metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-(S,S)-Bis(1-ferrocenylbut-3-en­yl) ether

aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
*Correspondence e-mail: wangjianjun1030@sohu.com

(Received 13 November 2012; accepted 22 November 2012; online 8 December 2012)

The title complex, [Fe2(C5H5)2(C18H20O)], formed by dehydration of 1-ferrocenylbut-3-en-1-ol, crystallizes as a racemic compound. The central C—O—C fragment, in which the C atoms are the chiral centers, is characterized by an angle of 116.26 (10)° at the O atom. One ferrocene group shows a staggered conformation whereas the other shows an eclipsed conformation.

Related literature

For general information on ferrocenyl ethers, see: Ferguson et al. (1996[Ferguson, G., Trotter, J., Glidewell, C. & Zakaria, C. M. (1996). Acta Cryst. C52, 775-777.]); Matković-Čalogović et al. (1993[Matković-Čalogović, D., Rapić, V. & Kovač, S. (1993). Acta Cryst. C49, 226-228.]); Gasser et al. (2007[Gasser, G., Fischmann, A. J., Forsyth, C. M. & Spiccia, L. (2007). J. Organomet. Chem. 692, 3835-3840.]). For applications of dinuclear ferrocenyl derivatives, see: Gao et al. (2011[Gao, Y., Li, H.-D., Ke, C.-F., Xie, L.-L., Wei, B. & Yuan, Y.-F. (2011). Appl. Organomet. Chem. 25, 407-411.]); Locke et al. (2001[Locke, A. J., Jones, C. & Richards, C. J. (2001). J. Organomet. Chem. 637-639, 669-676.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C5H5)2(C18H20O)]

  • Mr = 494.22

  • Triclinic, [P \overline 1]

  • a = 9.7865 (15) Å

  • b = 9.8274 (15) Å

  • c = 12.1816 (19) Å

  • α = 99.405 (2)°

  • β = 94.976 (2)°

  • γ = 101.657 (2)°

  • V = 1123.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 150 K

  • 0.50 × 0.25 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.561, Tmax = 0.736

  • 7657 measured reflections

  • 5352 independent reflections

  • 4759 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.100

  • S = 0.81

  • 5352 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to their high iron content, bisferrocenyl derivatives have a wider range of applications in high burning rate catalysts than mononuclear ferrocenyl ones (Gao et al., 2011; Locke et al., 2001). Most of bisferrocenyl ethers are synthesized from alcohols with H2SO4 or Al2O3 as catalysts in the environment of high temperature and vacuum (Ferguson et al., 1996; Matković-Čalogović et al., 1993). As part of our ongoing program, the title compound was prepared from 1-ferrocenyl-3-buten-1-ol and dicyclohexylcarbodiimide (DCC), with 4-dimethylaminopyridine (DMAP) as catalyst, at room temperature, and studied by X-ray crystallography. The complex crystallizes with a triclinic unit cell in the P1 space group. A view of the asymmetric unit is given in Fig. 1 and the crystal structure in Fig. 2. Structure solution and refinement showed that the racemic form was crystallized with both chiral centers having the same configuration.

The principal molecular features are the structure of the central C—O—C bridge and the conformations of the ferrocene fragments. The C—O bond lengths are 1.4399 (15) and 1.4430 (15) Å, and the C—O—C angle is 116.26 (10)°, while this angle is found between 113.7 (9) and 112.8 (9)° in the crystal structure of bis(ferrocenylmethyl)ether (Gasser et al., 2007). The cyclopentadienyl rings are twisted from the eclipsed conformation: the mean torsion angles CnCg1—Cg2—Cm and CpCg3—Cg4—Cq (n = 1···5, m = n + 5; p = 11···15, q = p + 5; the Cg pseudoatoms are the centroids of the four rings), for the ferrocene groups defined by Fe1 and Fe2, are 29.3 (1) and 6.1 (1)°, respectively.

Related literature top

For general information on ferrocenyl ethers, see: Ferguson et al. (1996); Matković-Čalogović et al. (1993); Gasser et al. (2007). For applications of dinuclear ferrocenyl derivatives, see: Gao et al. (2011); Locke et al. (2001).

Experimental top

A solution of 1-ferrocenyl-3-buten-1-ol (5.862 g, 34.89 mmol), DCC (9.597 g, 46.52 mmol) and DMAP (2.842 g, 23.26 mmol) in CH2Cl2 (200 ml) was stirred at room temperature for 36 h. The solution was filtered off and the filtrate was washed with CH2Cl2. The organic phases were combined and dried to give a viscous yellow oil, which was chromatographed over a column of silica gel using petroleum ether as the eluent. Yellow crystals of the title compound were obtained by slow evaporation of a solution in dichloromethane/petroleum ether (60–90°C). 1H NMR (400 MHz, CDCl3) δ 6.17–5.79 (m, 2H, H23A and H27A), 5.26–4.96 (m, 4H, H24A–H24B and H28A–H28B), 4.37 (s, 2H, H21A and H25A), 4.46–3.90 (m, 18H, H2–H10 and H12–H20), 2.84–2.46 (m, 4H, H22A–H22B and H26A–H26B). HRMS (ESI): calcd for C28H30Fe2O: 494.0990, found 494.0981.

Refinement top

H atoms were placed in calculated positions and thereafter treated as riding atoms, with C—H = 0.98 (Cp rings and methine CH), 0.93 (vinyl CH), and 0.97 Å (methylene CH2). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(carrier C).

Structure description top

Due to their high iron content, bisferrocenyl derivatives have a wider range of applications in high burning rate catalysts than mononuclear ferrocenyl ones (Gao et al., 2011; Locke et al., 2001). Most of bisferrocenyl ethers are synthesized from alcohols with H2SO4 or Al2O3 as catalysts in the environment of high temperature and vacuum (Ferguson et al., 1996; Matković-Čalogović et al., 1993). As part of our ongoing program, the title compound was prepared from 1-ferrocenyl-3-buten-1-ol and dicyclohexylcarbodiimide (DCC), with 4-dimethylaminopyridine (DMAP) as catalyst, at room temperature, and studied by X-ray crystallography. The complex crystallizes with a triclinic unit cell in the P1 space group. A view of the asymmetric unit is given in Fig. 1 and the crystal structure in Fig. 2. Structure solution and refinement showed that the racemic form was crystallized with both chiral centers having the same configuration.

The principal molecular features are the structure of the central C—O—C bridge and the conformations of the ferrocene fragments. The C—O bond lengths are 1.4399 (15) and 1.4430 (15) Å, and the C—O—C angle is 116.26 (10)°, while this angle is found between 113.7 (9) and 112.8 (9)° in the crystal structure of bis(ferrocenylmethyl)ether (Gasser et al., 2007). The cyclopentadienyl rings are twisted from the eclipsed conformation: the mean torsion angles CnCg1—Cg2—Cm and CpCg3—Cg4—Cq (n = 1···5, m = n + 5; p = 11···15, q = p + 5; the Cg pseudoatoms are the centroids of the four rings), for the ferrocene groups defined by Fe1 and Fe2, are 29.3 (1) and 6.1 (1)°, respectively.

For general information on ferrocenyl ethers, see: Ferguson et al. (1996); Matković-Čalogović et al. (1993); Gasser et al. (2007). For applications of dinuclear ferrocenyl derivatives, see: Gao et al. (2011); Locke et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal structure of the title compound.
rac-(S,S)-Bis(1-ferrocenylbut-3-enyl) ether top
Crystal data top
[Fe2(C5H5)2(C18H20O)]Z = 2
Mr = 494.22F(000) = 516
Triclinic, P1Dx = 1.461 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7865 (15) ÅCell parameters from 4332 reflections
b = 9.8274 (15) Åθ = 3.0–28.3°
c = 12.1816 (19) ŵ = 1.31 mm1
α = 99.405 (2)°T = 150 K
β = 94.976 (2)°Block, yellow
γ = 101.657 (2)°0.50 × 0.25 × 0.25 mm
V = 1123.3 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5352 independent reflections
Radiation source: fine-focus sealed tube4759 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 28.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 912
Tmin = 0.561, Tmax = 0.736k = 138
7657 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
5352 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.37 e Å3
0 constraints
Crystal data top
[Fe2(C5H5)2(C18H20O)]γ = 101.657 (2)°
Mr = 494.22V = 1123.3 (3) Å3
Triclinic, P1Z = 2
a = 9.7865 (15) ÅMo Kα radiation
b = 9.8274 (15) ŵ = 1.31 mm1
c = 12.1816 (19) ÅT = 150 K
α = 99.405 (2)°0.50 × 0.25 × 0.25 mm
β = 94.976 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5352 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4759 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 0.736Rint = 0.014
7657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.81Δρmax = 0.36 e Å3
5352 reflectionsΔρmin = 0.37 e Å3
280 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.20476 (2)0.792940 (19)0.468598 (15)0.01300 (8)
Fe20.30704 (2)0.791879 (19)0.022770 (16)0.01411 (8)
O10.18694 (10)0.57498 (10)0.25064 (7)0.0148 (2)
C10.04463 (15)0.70792 (14)0.33824 (10)0.0142 (3)
C20.13856 (16)0.82818 (16)0.31344 (12)0.0169 (3)
H2A0.11240.91490.29780.020*
C30.27661 (16)0.80081 (17)0.31594 (12)0.0196 (3)
H3A0.36120.86480.30190.023*
C40.26917 (17)0.66318 (18)0.34216 (13)0.0202 (3)
H4A0.34790.61620.34970.024*
C50.12676 (15)0.60656 (15)0.35574 (11)0.0172 (3)
H5A0.09130.51410.37520.021*
C60.13881 (17)0.91467 (17)0.59802 (13)0.0207 (3)
H6A0.05360.95250.59420.025*
C70.27384 (17)0.98277 (15)0.57716 (12)0.0217 (3)
H7A0.29781.07580.55580.026*
C80.36802 (16)0.89279 (16)0.59166 (12)0.0204 (3)
H8A0.46810.91280.58220.024*
C90.29131 (17)0.76805 (17)0.62240 (12)0.0201 (3)
H9A0.32920.68710.63780.024*
C100.14978 (15)0.78253 (15)0.62714 (11)0.0184 (3)
H10A0.07300.71280.64600.022*
C110.25795 (15)0.71814 (15)0.12099 (11)0.0158 (3)
C120.40690 (15)0.70386 (16)0.09872 (11)0.0184 (3)
H12A0.47770.61490.08600.022*
C130.43463 (17)0.84011 (18)0.09606 (12)0.0236 (3)
H13A0.52750.86130.08190.028*
C140.30363 (19)0.94001 (17)0.11764 (13)0.0241 (3)
H14A0.29051.04220.12090.029*
C150.19508 (16)0.86556 (15)0.13278 (11)0.0194 (3)
H15A0.09410.90790.14810.023*
C160.22515 (19)0.68955 (18)0.15448 (13)0.0215 (3)
H16A0.16630.62040.15010.026*
C170.37461 (17)0.65922 (17)0.17461 (12)0.0214 (3)
H17A0.43670.56510.18640.026*
C180.41885 (18)0.78905 (18)0.17327 (12)0.0231 (3)
H18A0.51620.79980.18490.028*
C190.29629 (18)0.89995 (16)0.15316 (12)0.0231 (3)
H19A0.29451.00090.14780.028*
C200.17646 (17)0.83925 (17)0.14101 (12)0.0228 (3)
H20A0.07810.89110.12580.027*
C210.11241 (14)0.68741 (14)0.33961 (11)0.0143 (3)
H21A0.14120.77540.33110.017*
C220.16178 (15)0.64072 (15)0.44594 (11)0.0168 (3)
H22A0.13550.55200.45220.020*
H22B0.11330.71060.51040.020*
C230.31686 (15)0.62190 (15)0.44919 (12)0.0185 (3)
H23A0.37670.56920.38650.022*
C240.37406 (17)0.67602 (17)0.53626 (13)0.0242 (3)
H24A0.31690.72920.60010.029*
H24B0.47130.66080.53340.029*
C250.18233 (14)0.60277 (14)0.13816 (10)0.0139 (3)
H25A0.08420.63120.12480.017*
C260.25030 (14)0.46036 (14)0.06301 (11)0.0165 (3)
H26A0.34500.42960.08080.020*
H26B0.25710.47250.01460.020*
C270.17049 (16)0.34783 (16)0.07565 (12)0.0203 (3)
H27A0.14370.33500.14770.024*
C280.13596 (16)0.26558 (16)0.00995 (13)0.0235 (3)
H28A0.16140.27610.08290.028*
H28B0.08620.19730.00290.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01460 (12)0.01352 (13)0.00977 (12)0.00283 (9)0.00164 (8)0.00097 (8)
Fe20.01641 (13)0.01587 (13)0.00999 (12)0.00418 (9)0.00097 (8)0.00283 (8)
O10.0184 (5)0.0151 (5)0.0085 (4)0.0002 (4)0.0016 (3)0.0023 (3)
C10.0170 (6)0.0169 (6)0.0073 (6)0.0030 (5)0.0012 (5)0.0007 (5)
C20.0188 (7)0.0196 (7)0.0113 (6)0.0021 (5)0.0004 (5)0.0038 (5)
C30.0178 (7)0.0272 (8)0.0125 (6)0.0031 (6)0.0005 (5)0.0033 (5)
C40.0193 (7)0.0255 (8)0.0147 (7)0.0081 (6)0.0017 (5)0.0019 (6)
C50.0216 (7)0.0160 (6)0.0117 (6)0.0036 (5)0.0030 (5)0.0010 (5)
C60.0239 (8)0.0221 (7)0.0144 (7)0.0071 (6)0.0004 (6)0.0021 (5)
C70.0311 (8)0.0147 (6)0.0159 (7)0.0009 (6)0.0007 (6)0.0011 (5)
C80.0187 (7)0.0225 (7)0.0151 (7)0.0005 (6)0.0028 (5)0.0013 (5)
C90.0223 (7)0.0216 (7)0.0143 (7)0.0037 (6)0.0047 (5)0.0027 (5)
C100.0200 (7)0.0213 (7)0.0107 (6)0.0007 (6)0.0018 (5)0.0007 (5)
C110.0185 (7)0.0181 (7)0.0100 (6)0.0035 (5)0.0012 (5)0.0029 (5)
C120.0180 (7)0.0249 (7)0.0136 (6)0.0062 (6)0.0020 (5)0.0058 (5)
C130.0265 (8)0.0340 (8)0.0152 (7)0.0168 (7)0.0041 (6)0.0052 (6)
C140.0396 (10)0.0197 (7)0.0140 (7)0.0109 (7)0.0003 (6)0.0019 (5)
C150.0260 (8)0.0175 (7)0.0126 (6)0.0026 (6)0.0034 (5)0.0022 (5)
C160.0278 (8)0.0242 (8)0.0151 (7)0.0087 (6)0.0049 (6)0.0062 (6)
C170.0267 (8)0.0247 (7)0.0108 (6)0.0031 (6)0.0007 (5)0.0018 (5)
C180.0255 (8)0.0321 (8)0.0123 (7)0.0083 (7)0.0022 (6)0.0052 (6)
C190.0346 (9)0.0215 (7)0.0155 (7)0.0089 (6)0.0020 (6)0.0072 (5)
C200.0243 (8)0.0269 (8)0.0168 (7)0.0011 (6)0.0029 (6)0.0085 (6)
C210.0144 (6)0.0159 (6)0.0114 (6)0.0024 (5)0.0012 (5)0.0019 (5)
C220.0168 (6)0.0204 (7)0.0121 (6)0.0027 (5)0.0001 (5)0.0027 (5)
C230.0181 (7)0.0189 (7)0.0180 (7)0.0016 (5)0.0017 (5)0.0053 (5)
C240.0234 (8)0.0285 (8)0.0210 (7)0.0043 (6)0.0057 (6)0.0060 (6)
C250.0138 (6)0.0176 (6)0.0089 (6)0.0009 (5)0.0012 (4)0.0032 (5)
C260.0171 (6)0.0174 (6)0.0131 (6)0.0019 (5)0.0009 (5)0.0011 (5)
C270.0250 (7)0.0190 (7)0.0155 (7)0.0038 (6)0.0025 (5)0.0031 (5)
C280.0224 (7)0.0225 (7)0.0244 (8)0.0066 (6)0.0003 (6)0.0003 (6)
Geometric parameters (Å, º) top
Fe1—C22.0504 (14)C9—H9A0.9800
Fe1—C62.0507 (15)C10—H10A0.9800
Fe1—C32.0519 (15)C11—C121.433 (2)
Fe1—C72.0531 (14)C11—C151.433 (2)
Fe1—C82.0574 (15)C11—C251.5055 (19)
Fe1—C92.0605 (15)C12—C131.424 (2)
Fe1—C42.0609 (15)C12—H12A0.9800
Fe1—C102.0622 (14)C13—C141.423 (2)
Fe1—C52.0634 (14)C13—H13A0.9800
Fe1—C12.0691 (13)C14—C151.422 (2)
Fe2—C182.0450 (15)C14—H14A0.9800
Fe2—C152.0460 (14)C15—H15A0.9800
Fe2—C192.0486 (14)C16—C171.423 (2)
Fe2—C142.0500 (15)C16—C201.429 (2)
Fe2—C132.0513 (15)C16—H16A0.9800
Fe2—C172.0517 (15)C17—C181.426 (2)
Fe2—C122.0546 (14)C17—H17A0.9800
Fe2—C202.0549 (15)C18—C191.421 (2)
Fe2—C112.0572 (14)C18—H18A0.9800
Fe2—C162.0613 (16)C19—C201.426 (2)
O1—C211.4399 (15)C19—H19A0.9800
O1—C251.4430 (15)C20—H20A0.9800
C1—C51.4306 (19)C21—C221.5280 (18)
C1—C21.4349 (19)C21—H21A0.9800
C1—C211.5111 (18)C22—C231.4962 (19)
C2—C31.429 (2)C22—H22A0.9700
C2—H2A0.9800C22—H22B0.9700
C3—C41.429 (2)C23—C241.327 (2)
C3—H3A0.9800C23—H23A0.9300
C4—C51.427 (2)C24—H24A0.9300
C4—H4A0.9800C24—H24B0.9300
C5—H5A0.9800C25—C261.5292 (18)
C6—C71.420 (2)C25—H25A0.9800
C6—C101.423 (2)C26—C271.497 (2)
C6—H6A0.9800C26—H26A0.9700
C7—C81.420 (2)C26—H26B0.9700
C7—H7A0.9800C27—C281.323 (2)
C8—C91.426 (2)C27—H27A0.9300
C8—H8A0.9800C28—H28A0.9300
C9—C101.426 (2)C28—H28B0.9300
C2—Fe1—C6113.59 (6)C7—C6—H6A126.1
C2—Fe1—C340.76 (6)C10—C6—H6A126.1
C6—Fe1—C3141.86 (6)Fe1—C6—H6A126.1
C2—Fe1—C7109.54 (6)C8—C7—C6108.42 (13)
C6—Fe1—C740.48 (6)C8—C7—Fe169.96 (8)
C3—Fe1—C7111.39 (6)C6—C7—Fe169.67 (8)
C2—Fe1—C8134.33 (6)C8—C7—H7A125.8
C6—Fe1—C868.19 (6)C6—C7—H7A125.8
C3—Fe1—C8108.04 (6)Fe1—C7—H7A125.8
C7—Fe1—C840.41 (6)C7—C8—C9107.94 (14)
C2—Fe1—C9174.21 (6)C7—C8—Fe169.63 (8)
C6—Fe1—C968.28 (6)C9—C8—Fe169.86 (8)
C3—Fe1—C9134.47 (6)C7—C8—H8A126.0
C7—Fe1—C968.03 (6)C9—C8—H8A126.0
C8—Fe1—C940.52 (6)Fe1—C8—H8A126.0
C2—Fe1—C468.33 (6)C10—C9—C8107.67 (13)
C6—Fe1—C4177.47 (6)C10—C9—Fe169.83 (8)
C3—Fe1—C440.66 (6)C8—C9—Fe169.62 (8)
C7—Fe1—C4141.04 (7)C10—C9—H9A126.2
C8—Fe1—C4111.81 (6)C8—C9—H9A126.2
C9—Fe1—C4109.98 (6)Fe1—C9—H9A126.2
C2—Fe1—C10144.29 (6)C6—C10—C9108.20 (13)
C6—Fe1—C1040.47 (6)C6—C10—Fe169.33 (8)
C3—Fe1—C10174.93 (6)C9—C10—Fe169.70 (8)
C7—Fe1—C1067.82 (6)C6—C10—H10A125.9
C8—Fe1—C1067.96 (6)C9—C10—H10A125.9
C9—Fe1—C1040.47 (6)Fe1—C10—H10A125.9
C4—Fe1—C10137.03 (6)C12—C11—C15106.83 (13)
C2—Fe1—C568.04 (6)C12—C11—C25126.74 (13)
C6—Fe1—C5138.15 (6)C15—C11—C25126.26 (13)
C3—Fe1—C568.21 (6)C12—C11—Fe269.50 (8)
C7—Fe1—C5176.90 (6)C15—C11—Fe269.13 (8)
C8—Fe1—C5142.68 (6)C25—C11—Fe2129.98 (9)
C9—Fe1—C5114.57 (6)C13—C12—C11108.61 (14)
C4—Fe1—C540.49 (6)C13—C12—Fe269.58 (8)
C10—Fe1—C5112.86 (6)C11—C12—Fe269.70 (8)
C2—Fe1—C140.77 (5)C13—C12—H12A125.7
C6—Fe1—C1111.73 (6)C11—C12—H12A125.7
C3—Fe1—C168.73 (6)Fe2—C12—H12A125.7
C7—Fe1—C1136.39 (6)C14—C13—C12107.90 (13)
C8—Fe1—C1174.97 (6)C14—C13—Fe269.65 (9)
C9—Fe1—C1144.45 (6)C12—C13—Fe269.84 (8)
C4—Fe1—C168.51 (6)C14—C13—H13A126.1
C10—Fe1—C1115.48 (6)C12—C13—H13A126.1
C5—Fe1—C140.51 (5)Fe2—C13—H13A126.1
C18—Fe2—C15160.62 (7)C15—C14—C13108.08 (13)
C18—Fe2—C1940.63 (7)C15—C14—Fe269.53 (8)
C15—Fe2—C19124.65 (6)C13—C14—Fe269.74 (9)
C18—Fe2—C14122.93 (6)C15—C14—H14A126.0
C15—Fe2—C1440.63 (6)C13—C14—H14A126.0
C19—Fe2—C14105.68 (6)Fe2—C14—H14A126.0
C18—Fe2—C13105.42 (6)C14—C15—C11108.58 (14)
C15—Fe2—C1368.39 (6)C14—C15—Fe269.84 (8)
C19—Fe2—C13118.15 (6)C11—C15—Fe269.97 (8)
C14—Fe2—C1340.61 (7)C14—C15—H15A125.7
C18—Fe2—C1740.74 (6)C11—C15—H15A125.7
C15—Fe2—C17157.60 (6)Fe2—C15—H15A125.7
C19—Fe2—C1768.19 (6)C17—C16—C20107.58 (14)
C14—Fe2—C17160.82 (7)C17—C16—Fe269.39 (9)
C13—Fe2—C17124.79 (7)C20—C16—Fe269.44 (9)
C18—Fe2—C12119.73 (6)C17—C16—H16A126.2
C15—Fe2—C1268.30 (6)C20—C16—H16A126.2
C19—Fe2—C12153.71 (6)Fe2—C16—H16A126.2
C14—Fe2—C1268.21 (6)C16—C17—C18108.52 (14)
C13—Fe2—C1240.58 (6)C16—C17—Fe270.12 (9)
C17—Fe2—C12108.74 (6)C18—C17—Fe269.38 (8)
C18—Fe2—C2068.52 (6)C16—C17—H17A125.7
C15—Fe2—C20108.43 (6)C18—C17—H17A125.7
C19—Fe2—C2040.68 (6)Fe2—C17—H17A125.7
C14—Fe2—C20119.83 (7)C19—C18—C17107.66 (14)
C13—Fe2—C20153.74 (7)C19—C18—Fe269.82 (9)
C17—Fe2—C2068.18 (6)C17—C18—Fe269.88 (8)
C12—Fe2—C20164.60 (6)C19—C18—H18A126.2
C18—Fe2—C11155.89 (7)C17—C18—H18A126.2
C15—Fe2—C1140.89 (6)Fe2—C18—H18A126.2
C19—Fe2—C11162.99 (7)C18—C19—C20108.30 (14)
C14—Fe2—C1168.73 (6)C18—C19—Fe269.55 (9)
C13—Fe2—C1168.77 (6)C20—C19—Fe269.90 (8)
C17—Fe2—C11122.23 (6)C18—C19—H19A125.9
C12—Fe2—C1140.80 (5)C20—C19—H19A125.9
C20—Fe2—C11126.96 (6)Fe2—C19—H19A125.9
C18—Fe2—C1668.56 (7)C19—C20—C16107.94 (15)
C15—Fe2—C16122.45 (7)C19—C20—Fe269.42 (9)
C19—Fe2—C1668.37 (6)C16—C20—Fe269.93 (9)
C14—Fe2—C16156.05 (8)C19—C20—H20A126.0
C13—Fe2—C16162.95 (8)C16—C20—H20A126.0
C17—Fe2—C1640.49 (6)Fe2—C20—H20A126.0
C12—Fe2—C16127.34 (6)O1—C21—C1110.91 (10)
C20—Fe2—C1640.63 (6)O1—C21—C22103.96 (10)
C11—Fe2—C16109.82 (6)C1—C21—C22113.26 (11)
C21—O1—C25116.26 (10)O1—C21—H21A109.5
C5—C1—C2106.88 (12)C1—C21—H21A109.5
C5—C1—C21126.00 (13)C22—C21—H21A109.5
C2—C1—C21127.05 (12)C23—C22—C21113.86 (11)
C5—C1—Fe169.53 (8)C23—C22—H22A108.8
C2—C1—Fe168.92 (8)C21—C22—H22A108.8
C21—C1—Fe1129.00 (9)C23—C22—H22B108.8
C3—C2—C1108.67 (13)C21—C22—H22B108.8
C3—C2—Fe169.68 (8)H22A—C22—H22B107.7
C1—C2—Fe170.32 (8)C24—C23—C22123.85 (14)
C3—C2—H2A125.7C24—C23—H23A118.1
C1—C2—H2A125.7C22—C23—H23A118.1
Fe1—C2—H2A125.7C23—C24—H24A120.0
C2—C3—C4107.79 (13)C23—C24—H24B120.0
C2—C3—Fe169.56 (8)H24A—C24—H24B120.0
C4—C3—Fe170.00 (8)O1—C25—C11110.74 (10)
C2—C3—H3A126.1O1—C25—C26104.26 (10)
C4—C3—H3A126.1C11—C25—C26113.26 (11)
Fe1—C3—H3A126.1O1—C25—H25A109.5
C5—C4—C3107.79 (13)C11—C25—H25A109.5
C5—C4—Fe169.85 (8)C26—C25—H25A109.5
C3—C4—Fe169.33 (8)C27—C26—C25113.16 (11)
C5—C4—H4A126.1C27—C26—H26A108.9
C3—C4—H4A126.1C25—C26—H26A108.9
Fe1—C4—H4A126.1C27—C26—H26B108.9
C4—C5—C1108.87 (13)C25—C26—H26B108.9
C4—C5—Fe169.66 (8)H26A—C26—H26B107.8
C1—C5—Fe169.96 (8)C28—C27—C26123.68 (14)
C4—C5—H5A125.6C28—C27—H27A118.2
C1—C5—H5A125.6C26—C27—H27A118.2
Fe1—C5—H5A125.6C27—C28—H28A120.0
C7—C6—C10107.77 (13)C27—C28—H28B120.0
C7—C6—Fe169.85 (8)H28A—C28—H28B120.0
C10—C6—Fe170.20 (8)

Experimental details

Crystal data
Chemical formula[Fe2(C5H5)2(C18H20O)]
Mr494.22
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.7865 (15), 9.8274 (15), 12.1816 (19)
α, β, γ (°)99.405 (2), 94.976 (2), 101.657 (2)
V3)1123.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.50 × 0.25 × 0.25
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.561, 0.736
No. of measured, independent and
observed [I > 2σ(I)] reflections
7657, 5352, 4759
Rint0.014
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.100, 0.81
No. of reflections5352
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.37

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20874068), the Natural Science Foundation of Jiangsu Province (No. BK2009584) and the Undergraduate Innovating Experimentation Project of Soochow University (No. 5731510110).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerguson, G., Trotter, J., Glidewell, C. & Zakaria, C. M. (1996). Acta Cryst. C52, 775–777.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGao, Y., Li, H.-D., Ke, C.-F., Xie, L.-L., Wei, B. & Yuan, Y.-F. (2011). Appl. Organomet. Chem. 25, 407–411.  Web of Science CSD CrossRef CAS Google Scholar
First citationGasser, G., Fischmann, A. J., Forsyth, C. M. & Spiccia, L. (2007). J. Organomet. Chem. 692, 3835–3840.  Web of Science CSD CrossRef CAS Google Scholar
First citationLocke, A. J., Jones, C. & Richards, C. J. (2001). J. Organomet. Chem. 637–639, 669–676.  CrossRef CAS Google Scholar
First citationMatković-Čalogović, D., Rapić, V. & Kovač, S. (1993). Acta Cryst. C49, 226–228.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds