organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Bi­phenyl-2,2′-di­yl)di-tert-butyl­phos­phonium tri­fluoro­methane­sulfonate

aDepartment of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 15 November 2012; accepted 29 November 2012; online 5 December 2012)

To aid in the elucidation of catalytic reaction mechanism of palladacycles, we found that reaction of trifluoro­methane­sulfonic acid with a phosphapalladacycle resulted in elimination of the palladium and formation of the title phospholium salt, C20H26P+·CF3SO3. Selected geometrical parameters include P—biphenyl (av.) = 1.801 (3) Å and P—t-Bu (av.) = 1.858 (3) Å, and significant distortion of the tetra­hedral P-atom environment with biphen­yl—P—biphenyl = 93.93 (13)° and t-Bu—P—t-Bu = 118.82 (14)°. In the crystal, weak C—H⋯O inter­actions lead to channels along the c axis that are occupied by CF3SO3 anions.

Related literature

For background to catalytic studies on palladacycles, see: Herrman et al. (2003[Herrman, W. A., Ofele, K., Preysing, D. & Schneider, S. K. (2003). J. Organomet. Chem. 687, 229-248.]); Beletskaya & Cheprakov (2004[Beletskaya, I. P. & Cheprakov, A. V. (2004). J. Organomet. Chem. 689, 4055-4082.]); Omondi et al. (2011[Omondi, B., Shaw, M. L. & Holzapfel, C. W. (2011). J. Organomet. Chem. 696, 3091-3096.]); Williams et al. (2008[Williams, D. G. B., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560-563.]); d'Orlye & Jutland (2005[Orlye, E. d' & Jutland, A. (2005). Tetrahedron, 61, 9670-9678.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26P+·CF3O3S

  • Mr = 446.45

  • Tetragonal, P 41 21 2

  • a = 12.1339 (10) Å

  • c = 30.057 (2) Å

  • V = 4425.4 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.4 × 0.26 × 0.2 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.949

  • 25275 measured reflections

  • 5502 independent reflections

  • 3241 reflections with I > 2σ(I)

  • Rint = 0.101

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.117

  • S = 0.99

  • 5502 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2283 Friedel pairs

  • Flack parameter: 0.05 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.49 3.381 (4) 161
C19—H19A⋯O2ii 0.96 2.52 3.458 (4) 165
C11—H11⋯O3iii 0.93 2.70 3.601 (4) 162
C15—H15B⋯O3iii 0.96 2.69 3.470 (4) 138
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{7\over 4}}]; (ii) y, x, -z+2; (iii) x+1, y, z.

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The introduction of a cyclopalladated compound as a robust catalyst (Herrman et al., 2003) for Heck and cross-coupling reactions resulted in the design of structurally related palladacycles, phosphapalladacycles in particular (Beletskaya & Cheprakov, 2004). However, growing evidence suggests that palladacycles are disassembled during the pre-activation stage to yield low ligated Pd0 species as the actual catalyst (d'Orlye & Jutland, 2005). This is further exemplified by our finding that the use of palladacycle (II in Fig. 1), an effective amination catalyst (Beletskaya & Cheprakov, 2004), as a source of palladium together with triphenylphosphine and a strong acid provided an extremely active catalytic system for the hydromethoxylation of alkenes (Omondi et al., 2011 and Williams et al., 2008). In the reaction medium compound II (Fig. 1) was rapidly converted into tetrakistriphenylphosphinepalladium(0) which acted as the actual catalyst. The facile formation of Pd0 resulted from acid catalyzed elimination from the palladacycle. This treatment of II with ten equivalents of trifluoromethanesulfonic acid at room temperature resulted in the formation of colloidal palladium and the title compound (I in Fig. 1), the structure of which was confirmed by single-crystal X-ray crystallography.

The title compound I (Fig. 2 and Scheme 1) is a salt consisting of phospholium cations and trifluoromethanesulfonate anions. All ions lie on general positions in the unit cell with no discernible differences in the bond distances of the coordination polyhedron of the phosphorus environment. The bond angles at the phosphorus center shows significant deviations from the expected 109.5° for the tetrahedral shape with biphenyl—P—biphenyl = 93.93 (13)° and t-Bu—P—t-Bu = 118.82 (14)°. These deviations can be ascribed to the somewhat strained 5-membered cyclisation of the dibenzo fragment to form the phospholium ring. This pinching effect in turn allows for more space for the bulky tertiary butyl groups positioned above and below the plane formed by the tricyclic phospholium conjugate and hence the observed t-Bu—P—t-Bu angle. The tricyclic phospholium conjugate marginally deviates from planarity (C1—C6—C7—C12 = 1.9 (4)°), and would have been the primary route to alleviate stress from the pinching effect. Data extracted from the Cambridge Structural Database (Allen, 2002) for the torsion angle between the planes shows a mean value of 1.72° (126 observations). The general trend seems to be that substituents opposite the phospholium cycle forces it to be planar. The preferred orientation of the tertiary butyls are due to several weak C—H···O interactions observed between ions (see Table 1).

Related literature top

For background to catalytic studies on palladacycles, see: Herrman et al. (2003); Beletskaya & Cheprakov (2004); Omondi et al. (2011); Williams et al. (2008); d'Orlye & Jutland (2005). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Trifluorometanesulfonic acid (150 mg, 1 mmol) in 5 ml me thanol was added dropwise to a stirred solution of (acetato-κ2O,O')[2'-(di-tert- butylphosphanyl)-1,1'-biphenyl-κ2P,C2]palladium (462 mg, 1 mmol) in dichloromethane (30 ml) at room temperature under argon. The solution changed from colourless to deep purple and then to dark brown over a period of 10 min. After several hours at room temperature a fine precipitate of palladium black started to form. After 24 h the reaction mixture was filtered through celite to remove the palladium. The solvent was removed in vacuo and the residue distributed between water (15 ml) and ether (15 ml). The aqueous phase was extracted with dichloromethane (3 x 30 ml). The combined extract furnished crystalline (413 mg, 82%) on removal of the solvent in vacuo. Good crystals (mp. 157 – 159 °C) was obtained by diffusion of the vapours of ether into a solution in dichloromethane. Analytical data: 1H-NMR: δ 1.45 (18H, d, J = 17 Hz), 7.68 (2H, dt, J = 2.5 and 7.5 Hz), 7.85 (2H, t, J = 7.8 Hz), 7.99 (2H, t, J = 7.8 Hz), and 8.64 (2H, dd, J = 2.5 and 7.8 Hz) 13C{H}-NMR: δ 26.74 (s), 36.42 (d, J = 42 Hz), 118.72 (d, J = 101 Hz), 123.58 (d, J = 12.3 Hz), 130.90 (d, J = 14.0 Hz), 131.90 (d, J = 14.0 Hz), 131.67 (d, J = 11.4 Hz), 135.95 (d, J = 2.7 Hz), 144.97 (d, J = 17.4 Hz) 31P-NMR: δ 51.24

Refinement top

All hydrogen atoms for methyl and aromatic H atoms were positioned in geometrically idealized positions with C—H = 0.96 Å and 0.93 Å respectively. Aromatic hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, and for methyl hydrogen atoms Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The Flack parameter refined to 0.05 (11).

Structure description top

The introduction of a cyclopalladated compound as a robust catalyst (Herrman et al., 2003) for Heck and cross-coupling reactions resulted in the design of structurally related palladacycles, phosphapalladacycles in particular (Beletskaya & Cheprakov, 2004). However, growing evidence suggests that palladacycles are disassembled during the pre-activation stage to yield low ligated Pd0 species as the actual catalyst (d'Orlye & Jutland, 2005). This is further exemplified by our finding that the use of palladacycle (II in Fig. 1), an effective amination catalyst (Beletskaya & Cheprakov, 2004), as a source of palladium together with triphenylphosphine and a strong acid provided an extremely active catalytic system for the hydromethoxylation of alkenes (Omondi et al., 2011 and Williams et al., 2008). In the reaction medium compound II (Fig. 1) was rapidly converted into tetrakistriphenylphosphinepalladium(0) which acted as the actual catalyst. The facile formation of Pd0 resulted from acid catalyzed elimination from the palladacycle. This treatment of II with ten equivalents of trifluoromethanesulfonic acid at room temperature resulted in the formation of colloidal palladium and the title compound (I in Fig. 1), the structure of which was confirmed by single-crystal X-ray crystallography.

The title compound I (Fig. 2 and Scheme 1) is a salt consisting of phospholium cations and trifluoromethanesulfonate anions. All ions lie on general positions in the unit cell with no discernible differences in the bond distances of the coordination polyhedron of the phosphorus environment. The bond angles at the phosphorus center shows significant deviations from the expected 109.5° for the tetrahedral shape with biphenyl—P—biphenyl = 93.93 (13)° and t-Bu—P—t-Bu = 118.82 (14)°. These deviations can be ascribed to the somewhat strained 5-membered cyclisation of the dibenzo fragment to form the phospholium ring. This pinching effect in turn allows for more space for the bulky tertiary butyl groups positioned above and below the plane formed by the tricyclic phospholium conjugate and hence the observed t-Bu—P—t-Bu angle. The tricyclic phospholium conjugate marginally deviates from planarity (C1—C6—C7—C12 = 1.9 (4)°), and would have been the primary route to alleviate stress from the pinching effect. Data extracted from the Cambridge Structural Database (Allen, 2002) for the torsion angle between the planes shows a mean value of 1.72° (126 observations). The general trend seems to be that substituents opposite the phospholium cycle forces it to be planar. The preferred orientation of the tertiary butyls are due to several weak C—H···O interactions observed between ions (see Table 1).

For background to catalytic studies on palladacycles, see: Herrman et al. (2003); Beletskaya & Cheprakov (2004); Omondi et al. (2011); Williams et al. (2008); d'Orlye & Jutland (2005). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Proposed reaction scheme of the elimination of the palladium and formation of the title phospholium compound.
[Figure 2] Fig. 2. View of title compound showing displacement ellipsoids (drawn at a 30% probability level) and numbering scheme. Hydrogen atoms have been omitted for clarity.
(Biphenyl-2,2'-diyl)di-tert-butylphosphonium trifluoromethanesulfonate top
Crystal data top
C20H26P+·CF3O3SDx = 1.34 Mg m3
Mr = 446.45Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 3572 reflections
Hall symbol: P 4abw 2nwθ = 2.5–21.9°
a = 12.1339 (10) ŵ = 0.26 mm1
c = 30.057 (2) ÅT = 293 K
V = 4425.4 (6) Å3Prism, yellow
Z = 80.4 × 0.26 × 0.2 mm
F(000) = 1872
Data collection top
Bruker SMART 1K CCD
diffractometer
3241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
π scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1316
Tmin = 0.902, Tmax = 0.949k = 1116
25275 measured reflectionsl = 3928
5502 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0519P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
5502 reflectionsΔρmax = 0.17 e Å3
268 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 2283 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (11)
Crystal data top
C20H26P+·CF3O3SZ = 8
Mr = 446.45Mo Kα radiation
Tetragonal, P41212µ = 0.26 mm1
a = 12.1339 (10) ÅT = 293 K
c = 30.057 (2) Å0.4 × 0.26 × 0.2 mm
V = 4425.4 (6) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
5502 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3241 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.949Rint = 0.101
25275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.17 e Å3
S = 0.99Δρmin = 0.25 e Å3
5502 reflectionsAbsolute structure: Flack (1983), 2283 Friedel pairs
268 parametersAbsolute structure parameter: 0.05 (11)
0 restraints
Special details top

Experimental. The intensity data was collected on a Bruker SMART 1 K CCD diffractometer using an exposure time of 20 s/frame. A total of 984 frames were collected with a frame width of 0.3° covering up to θ = 28.37° with 99.3% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.60082 (6)0.44749 (6)0.87672 (2)0.03329 (18)
C10.4783 (2)0.4567 (2)0.84292 (9)0.0370 (7)
C20.4328 (2)0.3813 (3)0.81337 (9)0.0454 (8)
H20.46510.31260.80920.054*
C30.3384 (3)0.4104 (3)0.79028 (11)0.0576 (9)
H30.30820.36160.76980.069*
C40.2892 (3)0.5108 (3)0.79748 (13)0.0744 (12)
H40.22550.52890.78190.089*
C50.3324 (3)0.5852 (3)0.82750 (13)0.0746 (12)
H50.29790.65250.83220.09*
C60.4280 (2)0.5587 (3)0.85057 (10)0.0472 (8)
C70.4846 (2)0.6282 (2)0.88434 (10)0.0450 (7)
C80.4517 (3)0.7307 (3)0.89949 (13)0.0692 (11)
H80.38880.76390.8880.083*
C90.5129 (4)0.7833 (3)0.93185 (12)0.0687 (11)
H90.48960.85160.94240.082*
C100.6074 (3)0.7372 (3)0.94885 (10)0.0536 (9)
H100.64750.7740.97060.064*
C110.6428 (3)0.6358 (3)0.93346 (9)0.0427 (8)
H110.70760.60480.94430.051*
C120.5808 (2)0.5806 (2)0.90172 (9)0.0359 (7)
C130.7242 (2)0.4477 (3)0.83999 (9)0.0402 (7)
C140.7210 (3)0.3492 (3)0.80819 (11)0.0714 (12)
H14A0.78180.35380.78780.107*
H14B0.6530.35010.79180.107*
H14C0.72620.28210.82490.107*
C150.8297 (3)0.4475 (3)0.86695 (11)0.0643 (10)
H15A0.83270.3820.88480.096*
H15B0.83140.51120.88590.096*
H15C0.89190.44910.84720.096*
C160.7161 (3)0.5544 (3)0.81278 (12)0.0724 (11)
H16A0.72350.61670.83220.109*
H16B0.64580.55730.79810.109*
H16C0.77380.55580.79090.109*
C170.5876 (3)0.3380 (2)0.91950 (10)0.0441 (8)
C180.6709 (3)0.3567 (3)0.95735 (11)0.0679 (11)
H18A0.66290.29960.97920.102*
H18B0.65740.42710.97090.102*
H18C0.74440.35520.94550.102*
C190.6031 (3)0.2239 (3)0.89885 (11)0.0651 (10)
H19A0.58760.16840.92070.098*
H19B0.67770.21620.88870.098*
H19C0.55360.21560.87420.098*
C200.4700 (3)0.3478 (3)0.93813 (13)0.0797 (13)
H20A0.41770.33610.91460.12*
H20B0.45960.420.95050.12*
H20C0.45920.29340.96090.12*
C210.1201 (3)0.5421 (4)0.93747 (13)0.0681 (11)
S10.01008 (7)0.49559 (7)0.97325 (2)0.0494 (2)
O10.0109 (2)0.3861 (2)0.95856 (8)0.0773 (8)
O20.0560 (2)0.5059 (2)1.01687 (8)0.0780 (8)
O30.0772 (2)0.5722 (2)0.96379 (8)0.0762 (8)
F10.0927 (2)0.5358 (2)0.89479 (7)0.0956 (8)
F20.2088 (2)0.4800 (3)0.94266 (10)0.1323 (12)
F30.1493 (2)0.6442 (2)0.94525 (9)0.1194 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0327 (4)0.0315 (4)0.0357 (4)0.0012 (3)0.0020 (3)0.0017 (3)
C10.0316 (17)0.0394 (17)0.0402 (17)0.0015 (13)0.0040 (12)0.0074 (13)
C20.0408 (19)0.046 (2)0.0499 (18)0.0048 (14)0.0006 (14)0.0101 (14)
C30.043 (2)0.073 (3)0.057 (2)0.0074 (19)0.0131 (16)0.0140 (19)
C40.054 (2)0.082 (3)0.087 (3)0.016 (2)0.036 (2)0.019 (2)
C50.059 (3)0.068 (3)0.097 (3)0.025 (2)0.031 (2)0.023 (2)
C60.0405 (19)0.0486 (19)0.0527 (19)0.0085 (15)0.0091 (14)0.0083 (16)
C70.0429 (19)0.0394 (18)0.0527 (19)0.0092 (14)0.0024 (14)0.0075 (14)
C80.076 (3)0.052 (2)0.080 (3)0.028 (2)0.016 (2)0.0170 (19)
C90.089 (3)0.043 (2)0.074 (3)0.015 (2)0.001 (2)0.0187 (18)
C100.074 (3)0.044 (2)0.0424 (19)0.0093 (19)0.0009 (18)0.0068 (15)
C110.0457 (19)0.0417 (19)0.0406 (18)0.0064 (15)0.0008 (14)0.0039 (14)
C120.0392 (18)0.0305 (17)0.0379 (16)0.0011 (12)0.0000 (13)0.0047 (12)
C130.0338 (17)0.0500 (19)0.0366 (17)0.0014 (14)0.0006 (13)0.0024 (15)
C140.062 (3)0.091 (3)0.061 (2)0.004 (2)0.0162 (19)0.030 (2)
C150.038 (2)0.100 (3)0.055 (2)0.0045 (19)0.0035 (16)0.007 (2)
C160.059 (2)0.084 (3)0.075 (3)0.001 (2)0.0156 (19)0.034 (2)
C170.048 (2)0.0409 (19)0.0433 (18)0.0060 (14)0.0026 (15)0.0063 (13)
C180.088 (3)0.061 (2)0.055 (2)0.008 (2)0.019 (2)0.0175 (18)
C190.090 (3)0.042 (2)0.063 (2)0.0063 (19)0.011 (2)0.0065 (17)
C200.069 (3)0.092 (3)0.078 (3)0.004 (2)0.025 (2)0.026 (2)
C210.065 (3)0.072 (3)0.068 (3)0.002 (2)0.002 (2)0.003 (2)
S10.0554 (5)0.0515 (5)0.0412 (4)0.0037 (4)0.0034 (4)0.0056 (4)
O10.103 (2)0.0526 (16)0.0761 (17)0.0131 (15)0.0052 (16)0.0034 (13)
O20.0889 (19)0.102 (2)0.0427 (14)0.0036 (16)0.0149 (12)0.0077 (13)
O30.0609 (18)0.089 (2)0.0783 (16)0.0226 (14)0.0057 (13)0.0149 (15)
F10.109 (2)0.125 (2)0.0528 (13)0.0194 (16)0.0148 (12)0.0069 (13)
F20.0551 (16)0.197 (4)0.145 (2)0.036 (2)0.0137 (16)0.001 (2)
F30.139 (3)0.092 (2)0.128 (2)0.0655 (18)0.0139 (19)0.0078 (16)
Geometric parameters (Å, º) top
P1—C121.798 (3)C14—H14A0.96
P1—C11.804 (3)C14—H14B0.96
P1—C171.856 (3)C14—H14C0.96
P1—C131.860 (3)C15—H15A0.96
C1—C21.389 (4)C15—H15B0.96
C1—C61.400 (4)C15—H15C0.96
C2—C31.384 (4)C16—H16A0.96
C2—H20.93C16—H16B0.96
C3—C41.374 (5)C16—H16C0.96
C3—H30.93C17—C191.529 (4)
C4—C51.380 (5)C17—C201.538 (5)
C4—H40.93C17—C181.538 (4)
C5—C61.388 (4)C18—H18A0.96
C5—H50.93C18—H18B0.96
C6—C71.487 (4)C18—H18C0.96
C7—C81.383 (4)C19—H19A0.96
C7—C121.403 (4)C19—H19B0.96
C8—C91.380 (5)C19—H19C0.96
C8—H80.93C20—H20A0.96
C9—C101.376 (5)C20—H20B0.96
C9—H90.93C20—H20C0.96
C10—C111.382 (4)C21—F31.310 (4)
C10—H100.93C21—F21.323 (5)
C11—C121.387 (4)C21—F11.327 (4)
C11—H110.93C21—S11.805 (4)
C13—C151.515 (4)S1—O11.423 (3)
C13—C141.531 (4)S1—O21.430 (2)
C13—C161.534 (4)S1—O31.438 (2)
C12—P1—C193.93 (13)C13—C14—H14C109.5
C12—P1—C17109.98 (13)H14A—C14—H14C109.5
C1—P1—C17111.29 (14)H14B—C14—H14C109.5
C12—P1—C13110.82 (14)C13—C15—H15A109.5
C1—P1—C13109.20 (12)C13—C15—H15B109.5
C17—P1—C13118.82 (14)H15A—C15—H15B109.5
C2—C1—C6120.9 (3)C13—C15—H15C109.5
C2—C1—P1130.3 (2)H15A—C15—H15C109.5
C6—C1—P1108.8 (2)H15B—C15—H15C109.5
C3—C2—C1118.8 (3)C13—C16—H16A109.5
C3—C2—H2120.6C13—C16—H16B109.5
C1—C2—H2120.6H16A—C16—H16B109.5
C4—C3—C2120.4 (3)C13—C16—H16C109.5
C4—C3—H3119.8H16A—C16—H16C109.5
C2—C3—H3119.8H16B—C16—H16C109.5
C3—C4—C5121.2 (3)C19—C17—C20109.4 (3)
C3—C4—H4119.4C19—C17—C18110.7 (3)
C5—C4—H4119.4C20—C17—C18109.2 (3)
C4—C5—C6119.6 (3)C19—C17—P1110.9 (2)
C4—C5—H5120.2C20—C17—P1106.1 (2)
C6—C5—H5120.2C18—C17—P1110.5 (2)
C5—C6—C1119.1 (3)C17—C18—H18A109.5
C5—C6—C7126.6 (3)C17—C18—H18B109.5
C1—C6—C7114.3 (3)H18A—C18—H18B109.5
C8—C7—C12119.1 (3)C17—C18—H18C109.5
C8—C7—C6127.0 (3)H18A—C18—H18C109.5
C12—C7—C6113.9 (3)H18B—C18—H18C109.5
C9—C8—C7119.6 (3)C17—C19—H19A109.5
C9—C8—H8120.2C17—C19—H19B109.5
C7—C8—H8120.2H19A—C19—H19B109.5
C10—C9—C8121.5 (3)C17—C19—H19C109.5
C10—C9—H9119.3H19A—C19—H19C109.5
C8—C9—H9119.3H19B—C19—H19C109.5
C9—C10—C11119.8 (3)C17—C20—H20A109.5
C9—C10—H10120.1C17—C20—H20B109.5
C11—C10—H10120.1H20A—C20—H20B109.5
C10—C11—C12119.4 (3)C17—C20—H20C109.5
C10—C11—H11120.3H20A—C20—H20C109.5
C12—C11—H11120.3H20B—C20—H20C109.5
C11—C12—C7120.6 (3)F3—C21—F2107.3 (4)
C11—C12—P1130.3 (2)F3—C21—F1107.1 (3)
C7—C12—P1109.1 (2)F2—C21—F1106.6 (3)
C15—C13—C14110.7 (3)F3—C21—S1112.9 (3)
C15—C13—C16109.9 (3)F2—C21—S1110.7 (3)
C14—C13—C16108.9 (3)F1—C21—S1111.9 (3)
C15—C13—P1111.3 (2)O1—S1—O2115.83 (15)
C14—C13—P1110.4 (2)O1—S1—O3114.24 (17)
C16—C13—P1105.4 (2)O2—S1—O3114.32 (15)
C13—C14—H14A109.5O1—S1—C21103.84 (18)
C13—C14—H14B109.5O2—S1—C21103.35 (17)
H14A—C14—H14B109.5O3—S1—C21103.01 (18)
C12—P1—C1—C2178.5 (3)C17—P1—C12—C1164.7 (3)
C17—P1—C1—C265.2 (3)C13—P1—C12—C1168.7 (3)
C13—P1—C1—C267.9 (3)C1—P1—C12—C70.2 (2)
C12—P1—C1—C61.2 (2)C17—P1—C12—C7114.5 (2)
C17—P1—C1—C6114.4 (2)C13—P1—C12—C7112.1 (2)
C13—P1—C1—C6112.5 (2)C12—P1—C13—C1574.3 (3)
C6—C1—C2—C32.3 (4)C1—P1—C13—C15176.4 (2)
P1—C1—C2—C3178.1 (2)C17—P1—C13—C1554.5 (3)
C1—C2—C3—C41.8 (5)C12—P1—C13—C14162.4 (2)
C2—C3—C4—C50.4 (6)C1—P1—C13—C1460.2 (3)
C3—C4—C5—C60.6 (6)C17—P1—C13—C1468.8 (3)
C4—C5—C6—C10.1 (6)C12—P1—C13—C1644.9 (2)
C4—C5—C6—C7179.1 (4)C1—P1—C13—C1657.2 (2)
C2—C1—C6—C51.3 (5)C17—P1—C13—C16173.7 (2)
P1—C1—C6—C5179.0 (3)C12—P1—C17—C19179.3 (2)
C2—C1—C6—C7177.8 (3)C1—P1—C17—C1976.6 (3)
P1—C1—C6—C71.9 (3)C13—P1—C17—C1951.5 (3)
C5—C6—C7—C81.2 (6)C12—P1—C17—C2060.7 (3)
C1—C6—C7—C8177.9 (3)C1—P1—C17—C2042.0 (3)
C5—C6—C7—C12179.1 (3)C13—P1—C17—C20170.1 (2)
C1—C6—C7—C121.9 (4)C12—P1—C17—C1857.6 (3)
C12—C7—C8—C91.1 (5)C1—P1—C17—C18160.3 (2)
C6—C7—C8—C9178.6 (3)C13—P1—C17—C1871.6 (3)
C7—C8—C9—C101.3 (6)F3—C21—S1—O1178.2 (3)
C8—C9—C10—C110.0 (5)F2—C21—S1—O161.4 (3)
C9—C10—C11—C121.5 (5)F1—C21—S1—O157.3 (3)
C10—C11—C12—C71.8 (4)F3—C21—S1—O260.5 (3)
C10—C11—C12—P1177.4 (2)F2—C21—S1—O259.9 (3)
C8—C7—C12—C110.5 (5)F1—C21—S1—O2178.6 (3)
C6—C7—C12—C11179.8 (3)F3—C21—S1—O358.8 (3)
C8—C7—C12—P1178.9 (3)F2—C21—S1—O3179.2 (3)
C6—C7—C12—P10.9 (3)F1—C21—S1—O362.1 (3)
C1—P1—C12—C11179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.493.381 (4)161
C19—H19A···O2ii0.962.523.458 (4)165
C11—H11···O3iii0.932.73.601 (4)162
C15—H15B···O3iii0.962.693.470 (4)138
Symmetry codes: (i) x+1/2, y+1/2, z+7/4; (ii) y, x, z+2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H26P+·CF3O3S
Mr446.45
Crystal system, space groupTetragonal, P41212
Temperature (K)293
a, c (Å)12.1339 (10), 30.057 (2)
V3)4425.4 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.4 × 0.26 × 0.2
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.902, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
25275, 5502, 3241
Rint0.101
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.117, 0.99
No. of reflections5502
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.25
Absolute structureFlack (1983), 2283 Friedel pairs
Absolute structure parameter0.05 (11)

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.493.381 (4)161.4
C19—H19A···O2ii0.962.523.458 (4)165
C11—H11···O3iii0.932.73.601 (4)162
C15—H15B···O3iii0.962.693.470 (4)138.2
Symmetry codes: (i) x+1/2, y+1/2, z+7/4; (ii) y, x, z+2; (iii) x+1, y, z.
 

Acknowledgements

The University of Witwatersrand is thanked for the use of their diffractometer. The research fund of the University of Johannesburg is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeletskaya, I. P. & Cheprakov, A. V. (2004). J. Organomet. Chem. 689, 4055–4082.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerrman, W. A., Ofele, K., Preysing, D. & Schneider, S. K. (2003). J. Organomet. Chem. 687, 229–248.  Google Scholar
First citationOmondi, B., Shaw, M. L. & Holzapfel, C. W. (2011). J. Organomet. Chem. 696, 3091–3096.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrlye, E. d' & Jutland, A. (2005). Tetrahedron, 61, 9670–9678.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, D. G. B., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560–563.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds