metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthroline-κ2N,N′)(sulfato-O)copper(II) butane-2,3-diol monosolvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

(Received 30 November 2012; accepted 6 December 2012; online 12 December 2012)

The title compound, [Cu(SO4)(C12H8N2)2]·C4H10O2, is comprised of neutral monomeric complex and butane-2,3-diol solvent mol­ecules. In the complex, the CuII ion is in a distorted square-pyramidal coordination environment defined by four N atoms from two chelating 1,10-phenanthroline ligands and one O atom from a monodentate sulfate anion; the O atom is at the apex. The two chelating N2C2 groups subtend a dihedral angle of 85.8 (4)°. In the crystal, the neutral monomeric complex and butane-2,3-diol solvent mol­ecules are held together by O—H⋯O hydrogen bonding, which leads to additional stabilization of the structure. The presence of pseudosymmetry in the structure suggests the higher symmetry space group C2/c, but attempts to refine the structure in this space group resulted in an unsatisfactory model and high R and wR values. The sulfate anion is disordered over two sets of sites with occupancies of 0.55 (1) and 0.45 (1).

Related literature

For the ethane-1,2-diol solvate of the title complex, see: Zhong (2011a[Zhong, K.-L. (2011a). Acta Cryst. E67, m1215-m1216.]), for the propane-1,2-diol solvate, see: Zhong (2011b[Zhong, K.-L. (2011b). Z. Kristallogr. New Cryst. Struct. 226, 286-288.]) and for the propane-1,3-diol solvate, see: Zhong (2012[Zhong, K.-L. (2012). Acta Cryst. E68, m1555.]). For related structures of transition metal complexes with a sulfate anion, see: Wang & Zhong (2011[Wang, S.-J. & Zhong, K.-L. (2011). Acta Cryst. E67, m446.]); Zhong & Ni (2012[Zhong, K.-L. & Ni, C. (2012). Acta Cryst. E68, m1519.]); Cui et al. (2010[Cui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.]); Lu et al. (2006[Lu, W.-J., Zhong, K.-L. & Zhu, Y.-M. (2006). Acta Cryst. E62, m891-m893.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C12H8N2)2]·C4H10O2

  • Mr = 610.13

  • Monoclinic, C c

  • a = 17.352 (4) Å

  • b = 13.070 (3) Å

  • c = 13.444 (3) Å

  • β = 123.84 (3)°

  • V = 2532.4 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 223 K

  • 0.32 × 0.27 × 0.21 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.741, Tmax = 0.818

  • 7154 measured reflections

  • 4178 independent reflections

  • 3542 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.135

  • S = 0.99

  • 4178 reflections

  • 408 parameters

  • 124 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1317 Friedel pairs

  • Flack parameter: 0.55 (2)

Table 1
Selected bond lengths (Å)

Cu1—O1 1.922 (11)
Cu1—O1′ 1.944 (10)
Cu1—N1 2.000 (7)
Cu1—N4 2.014 (7)
Cu1—N3 2.091 (6)
Cu1—N2 2.186 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O3 0.82 1.92 2.73 (2) 172
O5—H5B⋯O4′ 0.82 2.01 2.83 (2) 176
O6—H6⋯O3′ 0.82 2.19 2.919 (16) 148
O6—H6⋯O4 0.82 1.95 2.720 (14) 156

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); data reduction: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past few years, we have unexpectedly obtained and characterized some transition metal complexes with bidentate-chelating sulfate auxiliary ligand via alcohol-solvothermal reaction during attempts to synthesize mixed-ligand coordination polymers, such as cobalt complex (Wang & Zhong, 2011), nickel complex (Zhong & Ni, 2012), zinc complex (Cui et al., 2010), cadmium complex (Lu et al., 2006). The title compound [CuSO4(C12H8N2)2].C4H10O2, (I), was obtained by the similar alcohol-solvothermal reaction and its crystal structure has not hitherto been reported.

The X-ray diffraction experiment found that the title complex is isotypical to the previously reported [CuSO4(C12H8N2)2].C2H6O2 (Zhong, 2011a), (II), [CuSO4(C12H8N2)2].CH2OHCHOHCH3 (Zhong, 2011b), (III), and [CuSO4(C12H8N2)2].CH2OHCH2CH2OH (Zhong, 2012), (IV). The geometry of the phenanthroline and sulfate ligands are in good agreement with those reported in the (II), (III) and (IV). The CuII metal ion is five-coordinated by four N atoms from two chelating phen ligands and an O atoms from a monodentate sulfate ligand, resulting in a distorted CuN4O square-pyramidal environment. The N1, N2, N3 and N4 atoms comprise a square, and the O1 atom site the apex of a square pyramid surrounding each metal atom (Fig 1). The dihedral angle of the two chelating N2C2 groups is 85.8 (4)°, which is larger than those reported in (II) [71.1 (2)°], (III) [84.9 (4)°] and (IV) [71.10 (15) Å], respectively. The Cu—O bond distance [1.922 (11) Å - 1.944 (10) Å], the Cu—N bond distance [2.000 (7) - 2.186 (7) Å], and the N—Cu—N bite angle [79.8 (3) - 81.6 (3)°] are comparable to those observed in (II), (III) and (IV) (Table 1).

In the crystal, the sulfate group is disordered over two positions with refined site occupancies of 0.55 (1) and 0.45 (1), and is hydrogen bonded to the solvent butane-2,3-diol molecule (Table 2 & Fig. 1).

Related literature top

For the ethane-1,2-diol solvate of the title complex, see: Zhong (2011a), for the propane-1,2-diol solvate, see: Zhong (2011b) and for the propane-1,3-diol solvate, see: Zhong (2012). For related structures of transition metal complexes with a sulfate anion, see: Wang & Zhong (2011); Zhong & Ni (2012); Cui et al. (2010); Lu et al. (2006).

Experimental top

The single crystals of (I) suitable to X-ray analysis were obtained by 0.2 mmol phen, 0.1 mmol CuSO4.5H2O, 2.0 ml propane-1,3-diol and 1.0 ml water mixed and placed in a thick Pyrex tube, which was sealed and heated to 453 K for 72 h.

Refinement top

The H atoms of phen were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of propane-1,3-diol were placed in geometrically idealized positions and refined as riding atoms, with C—H(CH3) = 0.96 Å, C—H(CH) = 0.98 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The presence of pseudo-symmetry in the structure suggests a higher symmetry space group C2/c. But attempts to refine the structure in the space group C2/c resulted in an unsatisfactory model and high R and wR values. Hence the requirement to solve in Cc. The reported Flack parameter was refined as s full least-squares and obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Structure description top

In the past few years, we have unexpectedly obtained and characterized some transition metal complexes with bidentate-chelating sulfate auxiliary ligand via alcohol-solvothermal reaction during attempts to synthesize mixed-ligand coordination polymers, such as cobalt complex (Wang & Zhong, 2011), nickel complex (Zhong & Ni, 2012), zinc complex (Cui et al., 2010), cadmium complex (Lu et al., 2006). The title compound [CuSO4(C12H8N2)2].C4H10O2, (I), was obtained by the similar alcohol-solvothermal reaction and its crystal structure has not hitherto been reported.

The X-ray diffraction experiment found that the title complex is isotypical to the previously reported [CuSO4(C12H8N2)2].C2H6O2 (Zhong, 2011a), (II), [CuSO4(C12H8N2)2].CH2OHCHOHCH3 (Zhong, 2011b), (III), and [CuSO4(C12H8N2)2].CH2OHCH2CH2OH (Zhong, 2012), (IV). The geometry of the phenanthroline and sulfate ligands are in good agreement with those reported in the (II), (III) and (IV). The CuII metal ion is five-coordinated by four N atoms from two chelating phen ligands and an O atoms from a monodentate sulfate ligand, resulting in a distorted CuN4O square-pyramidal environment. The N1, N2, N3 and N4 atoms comprise a square, and the O1 atom site the apex of a square pyramid surrounding each metal atom (Fig 1). The dihedral angle of the two chelating N2C2 groups is 85.8 (4)°, which is larger than those reported in (II) [71.1 (2)°], (III) [84.9 (4)°] and (IV) [71.10 (15) Å], respectively. The Cu—O bond distance [1.922 (11) Å - 1.944 (10) Å], the Cu—N bond distance [2.000 (7) - 2.186 (7) Å], and the N—Cu—N bite angle [79.8 (3) - 81.6 (3)°] are comparable to those observed in (II), (III) and (IV) (Table 1).

In the crystal, the sulfate group is disordered over two positions with refined site occupancies of 0.55 (1) and 0.45 (1), and is hydrogen bonded to the solvent butane-2,3-diol molecule (Table 2 & Fig. 1).

For the ethane-1,2-diol solvate of the title complex, see: Zhong (2011a), for the propane-1,2-diol solvate, see: Zhong (2011b) and for the propane-1,3-diol solvate, see: Zhong (2012). For related structures of transition metal complexes with a sulfate anion, see: Wang & Zhong (2011); Zhong & Ni (2012); Cui et al. (2010); Lu et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-numbering scheme and with displacement ellipsoids drawn at the 35% probability level. Hydrogen bonds O—H···O are shown as dashed lines.
Bis(1,10-phenanthroline-κ2N,N')(sulfato-O)copper(II) butane-2,3-diol monosolvate top
Crystal data top
[Cu(SO4)(C12H8N2)2]·C4H10O2F(000) = 1260
Mr = 610.13Dx = 1.600 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5509 reflections
a = 17.352 (4) Åθ = 3.2–27.5°
b = 13.070 (3) ŵ = 1.00 mm1
c = 13.444 (3) ÅT = 223 K
β = 123.84 (3)°Block, green
V = 2532.4 (13) Å30.32 × 0.27 × 0.21 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
4178 independent reflections
Radiation source: fine-focus sealed tube3542 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.026
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1522
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1615
Tmin = 0.741, Tmax = 0.818l = 1716
7154 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
4178 reflectionsΔρmax = 0.60 e Å3
408 parametersΔρmin = 0.53 e Å3
124 restraintsAbsolute structure: Flack (1983), 1317 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.55 (2)
Crystal data top
[Cu(SO4)(C12H8N2)2]·C4H10O2V = 2532.4 (13) Å3
Mr = 610.13Z = 4
Monoclinic, CcMo Kα radiation
a = 17.352 (4) ŵ = 1.00 mm1
b = 13.070 (3) ÅT = 223 K
c = 13.444 (3) Å0.32 × 0.27 × 0.21 mm
β = 123.84 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
4178 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3542 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.818Rint = 0.026
7154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.135Δρmax = 0.60 e Å3
S = 0.99Δρmin = 0.53 e Å3
4178 reflectionsAbsolute structure: Flack (1983), 1317 Friedel pairs
408 parametersAbsolute structure parameter: 0.55 (2)
124 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.26519 (10)0.30074 (3)0.29387 (13)0.02436 (16)
S10.2748 (3)0.5417 (4)0.2771 (4)0.0265 (13)0.547 (12)
S1'0.2569 (3)0.5422 (4)0.3106 (4)0.0170 (14)0.453 (12)
O10.2897 (10)0.4419 (8)0.3416 (12)0.043 (3)0.547 (12)
O1'0.2430 (10)0.4435 (7)0.2448 (11)0.027 (3)0.453 (12)
O20.2706 (8)0.5188 (9)0.1677 (9)0.037 (3)0.547 (12)
O2'0.2653 (8)0.5225 (8)0.4213 (8)0.023 (3)0.453 (12)
O30.1922 (11)0.5995 (16)0.2536 (19)0.041 (5)0.547 (12)
O3'0.3442 (10)0.5860 (12)0.3305 (17)0.021 (3)0.453 (12)
O40.3552 (9)0.6066 (10)0.3586 (11)0.021 (3)0.547 (12)
O4'0.1754 (13)0.6044 (16)0.2259 (16)0.027 (5)0.453 (12)
O50.2174 (4)0.7813 (3)0.3686 (4)0.0442 (11)
H5B0.20790.72990.32820.066*
O60.3460 (5)0.8062 (5)0.2956 (8)0.096 (3)
H60.34550.75320.32790.144*
N10.3506 (5)0.2822 (5)0.2394 (6)0.0244 (14)
N20.3706 (5)0.2068 (4)0.4426 (6)0.0236 (15)
N30.1647 (5)0.2096 (5)0.1528 (5)0.0220 (14)
N40.1742 (5)0.2848 (5)0.3410 (6)0.0232 (14)
C10.3444 (6)0.3269 (7)0.1484 (8)0.0282 (17)
H1A0.30000.37720.10530.034*
C20.4087 (7)0.2967 (7)0.1148 (9)0.038 (2)
H2A0.40520.32850.05050.046*
C30.4728 (6)0.2229 (7)0.1768 (8)0.0375 (18)
H3A0.51000.20000.15170.045*
C40.4826 (7)0.1813 (8)0.2797 (9)0.038 (2)
C50.5554 (7)0.1082 (5)0.3559 (8)0.032 (2)
H5A0.59580.08580.33550.039*
C60.5640 (6)0.0738 (6)0.4535 (8)0.036 (2)
H6A0.61120.02730.50090.043*
C70.5031 (6)0.1051 (6)0.4909 (8)0.0281 (18)
C80.5105 (7)0.0762 (5)0.5960 (9)0.032 (2)
H8A0.55670.03090.64900.038*
C90.4489 (6)0.1151 (7)0.6208 (8)0.038 (2)
H9A0.45400.09820.69150.046*
C100.3805 (6)0.1789 (7)0.5391 (7)0.0277 (18)
H10A0.33840.20350.55540.033*
C110.4289 (5)0.1747 (6)0.4123 (7)0.0270 (18)
C120.4198 (5)0.2096 (5)0.3075 (7)0.0183 (15)
C130.1532 (6)0.1797 (6)0.0470 (7)0.0293 (19)
H13A0.19330.20460.02730.035*
C140.0804 (6)0.1109 (6)0.0329 (7)0.032 (2)
H14A0.07360.09270.10430.039*
C150.0208 (6)0.0714 (7)0.0069 (8)0.033 (2)
H15A0.02480.02450.05750.040*
C160.0311 (6)0.1046 (6)0.1007 (8)0.0284 (18)
C170.0306 (6)0.0719 (6)0.1307 (7)0.035 (2)
H17A0.07770.02610.08080.042*
C180.0226 (6)0.1067 (7)0.2327 (8)0.037 (2)
H18A0.06300.08230.25210.045*
C190.0465 (5)0.1794 (6)0.3089 (6)0.0215 (15)
C200.0547 (6)0.2284 (8)0.4077 (7)0.0346 (18)
H20A0.01290.21320.42830.042*
C210.1237 (7)0.2981 (6)0.4733 (9)0.036 (2)
H21A0.13240.32700.54200.043*
C220.1777 (6)0.3233 (7)0.4369 (6)0.0324 (19)
H22A0.22280.37260.48160.039*
C230.1077 (6)0.2146 (6)0.2782 (7)0.0281 (18)
C240.1010 (5)0.1709 (6)0.1728 (6)0.0194 (15)
C250.2642 (9)0.9498 (6)0.4054 (10)0.059 (3)
H25A0.23090.95940.44250.089*
H25B0.26631.01330.37110.089*
H25C0.32620.92750.46430.089*
C260.2142 (7)0.8676 (6)0.3052 (8)0.053 (2)
H26A0.14980.88770.24620.063*
C270.2654 (7)0.8516 (5)0.2453 (8)0.058 (2)
H27A0.22380.80720.17710.069*
C280.2703 (13)0.9468 (10)0.1881 (16)0.101 (5)
H28A0.30130.93260.14870.151*
H28B0.30400.99820.24820.151*
H28C0.20860.97090.13040.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0249 (3)0.0219 (2)0.0321 (3)0.0008 (5)0.0194 (2)0.0011 (5)
S10.026 (3)0.027 (2)0.029 (2)0.0005 (17)0.017 (2)0.0049 (19)
S1'0.017 (3)0.014 (2)0.017 (2)0.0005 (17)0.008 (2)0.0029 (18)
O10.054 (5)0.037 (5)0.044 (5)0.006 (3)0.031 (4)0.005 (3)
O1'0.045 (5)0.009 (4)0.029 (5)0.001 (3)0.023 (4)0.004 (3)
O20.043 (5)0.049 (5)0.029 (4)0.002 (3)0.025 (3)0.002 (3)
O2'0.022 (4)0.024 (4)0.015 (4)0.009 (3)0.006 (3)0.001 (3)
O30.034 (6)0.042 (6)0.047 (7)0.000 (4)0.022 (4)0.005 (4)
O3'0.017 (5)0.016 (5)0.028 (5)0.001 (3)0.011 (4)0.003 (4)
O40.017 (4)0.019 (5)0.021 (5)0.004 (3)0.007 (3)0.004 (3)
O4'0.029 (6)0.028 (6)0.024 (6)0.002 (4)0.016 (4)0.003 (4)
O50.066 (3)0.038 (2)0.041 (2)0.001 (2)0.037 (2)0.0007 (19)
O60.076 (4)0.060 (4)0.188 (7)0.039 (3)0.096 (5)0.071 (4)
N10.023 (3)0.026 (3)0.027 (3)0.003 (3)0.016 (3)0.002 (3)
N20.027 (3)0.017 (3)0.038 (4)0.001 (2)0.025 (3)0.000 (2)
N30.019 (3)0.026 (3)0.011 (3)0.002 (2)0.002 (2)0.001 (2)
N40.022 (3)0.027 (3)0.019 (3)0.008 (3)0.010 (3)0.007 (3)
C10.033 (4)0.026 (3)0.047 (5)0.009 (3)0.036 (4)0.008 (3)
C20.034 (4)0.055 (5)0.035 (4)0.002 (3)0.025 (4)0.009 (3)
C30.038 (4)0.046 (4)0.048 (4)0.005 (3)0.035 (4)0.011 (4)
C40.043 (5)0.035 (4)0.048 (5)0.003 (4)0.033 (4)0.007 (3)
C50.034 (5)0.017 (3)0.044 (5)0.008 (3)0.021 (4)0.004 (3)
C60.023 (4)0.025 (4)0.054 (5)0.009 (3)0.018 (4)0.016 (3)
C70.023 (4)0.019 (3)0.031 (4)0.007 (3)0.009 (3)0.007 (3)
C80.029 (5)0.015 (3)0.033 (5)0.002 (3)0.006 (4)0.008 (3)
C90.034 (5)0.053 (5)0.039 (5)0.006 (4)0.028 (4)0.001 (4)
C100.026 (4)0.034 (4)0.026 (4)0.009 (4)0.016 (4)0.014 (3)
C110.019 (4)0.022 (3)0.031 (4)0.006 (3)0.008 (3)0.004 (3)
C120.013 (3)0.016 (3)0.034 (4)0.001 (3)0.018 (3)0.002 (3)
C130.031 (4)0.030 (3)0.026 (4)0.001 (4)0.015 (4)0.013 (3)
C140.039 (5)0.020 (3)0.020 (4)0.001 (3)0.005 (4)0.009 (3)
C150.021 (5)0.043 (4)0.028 (4)0.005 (4)0.009 (4)0.003 (4)
C160.022 (4)0.030 (4)0.029 (4)0.007 (3)0.012 (3)0.015 (4)
C170.026 (4)0.036 (4)0.030 (4)0.002 (3)0.007 (4)0.013 (3)
C180.022 (4)0.060 (5)0.034 (5)0.005 (4)0.018 (4)0.009 (4)
C190.009 (3)0.033 (3)0.020 (3)0.005 (3)0.007 (3)0.007 (3)
C200.029 (4)0.051 (4)0.019 (3)0.012 (3)0.010 (3)0.005 (3)
C210.044 (5)0.036 (4)0.033 (4)0.007 (3)0.025 (4)0.013 (3)
C220.024 (4)0.039 (4)0.017 (4)0.001 (3)0.001 (3)0.006 (3)
C230.033 (4)0.023 (4)0.019 (4)0.001 (3)0.008 (3)0.003 (3)
C240.026 (4)0.017 (3)0.019 (3)0.000 (3)0.015 (3)0.002 (3)
C250.104 (6)0.036 (4)0.074 (5)0.044 (4)0.071 (5)0.042 (4)
C260.070 (5)0.046 (4)0.069 (5)0.016 (4)0.055 (5)0.009 (4)
C270.104 (7)0.031 (3)0.082 (6)0.038 (4)0.079 (6)0.028 (4)
C280.149 (10)0.089 (8)0.110 (8)0.024 (7)0.100 (7)0.021 (6)
Geometric parameters (Å, º) top
Cu1—O11.922 (11)C7—C111.445 (11)
Cu1—O1'1.944 (10)C8—C91.382 (14)
Cu1—N12.000 (7)C8—H8A0.9300
Cu1—N42.014 (7)C9—C101.364 (12)
Cu1—N32.091 (6)C9—H9A0.9300
Cu1—N22.186 (7)C10—H10A0.9300
S1—O21.463 (10)C11—C121.404 (12)
S1—O41.471 (12)C13—C141.430 (11)
S1—O31.490 (15)C13—H13A0.9300
S1—O11.506 (11)C14—C151.365 (14)
S1'—O2'1.435 (10)C14—H14A0.9300
S1'—O4'1.470 (15)C15—C161.423 (14)
S1'—O3'1.498 (14)C15—H15A0.9300
S1'—O1'1.507 (10)C16—C241.361 (12)
O5—C261.396 (9)C16—C171.405 (12)
O5—H5B0.8200C17—C181.377 (12)
O6—C271.307 (9)C17—H17A0.9300
O6—H60.8200C18—C191.423 (12)
N1—C11.306 (10)C18—H18A0.9300
N1—C121.399 (10)C19—C201.408 (11)
N2—C101.265 (11)C19—C231.412 (11)
N2—C111.350 (11)C20—C211.366 (13)
N3—C241.372 (10)C20—H20A0.9300
N3—C131.379 (10)C21—C221.318 (14)
N4—C231.341 (10)C21—H21A0.9300
N4—C221.352 (11)C22—H22A0.9300
C1—C21.472 (12)C23—C241.472 (11)
C1—H1A0.9300C25—C261.555 (13)
C2—C31.352 (13)C25—H25A0.9600
C2—H2A0.9300C25—H25B0.9600
C3—C41.406 (13)C25—H25C0.9600
C3—H3A0.9300C26—C271.510 (9)
C4—C121.384 (11)C26—H26A0.9800
C4—C51.455 (13)C27—C281.490 (14)
C5—C61.314 (13)C27—H27A0.9800
C5—H5A0.9300C28—H28A0.9600
C6—C71.460 (12)C28—H28B0.9600
C6—H6A0.9300C28—H28C0.9600
C7—C81.398 (14)
O1—Cu1—O1'32.6 (2)N2—C10—C9124.3 (8)
O1—Cu1—N199.6 (4)N2—C10—H10A117.9
O1'—Cu1—N192.2 (4)C9—C10—H10A117.9
O1—Cu1—N493.5 (4)N2—C11—C12121.1 (7)
O1'—Cu1—N499.5 (4)N2—C11—C7119.1 (8)
N1—Cu1—N4166.8 (3)C12—C11—C7119.7 (8)
O1—Cu1—N3140.1 (4)C4—C12—N1121.5 (7)
O1'—Cu1—N3109.3 (4)C4—C12—C11121.2 (7)
N1—Cu1—N390.7 (3)N1—C12—C11116.9 (7)
N4—Cu1—N379.8 (3)N3—C13—C14120.9 (8)
O1—Cu1—N2108.5 (4)N3—C13—H13A119.6
O1'—Cu1—N2139.1 (4)C14—C13—H13A119.6
N1—Cu1—N281.6 (3)C15—C14—C13121.6 (8)
N4—Cu1—N293.3 (3)C15—C14—H14A119.2
N3—Cu1—N2111.08 (12)C13—C14—H14A119.2
O2—S1—O4111.2 (9)C14—C15—C16117.5 (7)
O2—S1—O3112.8 (11)C14—C15—H15A121.3
O4—S1—O3105.5 (12)C16—C15—H15A121.3
O2—S1—O1107.4 (7)C24—C16—C17120.5 (8)
O4—S1—O1106.5 (8)C24—C16—C15118.5 (8)
O3—S1—O1113.4 (12)C17—C16—C15121.0 (8)
O2'—S1'—O4'113.7 (11)C18—C17—C16121.0 (8)
O2'—S1'—O3'112.0 (9)C18—C17—H17A119.5
O4'—S1'—O3'111.5 (12)C16—C17—H17A119.5
O2'—S1'—O1'110.2 (7)C17—C18—C19121.0 (8)
O4'—S1'—O1'104.4 (10)C17—C18—H18A119.5
O3'—S1'—O1'104.3 (10)C19—C18—H18A119.5
S1—O1—Cu1134.8 (9)C20—C19—C23115.4 (7)
S1'—O1'—Cu1133.3 (8)C20—C19—C18125.8 (8)
C26—O5—H5B109.5C23—C19—C18118.5 (7)
C27—O6—H6109.5C21—C20—C19120.3 (8)
C1—N1—C12120.6 (7)C21—C20—H20A119.9
C1—N1—Cu1126.8 (6)C19—C20—H20A119.9
C12—N1—Cu1112.6 (5)C22—C21—C20118.4 (8)
C10—N2—C11121.6 (7)C22—C21—H21A120.8
C10—N2—Cu1131.8 (6)C20—C21—H21A120.8
C11—N2—Cu1106.6 (5)C21—C22—N4126.6 (8)
C24—N3—C13115.4 (6)C21—C22—H22A116.7
C24—N3—Cu1112.8 (5)N4—C22—H22A116.7
C13—N3—Cu1131.8 (6)N4—C23—C19124.2 (8)
C23—N4—C22114.9 (8)N4—C23—C24116.8 (8)
C23—N4—Cu1115.1 (6)C19—C23—C24119.0 (7)
C22—N4—Cu1129.3 (6)C16—C24—N3126.2 (7)
N1—C1—C2119.2 (8)C16—C24—C23119.7 (7)
N1—C1—H1A120.4N3—C24—C23113.9 (7)
C2—C1—H1A120.4C26—C25—H25A109.5
C3—C2—C1120.4 (9)C26—C25—H25B109.5
C3—C2—H2A119.8H25A—C25—H25B109.5
C1—C2—H2A119.8C26—C25—H25C109.5
C2—C3—C4119.4 (8)H25A—C25—H25C109.5
C2—C3—H3A120.3H25B—C25—H25C109.5
C4—C3—H3A120.3O5—C26—C27112.2 (6)
C12—C4—C3118.7 (8)O5—C26—C25102.5 (7)
C12—C4—C5119.4 (9)C27—C26—C25110.4 (9)
C3—C4—C5121.9 (9)O5—C26—H26A110.5
C6—C5—C4119.9 (9)C27—C26—H26A110.5
C6—C5—H5A120.1C25—C26—H26A110.5
C4—C5—H5A120.1O6—C27—C28107.1 (9)
C5—C6—C7123.2 (8)O6—C27—C26124.3 (7)
C5—C6—H6A118.4C28—C27—C26112.2 (8)
C7—C6—H6A118.4O6—C27—H27A103.6
C8—C7—C11116.9 (8)C28—C27—H27A103.6
C8—C7—C6126.6 (8)C26—C27—H27A103.6
C11—C7—C6116.4 (8)C27—C28—H28A109.5
C9—C8—C7119.8 (8)C27—C28—H28B109.5
C9—C8—H8A120.1H28A—C28—H28B109.5
C7—C8—H8A120.1C27—C28—H28C109.5
C10—C9—C8118.3 (8)H28A—C28—H28C109.5
C10—C9—H9A120.9H28B—C28—H28C109.5
C8—C9—H9A120.9
O2—S1—O1—Cu123.9 (15)C11—C7—C8—C90.8 (12)
O4—S1—O1—Cu1143.0 (11)C6—C7—C8—C9177.9 (8)
O3—S1—O1—Cu1101.4 (15)C7—C8—C9—C101.9 (12)
O1'—Cu1—O1—S114.2 (12)C11—N2—C10—C90.1 (13)
N1—Cu1—O1—S164.7 (12)Cu1—N2—C10—C9176.6 (6)
N4—Cu1—O1—S1116.4 (12)C8—C9—C10—N21.5 (13)
N3—Cu1—O1—S138.2 (16)C10—N2—C11—C12177.2 (7)
N2—Cu1—O1—S1149.0 (11)Cu1—N2—C11—C125.4 (8)
O2'—S1'—O1'—Cu118.3 (14)C10—N2—C11—C71.3 (11)
O4'—S1'—O1'—Cu1140.8 (13)Cu1—N2—C11—C7176.1 (6)
O3'—S1'—O1'—Cu1102.1 (13)C8—C7—C11—N20.8 (11)
O1—Cu1—O1'—S1'17.4 (12)C6—C7—C11—N2179.6 (7)
N1—Cu1—O1'—S1'121.9 (12)C8—C7—C11—C12177.7 (7)
N4—Cu1—O1'—S1'64.2 (12)C6—C7—C11—C121.1 (11)
N3—Cu1—O1'—S1'146.6 (11)C3—C4—C12—N13.4 (13)
N2—Cu1—O1'—S1'42.2 (15)C5—C4—C12—N1177.7 (7)
O1—Cu1—N1—C165.3 (8)C3—C4—C12—C11176.6 (8)
O1'—Cu1—N1—C133.4 (8)C5—C4—C12—C114.5 (12)
N4—Cu1—N1—C1119.4 (13)C1—N1—C12—C41.3 (12)
N3—Cu1—N1—C176.0 (7)Cu1—N1—C12—C4176.2 (6)
N2—Cu1—N1—C1172.8 (8)C1—N1—C12—C11172.3 (8)
O1—Cu1—N1—C12117.4 (6)Cu1—N1—C12—C1110.3 (8)
O1'—Cu1—N1—C12149.3 (6)N2—C11—C12—C4176.3 (8)
N4—Cu1—N1—C1257.9 (17)C7—C11—C12—C42.2 (11)
N3—Cu1—N1—C12101.3 (5)N2—C11—C12—N12.8 (10)
N2—Cu1—N1—C1210.0 (5)C7—C11—C12—N1175.7 (7)
O1—Cu1—N2—C1077.2 (8)C24—N3—C13—C141.5 (10)
O1'—Cu1—N2—C1091.0 (9)Cu1—N3—C13—C14176.2 (5)
N1—Cu1—N2—C10174.6 (8)N3—C13—C14—C150.9 (12)
N4—Cu1—N2—C1017.6 (8)C13—C14—C15—C162.7 (12)
N3—Cu1—N2—C1097.9 (7)C14—C15—C16—C242.0 (12)
O1—Cu1—N2—C11105.6 (6)C14—C15—C16—C17176.5 (8)
O1'—Cu1—N2—C1191.8 (7)C24—C16—C17—C180.6 (13)
N1—Cu1—N2—C118.2 (5)C15—C16—C17—C18177.8 (8)
N4—Cu1—N2—C11159.6 (5)C16—C17—C18—C192.1 (13)
N3—Cu1—N2—C1179.2 (6)C17—C18—C19—C20172.6 (9)
O1—Cu1—N3—C2494.2 (8)C17—C18—C19—C230.5 (12)
O1'—Cu1—N3—C24107.6 (6)C23—C19—C20—C215.8 (12)
N1—Cu1—N3—C24159.8 (5)C18—C19—C20—C21179.1 (8)
N4—Cu1—N3—C2411.0 (5)C19—C20—C21—C224.8 (13)
N2—Cu1—N3—C2478.6 (6)C20—C21—C22—N42.1 (14)
O1—Cu1—N3—C1388.0 (9)C23—N4—C22—C210.6 (13)
O1'—Cu1—N3—C1374.6 (8)Cu1—N4—C22—C21168.9 (7)
N1—Cu1—N3—C1318.0 (7)C22—N4—C23—C191.9 (12)
N4—Cu1—N3—C13171.2 (7)Cu1—N4—C23—C19169.2 (6)
N2—Cu1—N3—C1399.2 (7)C22—N4—C23—C24179.7 (7)
O1—Cu1—N4—C23151.3 (7)Cu1—N4—C23—C249.2 (9)
O1'—Cu1—N4—C23119.0 (7)C20—C19—C23—N44.5 (12)
N1—Cu1—N4—C2333.4 (18)C18—C19—C23—N4178.3 (8)
N3—Cu1—N4—C2310.9 (5)C20—C19—C23—C24177.2 (7)
N2—Cu1—N4—C2399.9 (6)C18—C19—C23—C243.4 (11)
O1—Cu1—N4—C2239.2 (8)C17—C16—C24—N3179.0 (7)
O1'—Cu1—N4—C2271.4 (8)C15—C16—C24—N30.6 (12)
N1—Cu1—N4—C22136.2 (13)C17—C16—C24—C234.6 (12)
N3—Cu1—N4—C22179.6 (8)C15—C16—C24—C23173.9 (8)
N2—Cu1—N4—C2269.6 (8)C13—N3—C24—C162.3 (11)
C12—N1—C1—C22.7 (12)Cu1—N3—C24—C16175.9 (6)
Cu1—N1—C1—C2174.3 (6)C13—N3—C24—C23172.4 (7)
N1—C1—C2—C30.6 (13)Cu1—N3—C24—C239.4 (8)
C1—C2—C3—C45.2 (13)N4—C23—C24—C16175.6 (7)
C2—C3—C4—C126.5 (14)C19—C23—C24—C166.0 (11)
C2—C3—C4—C5174.7 (8)N4—C23—C24—N30.5 (10)
C12—C4—C5—C63.6 (13)C19—C23—C24—N3178.9 (7)
C3—C4—C5—C6177.6 (9)O5—C26—C27—O642.6 (15)
C4—C5—C6—C70.2 (13)C25—C26—C27—O671.1 (12)
C5—C6—C7—C8176.6 (9)O5—C26—C27—C28174.2 (10)
C5—C6—C7—C112.0 (12)C25—C26—C27—C2860.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O30.821.922.73 (2)172
O5—H5B···O40.822.012.83 (2)176
O6—H6···O30.822.192.919 (16)148
O6—H6···O40.821.952.720 (14)156

Experimental details

Crystal data
Chemical formula[Cu(SO4)(C12H8N2)2]·C4H10O2
Mr610.13
Crystal system, space groupMonoclinic, Cc
Temperature (K)223
a, b, c (Å)17.352 (4), 13.070 (3), 13.444 (3)
β (°) 123.84 (3)
V3)2532.4 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.32 × 0.27 × 0.21
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.741, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
7154, 4178, 3542
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 0.99
No. of reflections4178
No. of parameters408
No. of restraints124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.53
Absolute structureFlack (1983), 1317 Friedel pairs
Absolute structure parameter0.55 (2)

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.922 (11)Cu1—N42.014 (7)
Cu1—O1'1.944 (10)Cu1—N32.091 (6)
Cu1—N12.000 (7)Cu1—N22.186 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O30.821.922.73 (2)172
O5—H5B···O4'0.822.012.83 (2)176
O6—H6···O3'0.822.192.919 (16)148
O6—H6···O40.821.952.720 (14)156
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010–17).

References

First citationCui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationLu, W.-J., Zhong, K.-L. & Zhu, Y.-M. (2006). Acta Cryst. E62, m891–m893.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-J. & Zhong, K.-L. (2011). Acta Cryst. E67, m446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. (2011a). Acta Cryst. E67, m1215–m1216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. (2011b). Z. Kristallogr. New Cryst. Struct. 226, 286–288.  CAS Google Scholar
First citationZhong, K.-L. (2012). Acta Cryst. E68, m1555.  CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. & Ni, C. (2012). Acta Cryst. E68, m1519.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds