organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(5-Chloro­thio­phen-2-yl)-1,2,3-selena­diazole

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Chemistry, Sri Sarada College for Women (Autonomus), Fairlands, Salem 636 016, India, and cDepartment of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 10 November 2012; accepted 3 December 2012; online 12 December 2012)

In the title compound, C6H3ClN2SSe, the selenadiazole and chloro­thio­phene rings are almost coplanar [dihedral angle = 5.24 (15)°]. In the crystal, C—H⋯N inter­actions link the mol­ecules into chains extending along the b-axis direction. C—H⋯π inter­actions also occur.

Related literature

For the biological activity of selenadiazole derivatives, see: El-Bahaie et al. (1990[El-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791-793.]); El-Kashef et al. (1986[El-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27-30.]); Padmavathi et al. (2002[Padmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9-12.]); Plano et al. (2010[Plano, D., Moreno, E., Font, M., Encio, I., Palop, J. A. & Sanmartin, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680-691.]); Stadtman (1991[Stadtman, T. C. (1991). J. Biol. Chem. 266, 16257-16260.]); Velusamy et al. (2005[Velusamy, M., Justin Thomas, K. R., Lin, J. T. & Wen, Y. S. (2005). Tetrahedron Lett. 46, 7647-7651.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H3ClN2SSe

  • Mr = 249.57

  • Monoclinic, P 21 /c

  • a = 6.0412 (3) Å

  • b = 19.5870 (11) Å

  • c = 7.2010 (4) Å

  • β = 110.257 (3)°

  • V = 799.38 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.22 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.330, Tmax = 0.391

  • 7064 measured reflections

  • 1978 independent reflections

  • 1558 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.121

  • S = 1.01

  • 1978 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1i 0.93 2.62 3.545 (5) 171
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Selenium containing compounds, like 1,2,3-selenadiazoles are of increasing interest because of their chemical properties and biological applications such as anti-bacterial (El-Kashef et al., 1986), anti-microbial (El-Bahaie et al., 1990),anti-cancer (Plano et al., 2010) and insecticidal (Padmavathi et al., 2002) activities. It has been found that the introduction of 1,2,3-selenadiazole ring system increase the biological activity. Selenium atom has a much larger size and less electronegativity than the sulfur atom, selenium containig compounds influence the electro-optical properties of the small molecules (Velusamy et al., 2005).

Glutathione peroxidases(GPx) are the antioxidant selenoenzymes protecting various organisms from oxidative stress by catalyzing the reduction of hydroperoxides at the expense of glutathione(GSH) (Stadtman, 1991). In view of the growing importance of selenium containing compounds, the crystal structure of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The bond lengths [Se1—N1] 1.870 (3) Å and [Se1—C1] 1.825 (4) Å are comparable with the values reported in the literature (Allen et al., 1987). The selenadiazole ring is planar [with the maximum deviation for atom C2 of 0.004 (3)°]. Both the selenadiazole ring and chlorothiophene ring are lie in a common plane, the corresponding torsion angle is [C4—C3—C2—N2] 175.5 (3)°.

The packing of the molecules is shown in Fig. 2. The crystal packing is stabilized by C—H···N intermolecular interactions, linking the molecules to chains extending along the b axis.

Related literature top

For the biological activity of selenadiazole derivatives, see: El-Bahaie et al. (1990); El-Kashef et al. (1986); Padmavathi et al. (2002); Plano et al. (2010); Stadtman (1991); Velusamy et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 2-acetyl-5-chlorothiophene (1 mmol), semicarbazide hydrochloride (2 mmol) and sodium acetate (3 mmol) in ethanol (10 ml) was refluxed for 4 hrs. After completion of the reaction as monitored by TLC, the mixture was poured into ice cold water and the resulting semicarbazone was filtered off. Then, a mixture of semicarbazone (1 mmol) and SeO2 (2 mmol) in tetrahydrofuran (10 ml) were refluxed on a water bath for 1 h. The selenium deposited on cooling was removed by filtration, and the filtrate was poured into crushed ice, extracted with dichloromethane, and purified by column chromatography using silica gel (60–120 mesh) with 97:3 petroleum ether: ethyl acetate as eluent to give 4-(5-chloro-2,5-dihydrothiophen-2-yl)-1,2,3-selenadiazole.

Refinement top

H atoms were positioned geometrically (C–H =0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) set to 1.2Ueq(C).

Structure description top

Selenium containing compounds, like 1,2,3-selenadiazoles are of increasing interest because of their chemical properties and biological applications such as anti-bacterial (El-Kashef et al., 1986), anti-microbial (El-Bahaie et al., 1990),anti-cancer (Plano et al., 2010) and insecticidal (Padmavathi et al., 2002) activities. It has been found that the introduction of 1,2,3-selenadiazole ring system increase the biological activity. Selenium atom has a much larger size and less electronegativity than the sulfur atom, selenium containig compounds influence the electro-optical properties of the small molecules (Velusamy et al., 2005).

Glutathione peroxidases(GPx) are the antioxidant selenoenzymes protecting various organisms from oxidative stress by catalyzing the reduction of hydroperoxides at the expense of glutathione(GSH) (Stadtman, 1991). In view of the growing importance of selenium containing compounds, the crystal structure of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The bond lengths [Se1—N1] 1.870 (3) Å and [Se1—C1] 1.825 (4) Å are comparable with the values reported in the literature (Allen et al., 1987). The selenadiazole ring is planar [with the maximum deviation for atom C2 of 0.004 (3)°]. Both the selenadiazole ring and chlorothiophene ring are lie in a common plane, the corresponding torsion angle is [C4—C3—C2—N2] 175.5 (3)°.

The packing of the molecules is shown in Fig. 2. The crystal packing is stabilized by C—H···N intermolecular interactions, linking the molecules to chains extending along the b axis.

For the biological activity of selenadiazole derivatives, see: El-Bahaie et al. (1990); El-Kashef et al. (1986); Padmavathi et al. (2002); Plano et al. (2010); Stadtman (1991); Velusamy et al. (2005). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing.
4-(5-Chlorothiophen-2-yl)-1,2,3-selenadiazole top
Crystal data top
C6H3ClN2SSeF(000) = 480
Mr = 249.57Dx = 2.074 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1558 reflections
a = 6.0412 (3) Åθ = 2.1–28.3°
b = 19.5870 (11) ŵ = 5.22 mm1
c = 7.2010 (4) ÅT = 293 K
β = 110.257 (3)°Black, white crystalline
V = 799.38 (7) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
1978 independent reflections
Radiation source: fine-focus sealed tube1558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 86
Tmin = 0.330, Tmax = 0.391k = 2526
7064 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0716P)2 + 0.3075P]
where P = (Fo2 + 2Fc2)/3
1978 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C6H3ClN2SSeV = 799.38 (7) Å3
Mr = 249.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0412 (3) ŵ = 5.22 mm1
b = 19.5870 (11) ÅT = 293 K
c = 7.2010 (4) Å0.22 × 0.20 × 0.18 mm
β = 110.257 (3)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
1978 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1558 reflections with I > 2σ(I)
Tmin = 0.330, Tmax = 0.391Rint = 0.044
7064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
1978 reflectionsΔρmin = 0.52 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3771 (6)0.60797 (19)0.2132 (5)0.0397 (7)
H10.52880.60780.20810.048*
C20.2578 (6)0.55180 (18)0.2343 (4)0.0333 (7)
C30.3344 (6)0.48114 (17)0.2494 (5)0.0328 (7)
C40.5358 (6)0.45391 (19)0.2353 (5)0.0412 (8)
H40.65320.47990.21340.049*
C50.5478 (6)0.38256 (19)0.2573 (5)0.0413 (8)
H50.67260.35620.25020.050*
C60.3579 (6)0.35688 (18)0.2896 (5)0.0376 (7)
Cl10.29911 (17)0.27326 (5)0.32523 (15)0.0529 (3)
N10.0347 (5)0.62617 (17)0.2239 (5)0.0482 (8)
N20.0334 (5)0.56419 (16)0.2406 (4)0.0428 (7)
S10.15880 (15)0.41890 (5)0.29606 (14)0.0408 (2)
Se10.19762 (7)0.684213 (19)0.19625 (6)0.04757 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0304 (16)0.0409 (19)0.0469 (18)0.0004 (14)0.0120 (14)0.0018 (15)
C20.0271 (15)0.0379 (18)0.0349 (15)0.0008 (12)0.0107 (12)0.0014 (13)
C30.0286 (15)0.0333 (16)0.0368 (15)0.0044 (13)0.0120 (13)0.0002 (13)
C40.0325 (17)0.0404 (19)0.056 (2)0.0015 (14)0.0216 (15)0.0038 (16)
C50.0336 (17)0.042 (2)0.055 (2)0.0011 (14)0.0232 (16)0.0024 (16)
C60.0353 (17)0.0351 (18)0.0427 (17)0.0030 (14)0.0138 (14)0.0027 (14)
Cl10.0501 (6)0.0375 (5)0.0727 (6)0.0066 (4)0.0234 (5)0.0031 (4)
N10.0335 (15)0.0461 (19)0.068 (2)0.0029 (13)0.0221 (15)0.0005 (15)
N20.0308 (14)0.0443 (18)0.0577 (18)0.0008 (13)0.0208 (13)0.0007 (14)
S10.0289 (4)0.0409 (5)0.0559 (5)0.0041 (3)0.0190 (4)0.0004 (4)
Se10.0375 (2)0.0371 (3)0.0659 (3)0.00047 (14)0.01514 (19)0.00089 (16)
Geometric parameters (Å, º) top
C1—C21.352 (5)C4—H40.9300
C1—Se11.825 (4)C5—C61.345 (5)
C1—H10.9300C5—H50.9300
C2—N21.394 (4)C6—Cl11.714 (4)
C2—C31.451 (5)C6—S11.721 (4)
C3—C41.364 (5)N1—N21.274 (4)
C3—S11.724 (3)N1—Se11.870 (3)
C4—C51.406 (5)
C2—C1—Se1110.2 (3)C5—C4—H4123.4
C2—C1—H1124.9C6—C5—C4112.2 (3)
Se1—C1—H1124.9C6—C5—H5123.9
C1—C2—N2115.1 (3)C4—C5—H5123.9
C1—C2—C3128.0 (3)C5—C6—Cl1128.1 (3)
N2—C2—C3116.9 (3)C5—C6—S1112.7 (3)
C4—C3—C2129.5 (3)Cl1—C6—S1119.2 (2)
C4—C3—S1111.3 (3)N2—N1—Se1111.1 (2)
C2—C3—S1119.2 (2)N1—N2—C2116.7 (3)
C3—C4—C5113.1 (3)C3—S1—C690.63 (17)
C3—C4—H4123.4C1—Se1—N186.89 (15)
Se1—C1—C2—N20.7 (4)C4—C5—C6—S10.4 (4)
Se1—C1—C2—C3178.8 (3)Se1—N1—N2—C20.3 (4)
C1—C2—C3—C44.0 (6)C1—C2—N2—N10.7 (5)
N2—C2—C3—C4175.4 (3)C3—C2—N2—N1178.8 (3)
C1—C2—C3—S1174.7 (3)C4—C3—S1—C61.4 (3)
N2—C2—C3—S15.8 (4)C2—C3—S1—C6179.7 (3)
C2—C3—C4—C5179.7 (3)C5—C6—S1—C31.0 (3)
S1—C3—C4—C51.4 (4)Cl1—C6—S1—C3179.5 (2)
C3—C4—C5—C60.7 (5)C2—C1—Se1—N10.4 (3)
C4—C5—C6—Cl1179.8 (3)N2—N1—Se1—C10.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.623.545 (5)171
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H3ClN2SSe
Mr249.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.0412 (3), 19.5870 (11), 7.2010 (4)
β (°) 110.257 (3)
V3)799.38 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.22
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.330, 0.391
No. of measured, independent and
observed [I > 2σ(I)] reflections
7064, 1978, 1558
Rint0.044
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.121, 1.01
No. of reflections1978
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.52

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.623.545 (5)170.7
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the TBI Consultancy, University of Madras, India, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791–793.  CAS PubMed Web of Science Google Scholar
First citationEl-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27–30.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPadmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9–12.  CAS Google Scholar
First citationPlano, D., Moreno, E., Font, M., Encio, I., Palop, J. A. & Sanmartin, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680–691.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadtman, T. C. (1991). J. Biol. Chem. 266, 16257–16260.  PubMed CAS Web of Science Google Scholar
First citationVelusamy, M., Justin Thomas, K. R., Lin, J. T. & Wen, Y. S. (2005). Tetrahedron Lett. 46, 7647–7651.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds