metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{N-[(5-methyl­thio­phen-2-yl)methyl­­idene]-2-(pyridin-2-yl)ethanamine-κ2N,N′}palladium(II)

aChemistry Department, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
*Correspondence e-mail: monani@uwc.ac.za

(Received 20 November 2012; accepted 30 November 2012; online 8 December 2012)

In the title compound, [PdCl2(C13H14N2S)], the PdII ion is coordinated by two N atoms of the chelating bidentate ligand and two chloride anions, giving rise to a distorted square-planar geometry. The methyl-substituted thio­phene arm and the pyridine ring are connected to the metal cation through N atoms to form a six-membered chelate ring with a boat conformation, making the complex stable.

Related literature

For the synthesis of imino-pyridyl ligands and their transition metal-based complexes, see: Onani & Motswainyana (2011[Onani, M. O. & Motswainyana, W. M. (2011). Acta Cryst. E67, m1392.]); Motswainyana et al. (2011[Motswainyana, W. M., Ojwach, S. O., Onani, M. O., Iwuoha, E. I. & Darkwa, J. (2011). Polyhedron, 30, 2574-2580.]); Bianchini et al. (2010[Bianchini, C., Giambastiani, G., Luconi, L. & Meli, A. (2010). Coord. Chem. Rev. 254, 431-455.]). For related structures, see: Motswainyana et al. (2012[Motswainyana, W. M., Onani, M. O. & Madiehe, A. M. (2012). Acta Cryst. E68, m380.]); Chen et al. (2007[Chen, W., Xi, C. & Wu, Y. (2007). J. Organomet. Chem. 692, 4381-4388.]). For applications of these complexes, see: Ardizzoia et al. (2009[Ardizzoia, G. A., Brenna, S., Castelli, F. & Galli, S. (2009). Inorg. Chim. Acta, 362, 3507-3512.]); Tianpengfei et al. (2011[Tianpengfei, X., Jingjuan, L., Shu, Z., Xiang, H. & Wen-Hua, S. (2011). Catal. Sci. Technol. 1, 462-469.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C13H14N2S)]

  • Mr = 407.62

  • Monoclinic, P 21 /c

  • a = 12.0110 (5) Å

  • b = 9.1633 (4) Å

  • c = 13.6456 (6) Å

  • β = 97.930 (1)°

  • V = 1487.48 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 173 K

  • 0.15 × 0.07 × 0.04 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.781, Tmax = 0.934

  • 14701 measured reflections

  • 3706 independent reflections

  • 3129 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.056

  • S = 1.02

  • 3706 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The imino-pyridyl ligands coordinate as neutral, bidentate species when they are reacted with labile transition metal precursors to form air stable complexes, which show hemilability due to the weakly coordinating N atoms. The complexes could be investigated in various catalytic applications (Bianchini et al., 2010; Motswainyana et al., 2011; Ardizzoia et al., 2009; Tianpengfei et al., 2011).

In our study of imino-pyridyl Pd(II) complexes which could replace the expensive, air and moisture unstable phosphines for catalytic processes, we synthesized and crystallized the title compound (Fig. 1). The Pd atom is coordinated through the two N atoms of the ligand and two chloride anions, generating a distorted square planar coordination geometry around the Pd centre. The bond angles around the Pd metal atom of Cl2—Pd1—Cl1 [92.34 (2)°] and N2—Pd1—N1 [81.73 (7)°] show significant deviations from 90°, which confirms the distortion in the square planar geometry. The angles agree with those of similar compounds (Onani & Motswainyana, 2011; Motswainyana et al., 2012). The Pd1—C11 bond lengths of 2.3016 (6) Å and Pd1—Cl2 of 2.3027 (6) Å are within the limits of the average Pd—Cl bond distance of 2.298 (15) Å for known palladium complexes (Chen et al., 2007). The Pd—Cl bond distances are rather equal, indicating the absence of a trans-influence in the molecule.

Related literature top

For the synthesis of imino-pyridyl ligands and their transition metal-based complexes, see: Onani & Motswainyana (2011); Motswainyana et al. (2011); Bianchini et al. (2010). For related structures, see: Motswainyana et al. (2012); Chen et al. (2007). For applications of these complexes, see: Ardizzoia et al. (2009); Tianpengfei et al. (2011).

Experimental top

To a suspension of PdCl2(cod) (0.0970 g, 0.34 mmol) in CH2Cl2 (5 ml) was added a solution of the ligand N-(5-methyl-thiophen-2-ylmethylene)-2-pyridineethanamine (0.0666 g, 0.34 mmol) in CH2Cl2 (10 ml). The yellow solution was stirred at room temperature for 8 h., resulting in the formation of a yellow precipitate. The precipitate was filtered, and recrystallization of the product from CH2Cl2 and an excess of C6H14 solution gave single crystals suitable for X-ray diffraction studies. The product yield was 76%.

Refinement top

All non-H atoms were refined anisotropically. All H atoms were placed in idealized positions and refined with constrained C—H distances of 0.95 (aromatic CH), 0.99 (methylene CH2) or 0.98 Å (methyl CH3). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(carrier C), except in the case of the methyl group, for which Uiso(H) = 1.5Ueq(C13).

Structure description top

The imino-pyridyl ligands coordinate as neutral, bidentate species when they are reacted with labile transition metal precursors to form air stable complexes, which show hemilability due to the weakly coordinating N atoms. The complexes could be investigated in various catalytic applications (Bianchini et al., 2010; Motswainyana et al., 2011; Ardizzoia et al., 2009; Tianpengfei et al., 2011).

In our study of imino-pyridyl Pd(II) complexes which could replace the expensive, air and moisture unstable phosphines for catalytic processes, we synthesized and crystallized the title compound (Fig. 1). The Pd atom is coordinated through the two N atoms of the ligand and two chloride anions, generating a distorted square planar coordination geometry around the Pd centre. The bond angles around the Pd metal atom of Cl2—Pd1—Cl1 [92.34 (2)°] and N2—Pd1—N1 [81.73 (7)°] show significant deviations from 90°, which confirms the distortion in the square planar geometry. The angles agree with those of similar compounds (Onani & Motswainyana, 2011; Motswainyana et al., 2012). The Pd1—C11 bond lengths of 2.3016 (6) Å and Pd1—Cl2 of 2.3027 (6) Å are within the limits of the average Pd—Cl bond distance of 2.298 (15) Å for known palladium complexes (Chen et al., 2007). The Pd—Cl bond distances are rather equal, indicating the absence of a trans-influence in the molecule.

For the synthesis of imino-pyridyl ligands and their transition metal-based complexes, see: Onani & Motswainyana (2011); Motswainyana et al. (2011); Bianchini et al. (2010). For related structures, see: Motswainyana et al. (2012); Chen et al. (2007). For applications of these complexes, see: Ardizzoia et al. (2009); Tianpengfei et al. (2011).

Computing details top

Data collection: SAINT [or APEX2?] (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex showing 50% probability displacement ellipsoids for non-H atoms.
Dichlorido{N-[5-methylthiophen-2-yl)methylidene]-2-(pyridin-2- yl)ethanamine-κ2N,N'}palladium(II) top
Crystal data top
[PdCl2(C13H14N2S)]F(000) = 808
Mr = 407.62Dx = 1.820 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14701 reflections
a = 12.0110 (5) Åθ = 1.7–28.3°
b = 9.1633 (4) ŵ = 1.73 mm1
c = 13.6456 (6) ÅT = 173 K
β = 97.930 (1)°Needle, yellow
V = 1487.48 (11) Å30.15 × 0.07 × 0.04 mm
Z = 4
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3706 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
0.5° φ scans and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1616
Tmin = 0.781, Tmax = 0.934k = 1212
14701 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0227P)2 + 0.6596P]
where P = (Fo2 + 2Fc2)/3
3706 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.62 e Å3
0 constraints
Crystal data top
[PdCl2(C13H14N2S)]V = 1487.48 (11) Å3
Mr = 407.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0110 (5) ŵ = 1.73 mm1
b = 9.1633 (4) ÅT = 173 K
c = 13.6456 (6) Å0.15 × 0.07 × 0.04 mm
β = 97.930 (1)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3706 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3129 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.934Rint = 0.038
14701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
3706 reflectionsΔρmin = 0.62 e Å3
173 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.253855 (14)0.164855 (19)0.101073 (12)0.01838 (6)
Cl10.35052 (5)0.08399 (7)0.24845 (4)0.02846 (14)
Cl20.08238 (5)0.11869 (7)0.15214 (4)0.02567 (13)
S10.18709 (5)0.48733 (6)0.13240 (4)0.02374 (13)
N10.39778 (16)0.2026 (2)0.04460 (14)0.0229 (4)
N20.18590 (15)0.2349 (2)0.03402 (14)0.0200 (4)
C10.4789 (2)0.2919 (3)0.0894 (2)0.0276 (5)
H10.47200.32990.15310.033*
C20.5710 (2)0.3293 (3)0.0452 (2)0.0356 (6)
H20.62600.39470.07680.043*
C30.5820 (2)0.2704 (4)0.0453 (2)0.0397 (7)
H30.64550.29400.07680.048*
C40.5005 (2)0.1767 (3)0.0909 (2)0.0346 (6)
H40.50850.13420.15300.042*
C50.4071 (2)0.1452 (3)0.04537 (18)0.0248 (5)
C60.3119 (2)0.0495 (3)0.08966 (18)0.0295 (6)
H6A0.30290.03110.04310.035*
H6B0.33160.00570.15130.035*
C70.1988 (2)0.1301 (3)0.11346 (17)0.0260 (5)
H7A0.19620.18240.17720.031*
H7B0.13630.05880.11960.031*
C80.15436 (18)0.3656 (3)0.05905 (17)0.0208 (5)
H80.13320.38290.12770.025*
C90.14775 (18)0.4873 (3)0.00534 (16)0.0203 (5)
C100.10937 (19)0.6228 (3)0.02615 (18)0.0240 (5)
H100.08360.64480.09350.029*
C110.11169 (19)0.7260 (3)0.05032 (18)0.0248 (5)
H110.08780.82440.04010.030*
C120.15202 (19)0.6694 (3)0.14103 (18)0.0235 (5)
C130.1685 (2)0.7445 (3)0.23892 (19)0.0337 (6)
H13A0.13800.84360.23150.051*
H13B0.24900.74900.26380.051*
H13C0.12950.69000.28580.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02171 (9)0.01803 (9)0.01521 (9)0.00063 (7)0.00192 (6)0.00031 (7)
Cl10.0322 (3)0.0323 (3)0.0194 (3)0.0027 (2)0.0018 (2)0.0039 (2)
Cl20.0246 (3)0.0253 (3)0.0277 (3)0.0007 (2)0.0059 (2)0.0051 (2)
S10.0342 (3)0.0184 (3)0.0181 (3)0.0019 (2)0.0018 (2)0.0024 (2)
N10.0241 (10)0.0231 (10)0.0212 (10)0.0031 (8)0.0020 (8)0.0018 (8)
N20.0226 (9)0.0210 (10)0.0162 (9)0.0002 (8)0.0017 (7)0.0010 (8)
C10.0250 (12)0.0270 (13)0.0300 (14)0.0025 (10)0.0011 (10)0.0013 (11)
C20.0246 (12)0.0367 (16)0.0445 (17)0.0001 (11)0.0011 (11)0.0089 (13)
C30.0240 (13)0.0556 (19)0.0410 (17)0.0075 (13)0.0104 (12)0.0203 (15)
C40.0353 (14)0.0474 (17)0.0226 (13)0.0178 (13)0.0094 (11)0.0080 (12)
C50.0291 (12)0.0252 (12)0.0203 (12)0.0087 (10)0.0036 (9)0.0031 (10)
C60.0392 (14)0.0271 (13)0.0220 (13)0.0062 (11)0.0034 (10)0.0071 (10)
C70.0345 (13)0.0254 (13)0.0171 (12)0.0009 (10)0.0005 (10)0.0060 (9)
C80.0203 (10)0.0273 (13)0.0150 (11)0.0006 (9)0.0025 (8)0.0022 (9)
C90.0204 (11)0.0247 (12)0.0163 (11)0.0007 (9)0.0039 (8)0.0038 (9)
C100.0231 (11)0.0264 (12)0.0226 (12)0.0010 (9)0.0033 (9)0.0077 (10)
C110.0232 (11)0.0204 (12)0.0318 (14)0.0027 (9)0.0073 (10)0.0045 (10)
C120.0251 (11)0.0186 (11)0.0281 (13)0.0014 (9)0.0083 (9)0.0018 (10)
C130.0490 (16)0.0222 (13)0.0319 (15)0.0002 (12)0.0123 (12)0.0023 (11)
Geometric parameters (Å, º) top
Pd1—N22.0152 (18)C5—C61.500 (3)
Pd1—N12.017 (2)C6—C71.541 (3)
Pd1—Cl12.3016 (6)C6—H6A0.9900
Pd1—Cl22.3027 (6)C6—H6B0.9900
S1—C121.729 (2)C7—H7A0.9900
S1—C91.733 (2)C7—H7B0.9900
N1—C11.352 (3)C8—C91.429 (3)
N1—C51.355 (3)C8—H80.9500
N2—C81.288 (3)C9—C101.373 (3)
N2—C71.472 (3)C10—C111.406 (3)
C1—C21.374 (4)C10—H100.9500
C1—H10.9500C11—C121.368 (3)
C2—C31.371 (4)C11—H110.9500
C2—H20.9500C12—C131.491 (3)
C3—C41.384 (4)C13—H13A0.9800
C3—H30.9500C13—H13B0.9800
C4—C51.385 (4)C13—H13C0.9800
C4—H40.9500
N2—Pd1—N181.73 (7)C5—C6—H6B108.8
N2—Pd1—Cl1173.54 (6)C7—C6—H6B108.8
N1—Pd1—Cl191.91 (6)H6A—C6—H6B107.7
N2—Pd1—Cl293.96 (5)N2—C7—C6109.68 (19)
N1—Pd1—Cl2175.20 (6)N2—C7—H7A109.7
Cl1—Pd1—Cl292.34 (2)C6—C7—H7A109.7
C12—S1—C991.90 (12)N2—C7—H7B109.7
C1—N1—C5120.0 (2)C6—C7—H7B109.7
C1—N1—Pd1122.21 (17)H7A—C7—H7B108.2
C5—N1—Pd1117.53 (16)N2—C8—C9127.0 (2)
C8—N2—C7117.9 (2)N2—C8—H8116.5
C8—N2—Pd1127.30 (16)C9—C8—H8116.5
C7—N2—Pd1113.28 (15)C10—C9—C8123.9 (2)
N1—C1—C2121.7 (3)C10—C9—S1110.26 (18)
N1—C1—H1119.1C8—C9—S1125.80 (17)
C2—C1—H1119.1C9—C10—C11113.9 (2)
C3—C2—C1118.7 (3)C9—C10—H10123.1
C3—C2—H2120.6C11—C10—H10123.1
C1—C2—H2120.6C12—C11—C10112.6 (2)
C2—C3—C4119.9 (3)C12—C11—H11123.7
C2—C3—H3120.0C10—C11—H11123.7
C4—C3—H3120.0C11—C12—C13128.5 (2)
C3—C4—C5119.6 (3)C11—C12—S1111.32 (18)
C3—C4—H4120.2C13—C12—S1120.16 (18)
C5—C4—H4120.2C12—C13—H13A109.5
N1—C5—C4119.9 (2)C12—C13—H13B109.5
N1—C5—C6116.0 (2)H13A—C13—H13B109.5
C4—C5—C6124.1 (2)C12—C13—H13C109.5
C5—C6—C7114.0 (2)H13A—C13—H13C109.5
C5—C6—H6A108.8H13B—C13—H13C109.5
C7—C6—H6A108.8
N2—Pd1—N1—C1124.39 (19)N1—C5—C6—C764.5 (3)
Cl1—Pd1—N1—C156.80 (18)C4—C5—C6—C7115.2 (3)
N2—Pd1—N1—C549.93 (17)C8—N2—C7—C6132.5 (2)
Cl1—Pd1—N1—C5128.88 (16)Pd1—N2—C7—C634.5 (2)
N1—Pd1—N2—C894.6 (2)C5—C6—C7—N239.7 (3)
Cl2—Pd1—N2—C887.59 (19)C7—N2—C8—C9173.1 (2)
N1—Pd1—N2—C771.03 (16)Pd1—N2—C8—C98.1 (3)
Cl2—Pd1—N2—C7106.83 (15)N2—C8—C9—C10177.5 (2)
C5—N1—C1—C21.3 (4)N2—C8—C9—S13.0 (4)
Pd1—N1—C1—C2172.90 (19)C12—S1—C9—C100.28 (18)
N1—C1—C2—C32.0 (4)C12—S1—C9—C8179.2 (2)
C1—C2—C3—C40.7 (4)C8—C9—C10—C11179.3 (2)
C2—C3—C4—C51.2 (4)S1—C9—C10—C110.2 (3)
C1—N1—C5—C40.7 (3)C9—C10—C11—C120.0 (3)
Pd1—N1—C5—C4175.19 (18)C10—C11—C12—C13179.1 (2)
C1—N1—C5—C6179.0 (2)C10—C11—C12—S10.2 (3)
Pd1—N1—C5—C64.5 (3)C9—S1—C12—C110.27 (19)
C3—C4—C5—N12.0 (4)C9—S1—C12—C13179.1 (2)
C3—C4—C5—C6177.7 (2)

Experimental details

Crystal data
Chemical formula[PdCl2(C13H14N2S)]
Mr407.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.0110 (5), 9.1633 (4), 13.6456 (6)
β (°) 97.930 (1)
V3)1487.48 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.15 × 0.07 × 0.04
Data collection
DiffractometerBruker Kappa DUO APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.781, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
14701, 3706, 3129
Rint0.038
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.056, 1.02
No. of reflections3706
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.62

Computer programs: SAINT [or APEX2?] (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

 

Acknowledgements

The authors acknowledge financial support from the University of the Western Cape Senate Research, NRF and CSIR.

References

First citationArdizzoia, G. A., Brenna, S., Castelli, F. & Galli, S. (2009). Inorg. Chim. Acta, 362, 3507–3512.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBianchini, C., Giambastiani, G., Luconi, L. & Meli, A. (2010). Coord. Chem. Rev. 254, 431–455.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Xi, C. & Wu, Y. (2007). J. Organomet. Chem. 692, 4381–4388.  Web of Science CSD CrossRef CAS Google Scholar
First citationMotswainyana, W. M., Ojwach, S. O., Onani, M. O., Iwuoha, E. I. & Darkwa, J. (2011). Polyhedron, 30, 2574–2580.  Web of Science CSD CrossRef CAS Google Scholar
First citationMotswainyana, W. M., Onani, M. O. & Madiehe, A. M. (2012). Acta Cryst. E68, m380.  CSD CrossRef IUCr Journals Google Scholar
First citationOnani, M. O. & Motswainyana, W. M. (2011). Acta Cryst. E67, m1392.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTianpengfei, X., Jingjuan, L., Shu, Z., Xiang, H. & Wen-Hua, S. (2011). Catal. Sci. Technol. 1, 462–469.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds