organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

17β-Hy­dr­oxy-17α-methyl­androsta-1,4-dien-3-one

aSchool of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
*Correspondence e-mail: patrick.mcardle@nuigalway.ie

(Received 6 November 2012; accepted 5 December 2012; online 8 December 2012)

The title compound, C20H28O2, is a steroid with strong anabolic properties. The present solvent-free form crystallizes with two mol­ecules per asymmetric unit. In the crystal, both mol­ecules are involved in the formation of O—H⋯O hydrogen-bonded chains which extend along the b-axis direction.

Related literature

For examples of other compounds with unused hydrogen-bonding capacity, see: Bhatt et al. (2006[Bhatt, P. M. & Desiraju, G. R. (2006). Acta Cryst. C62, o362-o363.]); Lewis et al. (2005[Lewis, T. C., Tocher, D. A. & Price, S. L. (2005). Cryst. Growth Des. 5, 983-993.]); Desiraju et al. (2002[Desiraju, G. R. (2002). CrystEngComm, 4, 499-499.]). For related structures of other anabolic steroids, see: Verma et al. (2006[Verma, R., Jasrotia, D. & Bhat, M. (2006). J. Chem. Crystallogr. 36, 283-287.]). For related structures of steroid compounds with non-hydrogen-bonded OH or C=O motifs, see: Karpinska et al. (2011[Karpinska, J., Erxleben, A. & McArdle, P. (2011). Cryst. Growth Des. 11, 2829-2838.]); Danaci et al. (1988[Danaci, S., Kendi, E., Moers, F. G., Behm, H. & Beurskens, P. T. (1988). Acta Cryst. C44, 1677-1679.]); Chakrabarti et al. (1981[Chakrabarti, P., Banerjee, D. K. & Venkatesan, K. (1981). Steroids, 37, 269-279.]); McPhail et al. (1977[McPhail, A. T., Luhan, P. A., Tschang, P.-S. W. & Onan, K. D. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 379-383.]); Delettré et al. (1975[Delettré, J., Mornon, J.-P. & Lepicard, G. (1975). Acta Cryst. B31, 450-453.]). For applications of methandrostenolone, see: Druzhinina et al. (2008[Druzhinina, A., Andryushina, V., Stytsenko, T. & Voishvillo, N. (2008). Appl. Biochem. Microbiol. 44, 580-584.]). For a previously reported mono hydrate (with no unused hydrogen-bonding capacity), see: Duax et al. (1982[Duax, W. L., Rohrer, D. C. & Segaloff, A. (1982). Acta Cryst. B38, 531-534.]).

[Scheme 1]

Experimental

Crystal data
  • C20H28O2

  • Mr = 300.42

  • Monoclinic, C 2

  • a = 28.317 (2) Å

  • b = 9.4539 (5) Å

  • c = 13.7684 (10) Å

  • β = 111.017 (9)°

  • V = 3440.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis171; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis171. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.985, Tmax = 1.000

  • 7321 measured reflections

  • 4697 independent reflections

  • 2893 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.199

  • S = 1.03

  • 4697 reflections

  • 404 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O2⋯O4i 0.82 2.00 2.808 (7) 167
O4—H4O4⋯O3ii 0.82 2.09 2.858 (7) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+1, y+1, -z+2.

Data collection: CrysAlis171 (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis171. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis171; data reduction: CrysAlis171; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: CIFTAB (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Methandrostenolone, commonly known as dianabol, is an anabolic steroid which is widely applied in medicine, particularly in surgery, endocrinology, therapeutics and paediatrics (Druzhinina et al., 2008)). As a part of our studies on unused hydrogen bonding capacity in steroid compounds the crystal structure of the solvent free form has been determined using crystals grown by sublimation.

Methandrostenolone is another example of a steroid type compound which does not use all of its good proton donors and acceptors in hydrogen bonding formation. The previously reported mono hydrate has no unused hydrogen bonding capacity (Duax et al., 1982). The OH and C=O groups occupy opposite ends of the molecule and both are used in the formation of one dimensional hydrogen bonded chains. The O4-H4O3..O3 (2.878 Å) interactions of one molecule form chains (blue molecules in Fig. 2), with the O2 of the hydroxyl groups of the other molecule acting only as donors to the basic chain in O2-H2O2..O4 (2.808 Å) interactions (red molecules in Fig. 2). The O1 atom of the carbonyl group of this second molecule is not involved in any hydrogen bonding interaction.

Related literature top

For examples of other compounds with unused hydrogen-bonding capacity, see: Bhatt et al. (2006); Lewis et al. (2005); Desiraju et al. (2002). For related structures of other anabolic steroids, see: Verma et al. (2006). For related structures of steroid compounds with non-hydrogen-bonded OH or C=O motifs, see: Karpinska et al. (2011); Danaci et al. (1988); Chakrabarti et al. (1981); McPhail et al. (1977); Delettré et al. (1975). For applications of methandrostenolone, see: Druzhinina et al. (2008). For a previously reported mono hydrate (with no unused hydrogen-bonding capacity), see: Duax et al. (1982).

Experimental top

The title compound of high purity (>98.8%) was obtained from TCI Europe. Colourless crystals were grown by low temperature gradient sublimation in the vacuum.

Refinement top

All H atoms were included in the refinement in calculated positions [N—O = 0.82 Å, C—H(aromatic) = 0.93 Å, CH(methylene) = 0.97 Å or CH(methyl) = 0.96 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq. The rather low "observed-to-unique" reflection ratio was due to extremly poor data quality.

Structure description top

Methandrostenolone, commonly known as dianabol, is an anabolic steroid which is widely applied in medicine, particularly in surgery, endocrinology, therapeutics and paediatrics (Druzhinina et al., 2008)). As a part of our studies on unused hydrogen bonding capacity in steroid compounds the crystal structure of the solvent free form has been determined using crystals grown by sublimation.

Methandrostenolone is another example of a steroid type compound which does not use all of its good proton donors and acceptors in hydrogen bonding formation. The previously reported mono hydrate has no unused hydrogen bonding capacity (Duax et al., 1982). The OH and C=O groups occupy opposite ends of the molecule and both are used in the formation of one dimensional hydrogen bonded chains. The O4-H4O3..O3 (2.878 Å) interactions of one molecule form chains (blue molecules in Fig. 2), with the O2 of the hydroxyl groups of the other molecule acting only as donors to the basic chain in O2-H2O2..O4 (2.808 Å) interactions (red molecules in Fig. 2). The O1 atom of the carbonyl group of this second molecule is not involved in any hydrogen bonding interaction.

For examples of other compounds with unused hydrogen-bonding capacity, see: Bhatt et al. (2006); Lewis et al. (2005); Desiraju et al. (2002). For related structures of other anabolic steroids, see: Verma et al. (2006). For related structures of steroid compounds with non-hydrogen-bonded OH or C=O motifs, see: Karpinska et al. (2011); Danaci et al. (1988); Chakrabarti et al. (1981); McPhail et al. (1977); Delettré et al. (1975). For applications of methandrostenolone, see: Druzhinina et al. (2008). For a previously reported mono hydrate (with no unused hydrogen-bonding capacity), see: Duax et al. (1982).

Computing details top

Data collection: CrysAlis171 (Oxford Diffraction, 2010); cell refinement: CrysAlis171 (Oxford Diffraction, 2010); data reduction: CrysAlis171 (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: CIFTAB (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. One-dimensional hydrogen bonded chains in the crystal structure of methandrostenolone.
[Figure 2] Fig. 2. Packing diagram showing the 1D motifs along b with molecules coloured by symmetry equivalence.
17β-Hydroxy-17α-methylandrosta-1,4-dien-3-one top
Crystal data top
C20H28O2F(000) = 1312
Mr = 300.42Dx = 1.160 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.7107 Å
a = 28.317 (2) ÅCell parameters from 1944 reflections
b = 9.4539 (5) Åθ = 2.9–29.2°
c = 13.7684 (10) ŵ = 0.07 mm1
β = 111.017 (9)°T = 298 K
V = 3440.7 (4) Å3Parallelepiped, colourless
Z = 80.50 × 0.40 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4697 independent reflections
Radiation source: Enhance (Mo) X-ray Source2893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1048 pixels mm-1θmax = 25.4°, θmin = 2.9°
ω scansh = 3421
Absorption correction: multi-scan
(CrysAlis171; Oxford Diffraction, 2010)
k = 811
Tmin = 0.985, Tmax = 1.000l = 1618
7321 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.0874P)2 + 2.2675P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4697 reflectionsΔρmax = 0.65 e Å3
404 parametersΔρmin = 0.26 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (9)
Crystal data top
C20H28O2V = 3440.7 (4) Å3
Mr = 300.42Z = 8
Monoclinic, C2Mo Kα radiation
a = 28.317 (2) ŵ = 0.07 mm1
b = 9.4539 (5) ÅT = 298 K
c = 13.7684 (10) Å0.50 × 0.40 × 0.20 mm
β = 111.017 (9)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4697 independent reflections
Absorption correction: multi-scan
(CrysAlis171; Oxford Diffraction, 2010)
2893 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 1.000Rint = 0.034
7321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0721 restraint
wR(F2) = 0.199H-atom parameters constrained
S = 1.03Δρmax = 0.65 e Å3
4697 reflectionsΔρmin = 0.26 e Å3
404 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7034 (2)1.0649 (8)0.1279 (3)0.147 (3)
O20.91191 (19)0.6512 (8)0.5818 (3)0.138 (2)
H2O20.92580.57580.60460.180*
C10.7739 (2)1.1398 (7)0.1374 (5)0.0760 (17)
H10.80221.19180.17670.099*
C20.7592 (3)1.1452 (7)0.0348 (6)0.088 (2)
H2A0.77691.20220.00460.115*
C30.7155 (3)1.0635 (9)0.0328 (5)0.091 (2)
C40.6873 (2)0.9890 (7)0.0178 (4)0.0770 (18)
H40.65830.94130.02310.100*
C50.70045 (18)0.9839 (6)0.1216 (4)0.0621 (14)
C60.6729 (2)0.8922 (8)0.1723 (5)0.090 (2)
H6A0.64400.84900.11940.117*
H6B0.66060.94950.21670.117*
C70.7077 (2)0.7781 (8)0.2364 (4)0.0793 (18)
H7A0.71470.71140.18980.103*
H7B0.69040.72720.27510.103*
C80.75730 (19)0.8347 (6)0.3120 (4)0.0619 (15)
H80.75010.88960.36550.081*
C90.7937 (2)0.7179 (7)0.3653 (4)0.0685 (15)
H90.80120.66800.31000.089*
C100.7765 (3)0.6027 (8)0.4256 (5)0.101 (2)
H10A0.75850.64400.46670.132*
H10B0.75500.53300.37860.132*
C110.8267 (3)0.5370 (9)0.4953 (5)0.116 (3)
H11A0.82900.44010.47440.151*
H11B0.82880.53690.56710.151*
C120.8709 (3)0.6272 (9)0.4841 (5)0.101 (3)
C130.8448 (2)0.7699 (8)0.4417 (4)0.0765 (18)
C140.8693 (2)0.8604 (8)0.3831 (4)0.0811 (19)
H14A0.87690.80290.33220.105*
H14B0.90100.89810.43120.105*
C150.8344 (2)0.9834 (7)0.3275 (4)0.0780 (18)
H15A0.83031.04700.37920.101*
H15B0.85021.03610.28680.101*
C160.78270 (17)0.9333 (6)0.2564 (4)0.0521 (13)
H160.78920.87400.20410.068*
C170.74705 (19)1.0534 (6)0.1933 (4)0.0609 (14)
C180.7340 (2)1.1561 (8)0.2678 (5)0.093 (2)
H18A0.71121.22760.22790.121*
H18B0.76451.19980.31360.121*
H18C0.71831.10440.30810.121*
C190.8392 (3)0.8526 (9)0.5324 (4)0.098 (2)
H19A0.87190.88430.57780.128*
H19B0.82460.79260.57040.128*
H19C0.81760.93290.50600.128*
C200.8936 (3)0.5518 (9)0.4139 (5)0.120 (3)
H20A0.92140.60620.40950.156*
H20B0.86830.54150.34570.156*
H20C0.90550.46010.44210.156*
O40.47262 (19)0.9195 (5)0.6785 (4)0.1069 (16)
H4O40.47540.96140.73240.139*
O30.5497 (3)0.0511 (7)1.1560 (6)0.172 (3)
C210.6004 (2)0.3797 (9)1.1075 (5)0.093 (2)
H210.61200.46431.14230.121*
C220.5869 (3)0.2739 (10)1.1603 (5)0.097 (2)
H220.59110.28711.22990.126*
C230.5658 (3)0.1402 (9)1.1088 (7)0.116 (3)
C240.5673 (3)0.1263 (8)1.0132 (6)0.105 (3)
H240.55770.03850.98190.137*
C250.5807 (2)0.2215 (6)0.9574 (5)0.0689 (16)
C260.5755 (3)0.1940 (7)0.8476 (5)0.0845 (18)
H26A0.56430.09750.82890.110*
H26B0.60810.20570.84010.110*
C270.5373 (2)0.2967 (6)0.7756 (4)0.0678 (15)
H27A0.50390.27450.77560.088*
H27B0.53670.28430.70520.088*
C280.54964 (18)0.4516 (5)0.8080 (3)0.0475 (12)
H280.58080.47850.79710.062*
C290.50704 (18)0.5476 (5)0.7438 (3)0.0482 (11)
H290.47730.52000.76010.063*
C300.4902 (2)0.5470 (7)0.6264 (4)0.0693 (15)
H30A0.46800.46760.59710.090*
H30B0.51910.54150.60450.090*
C310.4621 (2)0.6876 (7)0.5924 (4)0.0781 (18)
H31A0.42670.67050.55200.101*
H31B0.47670.74100.54990.101*
C320.4675 (2)0.7705 (6)0.6926 (4)0.0695 (15)
C330.51633 (19)0.7034 (5)0.7731 (4)0.0562 (13)
C340.5242 (3)0.7212 (6)0.8868 (4)0.0762 (17)
H34A0.49330.69680.89800.099*
H34B0.53190.81940.90650.099*
C350.5670 (2)0.6281 (6)0.9545 (4)0.0728 (16)
H35A0.57050.63931.02680.095*
H35B0.59850.65760.94760.095*
C360.55717 (19)0.4725 (5)0.9237 (4)0.0517 (12)
H360.52490.44810.93070.067*
C370.59779 (19)0.3678 (7)0.9965 (4)0.0630 (15)
C380.6512 (2)0.3981 (7)0.9955 (5)0.0871 (19)
H38A0.66070.49351.01780.113*
H38B0.65120.38570.92630.113*
H38C0.67500.33381.04180.113*
C390.5624 (2)0.7593 (7)0.7519 (5)0.0883 (19)
H39A0.56710.85760.77010.115*
H39B0.55700.74810.67940.115*
H39C0.59190.70710.79280.115*
C400.4201 (2)0.7533 (8)0.7211 (5)0.094 (2)
H40A0.42360.80970.78130.122*
H40B0.41630.65570.73610.122*
H40C0.39090.78370.66390.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.161 (5)0.225 (7)0.065 (3)0.046 (5)0.054 (3)0.040 (4)
O20.128 (4)0.197 (6)0.066 (3)0.054 (4)0.007 (3)0.033 (4)
C10.073 (4)0.074 (4)0.086 (4)0.007 (3)0.035 (3)0.022 (4)
C20.089 (4)0.086 (5)0.104 (5)0.026 (4)0.052 (4)0.046 (4)
C30.104 (5)0.117 (6)0.066 (4)0.044 (5)0.047 (4)0.035 (4)
C40.058 (3)0.106 (5)0.059 (3)0.016 (3)0.011 (3)0.004 (4)
C50.049 (3)0.082 (4)0.056 (3)0.012 (3)0.020 (3)0.008 (3)
C60.058 (3)0.134 (6)0.083 (4)0.003 (4)0.030 (3)0.013 (5)
C70.060 (3)0.110 (5)0.072 (4)0.008 (4)0.028 (3)0.017 (4)
C80.056 (3)0.089 (4)0.045 (3)0.007 (3)0.024 (3)0.006 (3)
C90.074 (4)0.088 (4)0.052 (3)0.015 (3)0.034 (3)0.014 (3)
C100.114 (5)0.103 (5)0.097 (5)0.008 (5)0.050 (4)0.035 (5)
C110.168 (8)0.113 (6)0.088 (5)0.049 (6)0.069 (6)0.039 (5)
C120.116 (5)0.133 (7)0.055 (4)0.057 (5)0.032 (4)0.029 (4)
C130.077 (4)0.113 (5)0.039 (3)0.029 (4)0.020 (3)0.009 (3)
C140.053 (3)0.124 (6)0.060 (3)0.006 (4)0.011 (3)0.011 (4)
C150.062 (3)0.100 (5)0.068 (4)0.002 (3)0.019 (3)0.014 (4)
C160.043 (2)0.068 (3)0.046 (3)0.005 (2)0.018 (2)0.007 (3)
C170.057 (3)0.074 (4)0.057 (3)0.010 (3)0.027 (3)0.009 (3)
C180.095 (4)0.096 (5)0.090 (4)0.027 (4)0.036 (4)0.001 (4)
C190.109 (5)0.123 (6)0.061 (4)0.027 (5)0.027 (4)0.003 (4)
C200.141 (6)0.145 (7)0.080 (4)0.064 (6)0.048 (5)0.020 (5)
O40.157 (4)0.062 (3)0.095 (3)0.024 (3)0.037 (3)0.025 (3)
O30.244 (7)0.123 (5)0.217 (7)0.044 (5)0.166 (6)0.085 (5)
C210.087 (4)0.109 (6)0.085 (4)0.040 (4)0.033 (4)0.008 (5)
C220.098 (5)0.144 (7)0.058 (4)0.040 (5)0.040 (4)0.036 (5)
C230.156 (7)0.089 (6)0.141 (7)0.056 (6)0.100 (7)0.053 (6)
C240.132 (6)0.077 (5)0.146 (7)0.040 (5)0.096 (6)0.049 (5)
C250.077 (4)0.051 (3)0.096 (4)0.017 (3)0.052 (4)0.024 (3)
C260.114 (5)0.047 (3)0.100 (5)0.007 (4)0.049 (4)0.003 (4)
C270.087 (4)0.057 (4)0.069 (4)0.005 (3)0.040 (3)0.008 (3)
C280.058 (3)0.044 (3)0.049 (3)0.002 (2)0.029 (2)0.002 (2)
C290.061 (3)0.045 (3)0.043 (2)0.001 (3)0.023 (2)0.002 (2)
C300.078 (4)0.084 (4)0.044 (3)0.013 (3)0.020 (3)0.003 (3)
C310.090 (4)0.104 (5)0.040 (3)0.033 (4)0.024 (3)0.013 (3)
C320.092 (4)0.056 (3)0.061 (3)0.021 (3)0.028 (3)0.015 (3)
C330.070 (3)0.049 (3)0.053 (3)0.008 (3)0.025 (3)0.010 (3)
C340.112 (5)0.044 (3)0.066 (4)0.017 (3)0.024 (4)0.007 (3)
C350.089 (4)0.067 (4)0.055 (3)0.007 (4)0.017 (3)0.012 (3)
C360.060 (3)0.052 (3)0.047 (3)0.007 (2)0.024 (2)0.004 (2)
C370.060 (3)0.081 (4)0.054 (3)0.021 (3)0.027 (3)0.013 (3)
C380.080 (4)0.086 (5)0.101 (5)0.011 (4)0.039 (4)0.007 (4)
C390.100 (5)0.058 (4)0.107 (5)0.014 (4)0.037 (4)0.015 (4)
C400.095 (4)0.111 (5)0.085 (4)0.047 (4)0.042 (4)0.014 (4)
Geometric parameters (Å, º) top
O1—C31.228 (7)O4—C321.436 (7)
O2—C121.445 (8)O4—H4O40.8200
O2—H2O20.8200O3—C231.246 (8)
C1—C21.322 (9)C21—C221.370 (10)
C1—C171.504 (7)C21—C371.507 (7)
C1—H10.9300C21—H210.9300
C2—C31.472 (9)C22—C231.468 (12)
C2—H2A0.9300C22—H220.9300
C3—C41.420 (9)C23—C241.339 (10)
C4—C51.343 (7)C24—C251.325 (8)
C4—H40.9300C24—H240.9300
C5—C171.488 (7)C25—C261.488 (8)
C5—C61.495 (8)C25—C371.499 (9)
C6—C71.513 (9)C26—C271.526 (8)
C6—H6A0.9700C26—H26A0.9700
C6—H6B0.9700C26—H26B0.9700
C7—C81.515 (8)C27—C281.534 (7)
C7—H7A0.9700C27—H27A0.9700
C7—H7B0.9700C27—H27B0.9700
C8—C91.510 (7)C28—C291.515 (6)
C8—C161.539 (6)C28—C361.542 (6)
C8—H80.9800C28—H280.9800
C9—C131.532 (8)C29—C301.513 (6)
C9—C101.551 (8)C29—C331.525 (7)
C9—H90.9800C29—H290.9800
C10—C111.531 (9)C30—C311.534 (8)
C10—H10A0.9700C30—H30A0.9700
C10—H10B0.9700C30—H30B0.9700
C11—C121.568 (11)C31—C321.545 (7)
C11—H11A0.9700C31—H31A0.9700
C11—H11B0.9700C31—H31B0.9700
C12—C201.516 (9)C32—C401.537 (8)
C12—C131.549 (10)C32—C331.564 (7)
C13—C141.507 (8)C33—C341.509 (7)
C13—C191.529 (8)C33—C391.530 (7)
C14—C151.541 (9)C34—C351.518 (7)
C14—H14A0.9700C34—H34A0.9700
C14—H14B0.9700C34—H34B0.9700
C15—C161.516 (7)C35—C361.529 (7)
C15—H15A0.9700C35—H35A0.9700
C15—H15B0.9700C35—H35B0.9700
C16—C171.560 (7)C36—C371.575 (7)
C16—H160.9800C36—H360.9800
C17—C181.550 (8)C37—C381.545 (8)
C18—H18A0.9600C38—H38A0.9600
C18—H18B0.9600C38—H38B0.9600
C18—H18C0.9600C38—H38C0.9600
C19—H19A0.9600C39—H39A0.9600
C19—H19B0.9600C39—H39B0.9600
C19—H19C0.9600C39—H39C0.9600
C20—H20A0.9600C40—H40A0.9600
C20—H20B0.9600C40—H40B0.9600
C20—H20C0.9600C40—H40C0.9600
C12—O2—H2O2109.5C32—O4—H4O4109.5
C2—C1—C17123.0 (6)C22—C21—C37124.2 (7)
C2—C1—H1118.5C22—C21—H21117.9
C17—C1—H1118.5C37—C21—H21117.9
C1—C2—C3121.8 (6)C21—C22—C23121.1 (6)
C1—C2—H2A119.1C21—C22—H22119.5
C3—C2—H2A119.1C23—C22—H22119.5
O1—C3—C4122.5 (8)O3—C23—C24126.4 (10)
O1—C3—C2121.2 (7)O3—C23—C22119.5 (8)
C4—C3—C2116.2 (5)C24—C23—C22114.1 (7)
C5—C4—C3123.4 (6)C25—C24—C23128.4 (8)
C5—C4—H4118.3C25—C24—H24115.8
C3—C4—H4118.3C23—C24—H24115.8
C4—C5—C17122.1 (5)C24—C25—C26121.7 (6)
C4—C5—C6121.7 (6)C24—C25—C37122.8 (6)
C17—C5—C6115.7 (4)C26—C25—C37115.3 (5)
C5—C6—C7110.3 (4)C25—C26—C27109.8 (5)
C5—C6—H6A109.6C25—C26—H26A109.7
C7—C6—H6A109.6C27—C26—H26A109.7
C5—C6—H6B109.6C25—C26—H26B109.7
C7—C6—H6B109.6C27—C26—H26B109.7
H6A—C6—H6B108.1H26A—C26—H26B108.2
C6—C7—C8113.5 (6)C26—C27—C28112.5 (5)
C6—C7—H7A108.9C26—C27—H27A109.1
C8—C7—H7A108.9C28—C27—H27A109.1
C6—C7—H7B108.9C26—C27—H27B109.1
C8—C7—H7B108.9C28—C27—H27B109.1
H7A—C7—H7B107.7H27A—C27—H27B107.8
C9—C8—C7112.3 (5)C29—C28—C27110.5 (4)
C9—C8—C16108.9 (4)C29—C28—C36108.2 (3)
C7—C8—C16110.8 (4)C27—C28—C36110.9 (4)
C9—C8—H8108.2C29—C28—H28109.1
C7—C8—H8108.2C27—C28—H28109.1
C16—C8—H8108.2C36—C28—H28109.1
C8—C9—C13114.3 (5)C30—C29—C28120.1 (4)
C8—C9—C10118.8 (4)C30—C29—C33104.1 (4)
C13—C9—C10105.0 (5)C28—C29—C33113.5 (4)
C8—C9—H9105.9C30—C29—H29106.1
C13—C9—H9105.9C28—C29—H29106.1
C10—C9—H9105.9C33—C29—H29106.1
C11—C10—C9102.8 (5)C29—C30—C31104.7 (4)
C11—C10—H10A111.2C29—C30—H30A110.8
C9—C10—H10A111.2C31—C30—H30A110.8
C11—C10—H10B111.2C29—C30—H30B110.8
C9—C10—H10B111.2C31—C30—H30B110.8
H10A—C10—H10B109.1H30A—C30—H30B108.9
C10—C11—C12108.2 (6)C30—C31—C32107.0 (4)
C10—C11—H11A110.1C30—C31—H31A110.3
C12—C11—H11A110.1C32—C31—H31A110.3
C10—C11—H11B110.1C30—C31—H31B110.3
C12—C11—H11B110.1C32—C31—H31B110.3
H11A—C11—H11B108.4H31A—C31—H31B108.6
O2—C12—C20106.6 (6)O4—C32—C40106.2 (5)
O2—C12—C13109.3 (7)O4—C32—C31111.1 (5)
C20—C12—C13115.0 (5)C40—C32—C31111.0 (5)
O2—C12—C11113.4 (5)O4—C32—C33112.8 (5)
C20—C12—C11110.1 (7)C40—C32—C33114.0 (4)
C13—C12—C11102.7 (5)C31—C32—C33101.9 (4)
C14—C13—C19110.5 (6)C34—C33—C29109.3 (4)
C14—C13—C9108.5 (4)C34—C33—C39110.0 (5)
C19—C13—C9112.1 (5)C29—C33—C39111.2 (4)
C14—C13—C12116.5 (5)C34—C33—C32117.0 (4)
C19—C13—C12108.2 (5)C29—C33—C32100.3 (4)
C9—C13—C12100.7 (6)C39—C33—C32108.8 (4)
C13—C14—C15110.9 (4)C33—C34—C35111.1 (4)
C13—C14—H14A109.5C33—C34—H34A109.4
C15—C14—H14A109.5C35—C34—H34A109.4
C13—C14—H14B109.5C33—C34—H34B109.4
C15—C14—H14B109.5C35—C34—H34B109.4
H14A—C14—H14B108.0H34A—C34—H34B108.0
C16—C15—C14112.6 (5)C34—C35—C36111.2 (4)
C16—C15—H15A109.1C34—C35—H35A109.4
C14—C15—H15A109.1C36—C35—H35A109.4
C16—C15—H15B109.1C34—C35—H35B109.4
C14—C15—H15B109.1C36—C35—H35B109.4
H15A—C15—H15B107.8H35A—C35—H35B108.0
C15—C16—C8112.6 (4)C35—C36—C28110.8 (4)
C15—C16—C17114.5 (5)C35—C36—C37114.1 (4)
C8—C16—C17113.2 (4)C28—C36—C37112.1 (4)
C15—C16—H16105.2C35—C36—H36106.4
C8—C16—H16105.2C28—C36—H36106.4
C17—C16—H16105.2C37—C36—H36106.4
C5—C17—C1113.0 (4)C25—C37—C21109.0 (5)
C5—C17—C18110.6 (4)C25—C37—C38111.0 (5)
C1—C17—C18106.4 (5)C21—C37—C38107.6 (5)
C5—C17—C16106.9 (4)C25—C37—C36106.5 (4)
C1—C17—C16109.6 (4)C21—C37—C36111.0 (4)
C18—C17—C16110.3 (4)C38—C37—C36111.8 (4)
C17—C18—H18A109.5C37—C38—H38A109.5
C17—C18—H18B109.5C37—C38—H38B109.5
H18A—C18—H18B109.5H38A—C38—H38B109.5
C17—C18—H18C109.5C37—C38—H38C109.5
H18A—C18—H18C109.5H38A—C38—H38C109.5
H18B—C18—H18C109.5H38B—C38—H38C109.5
C13—C19—H19A109.5C33—C39—H39A109.5
C13—C19—H19B109.5C33—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C13—C19—H19C109.5C33—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
C12—C20—H20A109.5C32—C40—H40A109.5
C12—C20—H20B109.5C32—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
C12—C20—H20C109.5C32—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
C17—C1—C2—C31.4 (9)C37—C21—C22—C233.2 (10)
C1—C2—C3—O1177.0 (7)C21—C22—C23—O3173.6 (7)
C1—C2—C3—C45.6 (9)C21—C22—C23—C247.9 (10)
O1—C3—C4—C5178.6 (7)O3—C23—C24—C25174.8 (7)
C2—C3—C4—C54.0 (9)C22—C23—C24—C256.9 (12)
C3—C4—C5—C171.8 (9)C23—C24—C25—C26173.8 (7)
C3—C4—C5—C6173.5 (6)C23—C24—C25—C370.7 (11)
C4—C5—C6—C7115.1 (6)C24—C25—C26—C27115.7 (6)
C17—C5—C6—C757.1 (7)C37—C25—C26—C2759.2 (6)
C5—C6—C7—C851.8 (7)C25—C26—C27—C2853.1 (6)
C6—C7—C8—C9172.9 (4)C26—C27—C28—C29172.1 (4)
C6—C7—C8—C1650.8 (6)C26—C27—C28—C3652.2 (6)
C7—C8—C9—C13179.3 (4)C27—C28—C29—C3056.9 (6)
C16—C8—C9—C1356.1 (5)C36—C28—C29—C30178.5 (4)
C7—C8—C9—C1055.8 (6)C27—C28—C29—C33179.0 (4)
C16—C8—C9—C10179.0 (5)C36—C28—C29—C3357.5 (5)
C8—C9—C10—C11162.1 (5)C28—C29—C30—C31160.2 (5)
C13—C9—C10—C1132.8 (6)C33—C29—C30—C3131.8 (5)
C9—C10—C11—C127.1 (7)C29—C30—C31—C324.6 (6)
C10—C11—C12—O2138.2 (6)C30—C31—C32—O4143.7 (5)
C10—C11—C12—C20102.5 (6)C30—C31—C32—C4098.4 (6)
C10—C11—C12—C1320.5 (7)C30—C31—C32—C3323.4 (6)
C8—C9—C13—C1459.4 (6)C30—C29—C33—C34169.8 (4)
C10—C9—C13—C14168.6 (5)C28—C29—C33—C3457.9 (5)
C8—C9—C13—C1962.9 (6)C30—C29—C33—C3968.7 (5)
C10—C9—C13—C1969.0 (7)C28—C29—C33—C3963.6 (5)
C8—C9—C13—C12177.7 (4)C30—C29—C33—C3246.2 (4)
C10—C9—C13—C1245.8 (5)C28—C29—C33—C32178.5 (4)
O2—C12—C13—C1482.6 (6)O4—C32—C33—C3480.9 (6)
C20—C12—C13—C1437.2 (9)C40—C32—C33—C3440.3 (7)
C11—C12—C13—C14156.7 (5)C31—C32—C33—C34160.0 (5)
O2—C12—C13—C1942.6 (7)O4—C32—C33—C29161.1 (4)
C20—C12—C13—C19162.4 (7)C40—C32—C33—C2977.7 (6)
C11—C12—C13—C1978.1 (6)C31—C32—C33—C2942.0 (5)
O2—C12—C13—C9160.3 (5)O4—C32—C33—C3944.4 (6)
C20—C12—C13—C979.9 (7)C40—C32—C33—C39165.6 (5)
C11—C12—C13—C939.7 (6)C31—C32—C33—C3974.7 (5)
C19—C13—C14—C1567.1 (6)C29—C33—C34—C3556.0 (6)
C9—C13—C14—C1556.3 (7)C39—C33—C34—C3566.2 (6)
C12—C13—C14—C15168.9 (6)C32—C33—C34—C35169.1 (5)
C13—C14—C15—C1655.1 (6)C33—C34—C35—C3657.3 (7)
C14—C15—C16—C852.4 (6)C34—C35—C36—C2857.2 (6)
C14—C15—C16—C17176.5 (4)C34—C35—C36—C37175.2 (4)
C9—C8—C16—C1551.5 (6)C29—C28—C36—C3556.0 (5)
C7—C8—C16—C15175.6 (5)C27—C28—C36—C35177.4 (4)
C9—C8—C16—C17176.7 (4)C29—C28—C36—C37175.3 (4)
C7—C8—C16—C1752.7 (6)C27—C28—C36—C3753.9 (5)
C4—C5—C17—C15.8 (8)C24—C25—C37—C214.3 (7)
C6—C5—C17—C1178.0 (5)C26—C25—C37—C21179.1 (5)
C4—C5—C17—C18125.0 (6)C24—C25—C37—C38122.6 (6)
C6—C5—C17—C1862.8 (7)C26—C25—C37—C3862.6 (6)
C4—C5—C17—C16114.9 (6)C24—C25—C37—C36115.5 (6)
C6—C5—C17—C1657.3 (6)C26—C25—C37—C3659.4 (6)
C2—C1—C17—C54.2 (8)C22—C21—C37—C252.8 (8)
C2—C1—C17—C18125.7 (6)C22—C21—C37—C38123.2 (6)
C2—C1—C17—C16115.0 (6)C22—C21—C37—C36114.2 (6)
C15—C16—C17—C5174.9 (4)C35—C36—C37—C25177.5 (4)
C8—C16—C17—C554.3 (5)C28—C36—C37—C2555.5 (5)
C15—C16—C17—C152.1 (6)C35—C36—C37—C2159.1 (6)
C8—C16—C17—C1177.1 (5)C28—C36—C37—C21174.0 (5)
C15—C16—C17—C1864.8 (6)C35—C36—C37—C3861.1 (6)
C8—C16—C17—C1866.0 (6)C28—C36—C37—C3865.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O2···O4i0.822.002.808 (7)167
O4—H4O4···O3ii0.822.092.858 (7)156
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC20H28O2
Mr300.42
Crystal system, space groupMonoclinic, C2
Temperature (K)298
a, b, c (Å)28.317 (2), 9.4539 (5), 13.7684 (10)
β (°) 111.017 (9)
V3)3440.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis171; Oxford Diffraction, 2010)
Tmin, Tmax0.985, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7321, 4697, 2893
Rint0.034
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.199, 1.03
No. of reflections4697
No. of parameters404
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.26

Computer programs: CrysAlis171 (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995), CIFTAB (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O2···O4i0.822.002.808 (7)167.1
O4—H4O4···O3ii0.822.092.858 (7)156.1
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the Science Foundation Ireland (SFI) for funding for the Solid State Pharmaceuticals Cluster (SSPC).

References

First citationBhatt, P. M. & Desiraju, G. R. (2006). Acta Cryst. C62, o362–o363.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChakrabarti, P., Banerjee, D. K. & Venkatesan, K. (1981). Steroids, 37, 269–279.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationDanaci, S., Kendi, E., Moers, F. G., Behm, H. & Beurskens, P. T. (1988). Acta Cryst. C44, 1677–1679.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDelettré, J., Mornon, J.-P. & Lepicard, G. (1975). Acta Cryst. B31, 450–453.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationDesiraju, G. R. (2002). CrystEngComm, 4, 499–499.  Web of Science CrossRef CAS Google Scholar
First citationDruzhinina, A., Andryushina, V., Stytsenko, T. & Voishvillo, N. (2008). Appl. Biochem. Microbiol. 44, 580–584.  Web of Science CrossRef CAS Google Scholar
First citationDuax, W. L., Rohrer, D. C. & Segaloff, A. (1982). Acta Cryst. B38, 531–534.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarpinska, J., Erxleben, A. & McArdle, P. (2011). Cryst. Growth Des. 11, 2829–2838.  Web of Science CSD CrossRef CAS Google Scholar
First citationLewis, T. C., Tocher, D. A. & Price, S. L. (2005). Cryst. Growth Des. 5, 983–993.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMcPhail, A. T., Luhan, P. A., Tschang, P.-S. W. & Onan, K. D. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 379–383.  CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis171. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerma, R., Jasrotia, D. & Bhat, M. (2006). J. Chem. Crystallogr. 36, 283–287.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds