—H21C109.5
O1—C9—C8111.48 (11)H21B—C21—H21C109.5
C9—O1—C1—O273.27 (14)C5—C4—C9—C85.2 (2)
C9—O1—C1—C10166.48 (12)C3—C4—C9—C8179.15 (13)
C9—O1—C1—C244.38 (15)C1—O1—C9—C414.56 (19)
O2—C1—C2—C1166.83 (13)C1—O1—C9—C8164.06 (11)
O1—C1—C2—C11175.37 (10)C7—C8—C9—C424.3 (2)
C10—C1—C2—C1159.55 (15)C7—C8—C9—O1157.08 (12)
O2—C1—C2—C356.85 (13)C12—O4—C11—O30.54 (19)
O1—C1—C2—C360.94 (13)C12—O4—C11—C2179.02 (11)
C10—C1—C2—C3176.77 (11)C1—C2—C11—O384.53 (16)
C11—C2—C3—C4170.27 (11)C3—C2—C11—O339.36 (18)
C1—C2—C3—C446.48 (14)C1—C2—C11—O495.03 (13)
C11—C2—C3—C1465.16 (13)C3—C2—C11—O4141.08 (11)
C1—C2—C3—C14171.05 (10)C11—O4—C12—C13174.00 (14)
C14—C3—C4—C9138.81 (13)C4—C3—C14—C15131.87 (13)
C2—C3—C4—C916.27 (17)C2—C3—C14—C15106.22 (14)
C14—C3—C4—C547.28 (17)C4—C3—C14—C1948.91 (18)
C2—C3—C4—C5169.83 (12)C2—C3—C14—C1973.00 (16)
C9—C4—C5—O7170.20 (14)C19—C14—C15—C162.4 (2)
C3—C4—C5—O73.9 (2)C3—C14—C15—C16178.31 (13)
C9—C4—C5—C65.9 (2)C14—C15—C16—C170.2 (2)
C3—C4—C5—C6179.98 (13)C15—C16—C17—C182.5 (2)
O7—C5—C6—C7160.47 (15)C15—C16—C17—N1175.77 (14)
C4—C5—C6—C723.4 (2)O6—N1—C17—C164.4 (2)
C5—C6—C7—C2071.49 (18)O5—N1—C17—C16175.33 (16)
C5—C6—C7—C849.37 (19)O6—N1—C17—C18177.29 (16)
C5—C6—C7—C21167.74 (15)O5—N1—C17—C182.9 (2)
C6—C7—C8—C948.98 (17)C16—C17—C18—C191.9 (2)
C20—C7—C8—C972.17 (17)N1—C17—C18—C19176.34 (14)
C21—C7—C8—C9167.47 (14)C17—C18—C19—C140.9 (2)
C5—C4—C9—O1173.22 (13)C15—C14—C19—C183.1 (2)
C3—C4—C9—O10.7 (2)C3—C14—C19—C18177.72 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.82 (2)2.08 (2)2.8881 (15)172 (2)
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H25NO7
Mr403.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.4163 (8), 24.2608 (18), 8.0796 (6)
β (°) 96.437 (2)
V3)2028.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.971, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
23423, 5078, 4084
Rint0.022
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.00
No. of reflections5078
No. of parameters266
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.82 (2)2.08 (2)2.8881 (15)172 (2)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

We thank Baku State University and Vladimir State University for supporting this study.

References

First citationAfantitis, A., Melagraki, G., Sarimveis, H., Koutentis, P. A., Markopoulosd, J. & Igglessi-Markopoulou, O. (2006). Bioorg. Med. Chem. 14, 6686–6694.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101.  Google Scholar
First citationCai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.  Web of Science PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds