metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{(E)-4-di­methyl­amino-N′-[(pyri­din-2-yl)methyl­­idene-κN]benzo­hydrazide-κO}zinc

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, AA 25360, Santiago de Cali, Colombia
*Correspondence e-mail: manuel.chaur@correounivalle.edu.co

(Received 27 August 2012; accepted 30 November 2012; online 8 December 2012)

In the mononuclear title complex, [ZnCl2(C15H16N4O)], the ZnII cation is five-coordinated in a strongly distorted square-pyramidal environment by two Cl anions and a neutral tridentate Schiff base ligand. The ZnII cation is chelated by the carbonyl O atom, the imine N atom and the pyridine N atom, which causes a slight loss of planarity for the ligand; the dihedral angle between the aromatic rings is 4.61 (8)°.

Related literature

For related structures, see: Moreno-Fuquen et al. (2012[Moreno-Fuquen, R., Chaur, M. N., Romero, E. L., Zuluaga, F. & Ellena, J. (2012). Acta Cryst. E68, o2131.]); Chaur et al. (2011[Chaur, M. N., Collado, D. & Lehn, J.-M. (2011). Chem. Eur. J. 17, 248-258.]); Ma et al. (2011[Ma, J., Fan, W.-Z. & Lin, L.-R. (2011). Acta Cryst. E67, m624-m625.]). For the structure of the ligand and its complex with CuCl2, see: Sangeetha, Pal & Pal (2000[Sangeetha, N. R., Pal, S. & Pal, A. (2000). Polyhedron, 19, 2713-2717.]); Sangeetha, Pal, Anson et al. (2000[Sangeetha, N. R., Pal, S., Anson, C. E., Powell, A. K. & Pal, S. (2000). Inorg. Chem. Commun. 3, 415-419.]). For the design of mol­ecular dynamic systems, see: Hirose (2010[Hirose, J. (2010). J. Incl. Phenom. Macrocycl. Chem. 68, 1-24.]); Lehn (2006[Lehn, J.-M. (2006). Chem. Eur. J. 12, 5910-5915.]). For the synthetic principles of compounds exhibiting dynamic properties, see Kay et al. (2007[Kay, E. R., Leigh, D. A. & Zerbetto, F. (2007). Angew. Chem. Int. Ed. 46, 72-191.]). For information storage, see: Kandel (2001[Kandel, E. R. (2001). Science, 294, 1030-1038.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C15H16N4O)]

  • Mr = 404.59

  • Monoclinic, P 21 /c

  • a = 16.1822 (7) Å

  • b = 13.5864 (7) Å

  • c = 7.5989 (2) Å

  • β = 91.123 (3)°

  • V = 1670.36 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 173 K

  • 0.40 × 0.22 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.538, Tmax = 0.764

  • 14366 measured reflections

  • 3803 independent reflections

  • 3252 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.06

  • 3803 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Similar to bis-pyridyl hydrazones derivatives, pyridine-2-carboxaldehyde acyl (aroyl) hydrazones are able to undergo configurational (E/Z) isomerization and constitutional changes as well as their structure allows them to coordinate to metallic centers by a tridentade NNO binding site (Chaur et al., 2011). Therefore, the C=N bond of these hydrazones can be used in double dynamic processes of interest for information storage (Lehn, 2006; Kay et al., 2007). The configurational dynamics of these compounds give access to short term photoactivated metastable states. On the other hand, they can undergo constitutional dynamics by constituent exchange allowing long term storage of information (Kandel, 2001).

Thus the pyridyl-acyl hydrazones are appealing compounds for the design of systems exhibiting multiple states and interconversion processes that involve configurational/constitutional changes, as well as metal coordination (Ma et al., 2011). These features together with increasing time scales being of interest for the development of both short-term and long-term molecular information storage and processing devices that may be addressed by orthogonal transformations involving either physical stimuli (light, heat; see Hirose, 2010) or chemical effectors (amino components or metal cations).

In this regard our group focuses on the design of bis-pyridyl and pyridyl-acyl hydrazones, as the title compound (Fig. 1), for the implementation of dynamic systems exhibiting reversible multiplex states for information storage (Moreno-Fuquen et al., 2012). The new complex is based on a ligand for which the structure has been previously established (Sangeetha, Pal & Pal, 2000), as well as a Cu(II) complex (Sangeetha, Pal, Anson et al., 2000).

The title complex exhibits a distorted five-coordinated square-pyramidal disposition (Fig. 2). The Schiff base ligand is not planar (Fig. 3), resulting in a dihedral angle between the planes of the aromatic and pyridyl rings of 4.61 (8)°, while the free ligand is planar (Sangeetha, Pal & Pal, 2000). The molecules stack forming columns along the [001] direction by intermolecular hydrogen bonds with a distance N3—H3···Cl2 = 3.199 (2) Å. Also it is observed a weak ππ slipped stacking interaction between the aromatic rings, with separations between ring centroids of 3.8075 (1) Å (Fig. 4).

Related literature top

For related structures, see: Moreno-Fuquen et al. (2012); Chaur et al. (2011); Ma et al. (2011). For the structure of the ligand and its complex with CuCl2, see: Sangeetha, Pal & Pal (2000); Sangeetha, Pal, Anson et al. (2000). For the design of molecular dynamic systems, see: Hirose (2010); Lehn (2006). For the synthetic principles of compounds exhibiting dynamic properties, see Kay et al. (2007). For information storage, see: Kandel (2001).

Experimental top

(E)-4-(Dimethylamino)-N'-(pyridin-2-ylmethylene)benzohydrazide: 2-pyridinecarboxaldehyde (1.0 equivalent) was added to an ethanol solution of 4-(dimethylamino)benzohydrazine (1.0 equiv.) and a trace amount of glacial acetic acid. The reaction mixture was refluxed for three hours, then the precipitate was collected in a Büchner funnel and recrystallized from ethanol affording the ligand in a 90% yield.

[Zn(C15H16N4O)Cl2]: Two hot ethanolic solutions of the previously prepared Schiff base ligand and ZnCl2 in stoichiometric proportions were mixed and then allowed to cool. The complex salt crystallized out. Then the product was recrystallized from ethanol. Crystals suitable for X-ray diffraction were obtained by slow diffusion of methanol over a DMSO solution of the zinc complex.

Refinement top

All H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.93 (aromatic CH) or 0.96 Å (methyl), and refined as riding with displacement parameters calculated as Uiso(H) = xUeq(carrier C) where x = 1.2 (aromatic CH) or 1.5 (methyl).

Structure description top

Similar to bis-pyridyl hydrazones derivatives, pyridine-2-carboxaldehyde acyl (aroyl) hydrazones are able to undergo configurational (E/Z) isomerization and constitutional changes as well as their structure allows them to coordinate to metallic centers by a tridentade NNO binding site (Chaur et al., 2011). Therefore, the C=N bond of these hydrazones can be used in double dynamic processes of interest for information storage (Lehn, 2006; Kay et al., 2007). The configurational dynamics of these compounds give access to short term photoactivated metastable states. On the other hand, they can undergo constitutional dynamics by constituent exchange allowing long term storage of information (Kandel, 2001).

Thus the pyridyl-acyl hydrazones are appealing compounds for the design of systems exhibiting multiple states and interconversion processes that involve configurational/constitutional changes, as well as metal coordination (Ma et al., 2011). These features together with increasing time scales being of interest for the development of both short-term and long-term molecular information storage and processing devices that may be addressed by orthogonal transformations involving either physical stimuli (light, heat; see Hirose, 2010) or chemical effectors (amino components or metal cations).

In this regard our group focuses on the design of bis-pyridyl and pyridyl-acyl hydrazones, as the title compound (Fig. 1), for the implementation of dynamic systems exhibiting reversible multiplex states for information storage (Moreno-Fuquen et al., 2012). The new complex is based on a ligand for which the structure has been previously established (Sangeetha, Pal & Pal, 2000), as well as a Cu(II) complex (Sangeetha, Pal, Anson et al., 2000).

The title complex exhibits a distorted five-coordinated square-pyramidal disposition (Fig. 2). The Schiff base ligand is not planar (Fig. 3), resulting in a dihedral angle between the planes of the aromatic and pyridyl rings of 4.61 (8)°, while the free ligand is planar (Sangeetha, Pal & Pal, 2000). The molecules stack forming columns along the [001] direction by intermolecular hydrogen bonds with a distance N3—H3···Cl2 = 3.199 (2) Å. Also it is observed a weak ππ slipped stacking interaction between the aromatic rings, with separations between ring centroids of 3.8075 (1) Å (Fig. 4).

For related structures, see: Moreno-Fuquen et al. (2012); Chaur et al. (2011); Ma et al. (2011). For the structure of the ligand and its complex with CuCl2, see: Sangeetha, Pal & Pal (2000); Sangeetha, Pal, Anson et al. (2000). For the design of molecular dynamic systems, see: Hirose (2010); Lehn (2006). For the synthetic principles of compounds exhibiting dynamic properties, see Kay et al. (2007). For information storage, see: Kandel (2001).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthetic route for the title complex.
[Figure 2] Fig. 2. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. Molecular structure of the title compound showing in light blue the dihedral angle formed between the aromatic and pyridyl rings.
[Figure 4] Fig. 4. Stacking of the molecules forming a column along the [001] direction.
Dichlorido{(E)-4-dimethylamino-N'-[(pyridin-2-yl)methylidene- κN]benzohydrazide-κO}zinc top
Crystal data top
[ZnCl2(C15H16N4O)]F(000) = 824
Mr = 404.59Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18477 reflections
a = 16.1822 (7) Åθ = 1.0–27.5°
b = 13.5864 (7) ŵ = 1.80 mm1
c = 7.5989 (2) ÅT = 173 K
β = 91.123 (3)°Plate, orange
V = 1670.36 (12) Å30.40 × 0.22 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3803 independent reflections
Radiation source: fine-focus sealed tube3252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 1820
Tmin = 0.538, Tmax = 0.764k = 1716
14366 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.7957P]
where P = (Fo2 + 2Fc2)/3
3803 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.74 e Å3
0 constraints
Crystal data top
[ZnCl2(C15H16N4O)]V = 1670.36 (12) Å3
Mr = 404.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1822 (7) ŵ = 1.80 mm1
b = 13.5864 (7) ÅT = 173 K
c = 7.5989 (2) Å0.40 × 0.22 × 0.10 mm
β = 91.123 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3803 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
3252 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.764Rint = 0.055
14366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
3803 reflectionsΔρmin = 0.74 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00605 (14)0.89834 (18)0.1655 (3)0.0286 (5)
H1A0.00630.96670.17080.034*
C20.06416 (14)0.85138 (19)0.0983 (3)0.0307 (5)
H2A0.11010.88750.06080.037*
C30.06401 (14)0.75050 (19)0.0887 (3)0.0291 (5)
H3A0.10980.71720.04280.035*
C40.00513 (13)0.69839 (17)0.1480 (3)0.0241 (5)
H4A0.00640.63000.14220.029*
C50.07173 (12)0.75049 (16)0.2157 (3)0.0206 (4)
C60.14641 (13)0.70244 (16)0.2877 (3)0.0223 (4)
H6A0.15220.63440.29030.027*
C70.32992 (13)0.79835 (16)0.4744 (3)0.0219 (4)
C80.40823 (13)0.76645 (17)0.5528 (3)0.0226 (4)
C90.42999 (13)0.66764 (18)0.5805 (3)0.0250 (5)
H9A0.39250.61830.55020.030*
C100.50558 (14)0.64279 (19)0.6515 (3)0.0284 (5)
H10A0.51820.57680.66970.034*
C110.56503 (13)0.71553 (19)0.6978 (3)0.0256 (5)
C120.54238 (14)0.81434 (19)0.6719 (3)0.0282 (5)
H12A0.57940.86400.70320.034*
C130.46628 (13)0.83866 (18)0.6010 (3)0.0270 (5)
H13A0.45300.90470.58450.032*
C140.70184 (15)0.7651 (2)0.8079 (3)0.0408 (7)
H14A0.71020.80670.70770.061*
H14B0.75310.73410.84140.061*
H14C0.68250.80400.90420.061*
C150.65998 (16)0.5884 (2)0.8059 (4)0.0396 (6)
H15A0.62120.56440.88970.059*
H15B0.71490.58430.85520.059*
H15C0.65640.54920.70090.059*
N10.07305 (11)0.84965 (14)0.2226 (2)0.0232 (4)
N20.20292 (10)0.76034 (14)0.3464 (2)0.0216 (4)
N30.27499 (11)0.72631 (14)0.4181 (2)0.0232 (4)
H3B0.28570.66450.42780.028*
N40.64094 (12)0.69027 (16)0.7633 (3)0.0328 (5)
O10.31050 (10)0.88558 (12)0.4524 (2)0.0295 (4)
Cl10.13487 (3)1.01282 (4)0.52926 (7)0.02717 (13)
Cl20.23435 (3)0.98562 (4)0.07806 (7)0.02852 (14)
Zn10.189086 (15)0.914569 (19)0.32708 (3)0.02243 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (12)0.0245 (13)0.0343 (12)0.0053 (9)0.0051 (9)0.0028 (9)
C20.0244 (12)0.0315 (14)0.0360 (12)0.0074 (10)0.0066 (9)0.0026 (10)
C30.0229 (11)0.0323 (14)0.0317 (11)0.0025 (10)0.0045 (9)0.0051 (10)
C40.0247 (11)0.0212 (12)0.0263 (10)0.0005 (9)0.0021 (8)0.0015 (9)
C50.0212 (10)0.0209 (11)0.0196 (9)0.0010 (9)0.0001 (8)0.0004 (8)
C60.0223 (11)0.0193 (11)0.0252 (10)0.0011 (9)0.0027 (8)0.0010 (8)
C70.0212 (10)0.0224 (12)0.0221 (10)0.0005 (9)0.0006 (8)0.0015 (8)
C80.0179 (10)0.0283 (12)0.0216 (10)0.0019 (9)0.0004 (8)0.0007 (9)
C90.0214 (11)0.0264 (12)0.0271 (10)0.0007 (9)0.0012 (8)0.0005 (9)
C100.0245 (12)0.0259 (13)0.0345 (12)0.0054 (9)0.0036 (9)0.0031 (10)
C110.0181 (10)0.0376 (14)0.0210 (10)0.0018 (10)0.0001 (8)0.0021 (9)
C120.0218 (11)0.0338 (13)0.0290 (11)0.0046 (10)0.0028 (9)0.0015 (10)
C130.0237 (11)0.0275 (13)0.0297 (11)0.0023 (10)0.0024 (9)0.0032 (9)
C140.0225 (12)0.061 (2)0.0390 (14)0.0028 (12)0.0078 (10)0.0057 (13)
C150.0289 (13)0.0446 (17)0.0448 (14)0.0154 (12)0.0089 (11)0.0008 (12)
N10.0226 (9)0.0215 (10)0.0252 (9)0.0005 (8)0.0012 (7)0.0009 (7)
N20.0184 (9)0.0235 (10)0.0228 (8)0.0015 (7)0.0003 (7)0.0018 (7)
N30.0183 (9)0.0211 (10)0.0299 (9)0.0039 (8)0.0050 (7)0.0009 (7)
N40.0207 (10)0.0404 (13)0.0371 (10)0.0009 (9)0.0056 (8)0.0058 (9)
O10.0233 (8)0.0224 (9)0.0424 (9)0.0016 (7)0.0081 (7)0.0008 (7)
Cl10.0256 (3)0.0239 (3)0.0319 (3)0.0018 (2)0.0017 (2)0.0059 (2)
Cl20.0302 (3)0.0234 (3)0.0321 (3)0.0013 (2)0.0022 (2)0.0035 (2)
Zn10.02174 (15)0.01823 (15)0.02718 (15)0.00072 (10)0.00272 (10)0.00081 (9)
Geometric parameters (Å, º) top
C1—N11.335 (3)C10—H10A0.9300
C1—C21.391 (3)C11—N41.360 (3)
C1—H1A0.9300C11—C121.404 (3)
C2—C31.373 (4)C12—C131.375 (3)
C2—H2A0.9300C12—H12A0.9300
C3—C41.392 (3)C13—H13A0.9300
C3—H3A0.9300C14—N41.452 (3)
C4—C51.380 (3)C14—H14A0.9600
C4—H4A0.9300C14—H14B0.9600
C5—N11.348 (3)C14—H14C0.9600
C5—C61.470 (3)C15—N41.453 (3)
C6—N21.280 (3)C15—H15A0.9600
C6—H6A0.9300C15—H15B0.9600
C7—O11.237 (3)C15—H15C0.9600
C7—N31.384 (3)N1—Zn12.2080 (18)
C7—C81.456 (3)N2—N31.358 (2)
C8—C131.402 (3)N2—Zn12.1122 (19)
C8—C91.403 (3)N3—H3B0.8600
C9—C101.369 (3)O1—Zn12.2019 (15)
C9—H9A0.9300Cl1—Zn12.2282 (6)
C10—C111.419 (3)Cl2—Zn12.2590 (6)
N1—C1—C2123.0 (2)C12—C13—H13A119.2
N1—C1—H1A118.5C8—C13—H13A119.2
C2—C1—H1A118.5N4—C14—H14A109.5
C3—C2—C1118.4 (2)N4—C14—H14B109.5
C3—C2—H2A120.8H14A—C14—H14B109.5
C1—C2—H2A120.8N4—C14—H14C109.5
C2—C3—C4119.5 (2)H14A—C14—H14C109.5
C2—C3—H3A120.2H14B—C14—H14C109.5
C4—C3—H3A120.2N4—C15—H15A109.5
C5—C4—C3118.5 (2)N4—C15—H15B109.5
C5—C4—H4A120.8H15A—C15—H15B109.5
C3—C4—H4A120.8N4—C15—H15C109.5
N1—C5—C4122.6 (2)H15A—C15—H15C109.5
N1—C5—C6114.65 (18)H15B—C15—H15C109.5
C4—C5—C6122.8 (2)C1—N1—C5118.04 (19)
N2—C6—C5115.7 (2)C1—N1—Zn1126.75 (16)
N2—C6—H6A122.2C5—N1—Zn1115.20 (14)
C5—C6—H6A122.2C6—N2—N3122.18 (19)
O1—C7—N3118.41 (19)C6—N2—Zn1120.75 (15)
O1—C7—C8123.9 (2)N3—N2—Zn1117.03 (14)
N3—C7—C8117.7 (2)N2—N3—C7115.11 (18)
C13—C8—C9117.7 (2)N2—N3—H3B122.4
C13—C8—C7118.2 (2)C7—N3—H3B122.4
C9—C8—C7124.1 (2)C11—N4—C14120.9 (2)
C10—C9—C8121.0 (2)C11—N4—C15120.5 (2)
C10—C9—H9A119.5C14—N4—C15118.4 (2)
C8—C9—H9A119.5C7—O1—Zn1116.88 (14)
C9—C10—C11121.5 (2)N2—Zn1—O172.54 (6)
C9—C10—H10A119.3N2—Zn1—N173.56 (7)
C11—C10—H10A119.3O1—Zn1—N1146.03 (7)
N4—C11—C12121.6 (2)N2—Zn1—Cl1126.09 (5)
N4—C11—C10121.2 (2)O1—Zn1—Cl199.73 (5)
C12—C11—C10117.2 (2)N1—Zn1—Cl198.25 (5)
C13—C12—C11120.9 (2)N2—Zn1—Cl2116.52 (5)
C13—C12—H12A119.5O1—Zn1—Cl297.90 (5)
C11—C12—H12A119.5N1—Zn1—Cl299.04 (5)
C12—C13—C8121.6 (2)Cl1—Zn1—Cl2117.39 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl2i0.862.493.199 (2)140
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C15H16N4O)]
Mr404.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.1822 (7), 13.5864 (7), 7.5989 (2)
β (°) 91.123 (3)
V3)1670.36 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.40 × 0.22 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.538, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
14366, 3803, 3252
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.06
No. of reflections3803
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.74

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The author is grateful to the Service de radiocristallographie de l'Institut de Chimie (Strasbourg) and to the Universidad del Valle in Cali, Colombia, for partial financial support.

References

First citationChaur, M. N., Collado, D. & Lehn, J.-M. (2011). Chem. Eur. J. 17, 248–258.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHirose, J. (2010). J. Incl. Phenom. Macrocycl. Chem. 68, 1–24.  Web of Science CrossRef CAS Google Scholar
First citationKandel, E. R. (2001). Science, 294, 1030–1038.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKay, E. R., Leigh, D. A. & Zerbetto, F. (2007). Angew. Chem. Int. Ed. 46, 72–191.  Web of Science CrossRef CAS Google Scholar
First citationLehn, J.-M. (2006). Chem. Eur. J. 12, 5910–5915.  CrossRef PubMed CAS Google Scholar
First citationMa, J., Fan, W.-Z. & Lin, L.-R. (2011). Acta Cryst. E67, m624–m625.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Chaur, M. N., Romero, E. L., Zuluaga, F. & Ellena, J. (2012). Acta Cryst. E68, o2131.  CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSangeetha, N. R., Pal, S., Anson, C. E., Powell, A. K. & Pal, S. (2000). Inorg. Chem. Commun. 3, 415–419.  Web of Science CSD CrossRef CAS Google Scholar
First citationSangeetha, N. R., Pal, S. & Pal, A. (2000). Polyhedron, 19, 2713–2717.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds