metal-organic compounds
catena-Poly[[[O,O′-bis(2-methylphenyl) dithiophosphato-κ2S,S]lead(II)]-μ-O,O′-bis(2-methylphenyl) dithiophosphato-κ3S,S′:S]
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bDepartment of Pure & Applied Chemistry, M.D.S. University, Ajmer 305 009, India, and cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: rbutcher99@yahoo.com
In the title compound, [Pb(C14H14O2PS2)2]n, the metal atom is surrounded by two O,O′-bis(2-methylphenyl) dithiophosphate ligands bonding through the S-donor atoms. Three of the Pb—S bond lengths are are close to each other at 2.7710 (18), 2.8104 (16) and 2.8205 (16) Å, while the fourth Pb—S bond is elongated at 3.0910 (18) Å and reflects the fact that this atom is involved in intermolecular bridging to an adjacent PbII atom [Pb—S = 3.145 (2) Å]. The bond angles demonstrate that the PbII atom contains a stereochemically active lone pair with a distorted octahedral geometry about the PbII atom. This distortion is shown by the S—Pb—S bite angles of 73.63 (4) and 69.50 (4)°, while the remaining S—Pb—S angles range from 81.03 (5) to 143.66 (5)°. One of the benzene rings shows positional disorder over two orientations with occupancy factors of 0.747 (11) and 0.253 (11).
Related literature
For applications of related O,O′-dialkyl derivatives of phosphorus(V) dithioacids, see: Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988). For general and convenient methods for the preparation of dithiophosphato salt derivatives and their metal derivatives, see: Bajia et al. (2009); Maheshwari et al. (2009); Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988); Van Zyl & Fackler, (2000); Van Zyl (2010). For VSEPR theory, see: Gillespie & Nyholm (1957). For stereochemically active lone pairs in Pb2+ complexes, see: Davidovich et al. (2010); Ito & Maeda (2004); Larsson et al. (2004); Lawton & Kokotailo (1972).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812047964/bt6859sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812047964/bt6859Isup2.hkl
Title compound was published methods (Bajia et al., 2009; Maheshwari et al., 2009; Lawton & Kokotailo, 1969; Lawton & Kokotailo, 1972; Ito, 1972; Harrison et al., 1988). Crystals were grown by slow evaporation of a mixture of absolute ethyl alcohol (90%) and chloroform (10%) solution.
All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96(CH3) Å and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.69 Å from Pb the deepest hole 0.82 Å from Pb.
In the molecule one 1-methoxy-2-methyl-benzene ring (O4—C22—C28) shows positional disorder in a 0.747 (1):0.253 (1) ratio. The highest maximum (0.69 e/Å3) in the final difference map is at 1.12 Å from Pb and the deepest hole (0.82 e/Å3) is at -1.15 Å from Pb. Nine outliers, (-12 - 5 12), (-13 - 4 11), (-14 - 3 10), (-12 - 6 10), (-7 - 11 7), (-13 - 5 10), (0 - 8 12), (0 1 15) and (-5 - 12 6), were omitted in the final refinement.
The SIMU and DELU constraint instructions in SHELXL97 were used for atoms O4/O4a, C22/C22a, C23/C23a, C24/C24a, C25/C25a, C26/C26a, C27/C27a,C28/C28a and ISOR (0.01) was used for atoms C24a and C26a in order to model the disorder properly during the refinement.
O,O'-Dialkyl derivatives of phosphorus(V) dithioacids are characterized by wide possibilities for practical applications in various areas, namely, as flotation reagents (in the concentration of sulfide ores of nonferrous metals), fungicides, insecticides, herbicides, antioxidants, additives to lubricating oils, and technological precursors of film
of transition and nontransition metals. The structural variety of metal complexes with dialkyldithiophosphates has been explained in terms of coordination chemistry by the ability of these compounds to perform different structural functions and act as bidentate terminal, bidentate bridging or combined ligands. As a result, compounds with different types of structural organization can be formed: mono-, bi-, tetra-, or polynuclear complexes. A unique alternation of the conformationally different (`chair`-`saddle`) eight-membered rings [Cd2S4P2] has been revealed in the chains of polynuclear cadmium(II) complexes [Cd{S(S)P(OR)2}2]n (Lawton & Kokotailo, 1969; Lawton & Kokotailo, 1972; Ito, 1972; Harrison et al., 1988). General and convenient methods to prepare dithiophosphato salt derivatives have been reported (Van Zyl & Fackler, 2000; Van Zyl, 2010). In view of the importance of these compounds and in continuation of our earlier work (Bajia et al., 2009; Maheshwari et al., 2009) we have undertaken the determination of the title compound, and the results are presented here. Pb2+ complexes of these types of ligands are of particular interest because of the possibility of exhibiting stereochemically active lone pairs (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The structure consists of a linear zigzag chain of molecules in the b direction composed of one Pb atom and two chelating bis(2-methylphenyl) phosphato ligands and linked by Pb—S—Pb bonds. The two bis(2-methylphenyl) phosphato ligands are coordinated through both S atoms to the metal. Three of the Pb—S bond lengths are insignificantly different at 2.7710 (18), 2.8104 (16) and 2.8205 (16) Å, while the fourth Pb—S bond is elongated at 3.0910 (18) Å and reflects the fact that this atom is involved in intermolecular bridging (symmetry code, 2 - x,1/2 + y,1 - z) to an adjacent Pb (intermolecular Pb—S distance, 3.145 (2) Å).
The bond angles reflect the fact that Pb contains a stereochemically active lone pair so the geometry about the Pb is best described using VSEPR theory as AX5E (Gillespie & Nyholm, 1957) and is thus distorted octahedral. The S—Pb—S bite angles are small at 73.63 (4) and 69.50 (4)° while the remaining S—Pb—S angles range from 81.03 (5) to 143.66 (5)°. Thus the relative bond distances and angles for the title compound agree with the presence of an electron lone pair in a distorted octahedral PbS5E (with one S as a bridging ligand) environment. Evidence for the presence of a stereochemically active electron lone pair of the lead atom has also been reported for other Pb2+ complexes with similar ligands (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).
In the molecule one of the 1-methoxy-2-methyl-benzene rings (O4—C22—C28) shows positional disorder over two orientations with occupancy ratio of 0.747 (11):0.253 (11).
No evidence for C—H···O or C—H···S interactions were found in the crystal.
For applications of related O,O'-dialkyl derivatives of phosphorus(V) dithioacids, see: Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988). For general and convenient methods for the preparation of dithiophosphato salt derivatives and their metal derivatives, see: Bajia et al. (2009); Maheshwari et al. (2009); Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988); Van Zyl & Fackler, (2000); Van Zyl (2010). For VSEPR theory, see: Gillespie & Nyholm (1957). For stereochemically active lone pairs in Pb2+ complexes, see: Davidovich et al. (2010); Ito & Maeda (2004); Larsson et al. (2004); Lawton & Kokotailo (1972).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Pb(C14H14O2PS2)2] | F(000) = 808 |
Mr = 825.87 | Dx = 1.765 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2yb | Cell parameters from 4674 reflections |
a = 12.0263 (6) Å | θ = 3.7–75.4° |
b = 10.7420 (4) Å | µ = 14.31 mm−1 |
c = 13.0499 (8) Å | T = 123 K |
β = 112.849 (6)° | Needle, colorless |
V = 1553.58 (15) Å3 | 0.46 × 0.05 × 0.03 mm |
Z = 2 |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 4494 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 4269 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 75.6°, θmin = 3.7° |
ω scans | h = −15→14 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)] | k = −13→8 |
Tmin = 0.094, Tmax = 0.675 | l = −14→16 |
10226 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0329P)2 + 1.1401P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.007 |
4494 reflections | Δρmax = 1.12 e Å−3 |
406 parameters | Δρmin = −1.15 e Å−3 |
55 restraints | Absolute structure: Flack (1983), 1093 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.03 (8) |
[Pb(C14H14O2PS2)2] | V = 1553.58 (15) Å3 |
Mr = 825.87 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 12.0263 (6) Å | µ = 14.31 mm−1 |
b = 10.7420 (4) Å | T = 123 K |
c = 13.0499 (8) Å | 0.46 × 0.05 × 0.03 mm |
β = 112.849 (6)° |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 4494 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)] | 4269 reflections with I > 2σ(I) |
Tmin = 0.094, Tmax = 0.675 | Rint = 0.045 |
10226 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.075 | Δρmax = 1.12 e Å−3 |
S = 1.03 | Δρmin = −1.15 e Å−3 |
4494 reflections | Absolute structure: Flack (1983), 1093 Friedel pairs |
406 parameters | Absolute structure parameter: −0.03 (8) |
55 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.58111 (14) | 0.59159 (15) | 0.27999 (13) | 0.0313 (3) | |
P2 | 0.94672 (15) | 0.36924 (17) | 0.63559 (15) | 0.0397 (4) | |
S1 | 0.65999 (14) | 0.43767 (15) | 0.25837 (14) | 0.0372 (3) | |
S2 | 0.68892 (13) | 0.72496 (15) | 0.37035 (14) | 0.0360 (3) | |
S3 | 0.97595 (15) | 0.29732 (17) | 0.50949 (16) | 0.0426 (4) | |
S4 | 0.84998 (14) | 0.52418 (15) | 0.60457 (14) | 0.0428 (4) | |
Pb | 0.874757 (17) | 0.55165 (2) | 0.403361 (19) | 0.03788 (6) | |
O1 | 0.4862 (3) | 0.5601 (6) | 0.3355 (3) | 0.0329 (9) | |
O2 | 0.5005 (4) | 0.6443 (4) | 0.1582 (4) | 0.0354 (9) | |
O3 | 0.8792 (4) | 0.2724 (5) | 0.6864 (4) | 0.0452 (12) | |
C1 | 0.4143 (5) | 0.4517 (6) | 0.3029 (5) | 0.0334 (13) | |
C2 | 0.3246 (6) | 0.4438 (7) | 0.1981 (6) | 0.0379 (14) | |
H2A | 0.3119 | 0.5086 | 0.1476 | 0.045* | |
C3 | 0.2528 (7) | 0.3365 (8) | 0.1688 (7) | 0.0470 (17) | |
H3A | 0.1930 | 0.3288 | 0.0978 | 0.056* | |
C4 | 0.2710 (7) | 0.2427 (7) | 0.2451 (7) | 0.0483 (17) | |
H4A | 0.2230 | 0.1717 | 0.2261 | 0.058* | |
C5 | 0.3608 (7) | 0.2538 (7) | 0.3502 (7) | 0.0453 (16) | |
H5A | 0.3726 | 0.1893 | 0.4008 | 0.054* | |
C6 | 0.4350 (5) | 0.3602 (6) | 0.3828 (5) | 0.0350 (13) | |
C7 | 0.5306 (6) | 0.3735 (8) | 0.4978 (7) | 0.0502 (19) | |
H7A | 0.5198 | 0.4510 | 0.5295 | 0.075* | |
H7B | 0.6088 | 0.3722 | 0.4941 | 0.075* | |
H7C | 0.5244 | 0.3059 | 0.5434 | 0.075* | |
C8 | 0.4551 (6) | 0.7671 (6) | 0.1443 (5) | 0.0359 (13) | |
C9 | 0.3744 (6) | 0.8024 (8) | 0.1895 (6) | 0.0424 (15) | |
H9A | 0.3508 | 0.7464 | 0.2316 | 0.051* | |
C10 | 0.3283 (7) | 0.9222 (8) | 0.1720 (7) | 0.0490 (17) | |
H10A | 0.2754 | 0.9479 | 0.2042 | 0.059* | |
C11 | 0.3614 (8) | 1.0035 (8) | 0.1062 (7) | 0.0534 (19) | |
H11A | 0.3286 | 1.0832 | 0.0918 | 0.064* | |
C12 | 0.4437 (9) | 0.9654 (8) | 0.0621 (6) | 0.054 (2) | |
H12A | 0.4653 | 1.0207 | 0.0181 | 0.064* | |
C13 | 0.4950 (7) | 0.8473 (7) | 0.0814 (6) | 0.0407 (15) | |
C14 | 0.5853 (8) | 0.8076 (8) | 0.0345 (7) | 0.0540 (19) | |
H14A | 0.6487 | 0.7610 | 0.0895 | 0.081* | |
H14B | 0.6188 | 0.8798 | 0.0139 | 0.081* | |
H14C | 0.5461 | 0.7565 | −0.0299 | 0.081* | |
C15 | 0.9162 (7) | 0.1475 (8) | 0.7050 (7) | 0.0428 (17) | |
C16 | 1.0210 (8) | 0.1178 (10) | 0.7962 (7) | 0.051 (2) | |
H16A | 1.0669 | 0.1801 | 0.8430 | 0.061* | |
C17 | 1.0567 (9) | −0.0087 (11) | 0.8169 (9) | 0.065 (3) | |
H17A | 1.1253 | −0.0315 | 0.8779 | 0.078* | |
C18 | 0.9857 (8) | −0.0971 (9) | 0.7428 (9) | 0.061 (2) | |
H18A | 1.0086 | −0.1803 | 0.7544 | 0.073* | |
C19 | 0.8856 (8) | −0.0673 (8) | 0.6553 (8) | 0.055 (2) | |
H19A | 0.8409 | −0.1305 | 0.6088 | 0.065* | |
C20 | 0.8456 (5) | 0.0560 (12) | 0.6314 (6) | 0.0472 (15) | |
C21 | 0.7325 (7) | 0.0918 (8) | 0.5346 (7) | 0.0509 (19) | |
H21A | 0.7496 | 0.1594 | 0.4949 | 0.076* | |
H21B | 0.6720 | 0.1171 | 0.5613 | 0.076* | |
H21C | 0.7036 | 0.0217 | 0.4858 | 0.076* | |
O4 | 1.0800 (7) | 0.3917 (8) | 0.7289 (7) | 0.043 (2) | 0.747 (11) |
C22 | 1.0991 (7) | 0.4823 (6) | 0.8088 (6) | 0.040 (3) | 0.747 (11) |
C23 | 1.0368 (7) | 0.4817 (8) | 0.8790 (7) | 0.058 (3) | 0.747 (11) |
H23 | 0.9802 | 0.4199 | 0.8721 | 0.069* | 0.747 (11) |
C24 | 1.0591 (9) | 0.5736 (10) | 0.9595 (6) | 0.077 (6) | 0.747 (11) |
H24 | 1.0175 | 0.5733 | 1.0065 | 0.093* | 0.747 (11) |
C25 | 1.1437 (10) | 0.6661 (8) | 0.9699 (6) | 0.080 (5) | 0.747 (11) |
H25 | 1.1586 | 0.7276 | 1.0238 | 0.096* | 0.747 (11) |
C26 | 1.2060 (8) | 0.6666 (7) | 0.8997 (8) | 0.071 (5) | 0.747 (11) |
H26 | 1.2625 | 0.7285 | 0.9066 | 0.086* | 0.747 (11) |
C27 | 1.1836 (7) | 0.5747 (7) | 0.8192 (7) | 0.058 (3) | 0.747 (11) |
C28 | 1.2475 (11) | 0.5753 (14) | 0.7405 (11) | 0.064 (4) | 0.747 (11) |
H28A | 1.3050 | 0.6422 | 0.7596 | 0.096* | 0.747 (11) |
H28B | 1.1897 | 0.5867 | 0.6658 | 0.096* | 0.747 (11) |
H28C | 1.2887 | 0.4976 | 0.7458 | 0.096* | 0.747 (11) |
O4A | 1.0570 (17) | 0.374 (2) | 0.762 (2) | 0.044 (6) | 0.253 (11) |
C22A | 1.1269 (15) | 0.4788 (17) | 0.7926 (16) | 0.054 (11) | 0.253 (11) |
C23A | 1.2071 (17) | 0.5125 (19) | 0.7443 (16) | 0.048 (8) | 0.253 (11) |
H23A | 1.2118 | 0.4653 | 0.6863 | 0.057* | 0.253 (11) |
C24A | 1.2802 (16) | 0.617 (2) | 0.7825 (18) | 0.045 (8) | 0.253 (11) |
H24A | 1.3339 | 0.6391 | 0.7502 | 0.055* | 0.253 (11) |
C25A | 1.2731 (19) | 0.6870 (18) | 0.8691 (18) | 0.060 (10) | 0.253 (11) |
H25A | 1.3221 | 0.7567 | 0.8947 | 0.072* | 0.253 (11) |
C26A | 1.193 (2) | 0.653 (2) | 0.9175 (16) | 0.045 (8) | 0.253 (11) |
H26A | 1.1882 | 0.7005 | 0.9755 | 0.054* | 0.253 (11) |
C27A | 1.1198 (16) | 0.549 (2) | 0.8793 (16) | 0.053 (7) | 0.253 (11) |
C28A | 1.030 (3) | 0.511 (6) | 0.927 (3) | 0.09 (2) | 0.253 (11) |
H28D | 1.0442 | 0.4262 | 0.9514 | 0.134* | 0.253 (11) |
H28E | 0.9498 | 0.5189 | 0.8710 | 0.134* | 0.253 (11) |
H28F | 1.0381 | 0.5638 | 0.9889 | 0.134* | 0.253 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0341 (6) | 0.0230 (7) | 0.0404 (7) | 0.0005 (5) | 0.0186 (6) | 0.0006 (5) |
P2 | 0.0325 (7) | 0.0354 (9) | 0.0492 (9) | 0.0053 (7) | 0.0139 (6) | −0.0042 (7) |
S1 | 0.0395 (7) | 0.0256 (8) | 0.0518 (8) | 0.0014 (6) | 0.0234 (6) | −0.0039 (6) |
S2 | 0.0345 (7) | 0.0259 (7) | 0.0480 (8) | −0.0006 (6) | 0.0163 (6) | −0.0032 (6) |
S3 | 0.0477 (10) | 0.0303 (8) | 0.0595 (10) | 0.0064 (8) | 0.0314 (8) | 0.0042 (7) |
S4 | 0.0401 (7) | 0.0366 (12) | 0.0516 (8) | 0.0103 (6) | 0.0178 (6) | −0.0056 (6) |
Pb | 0.03314 (9) | 0.02947 (11) | 0.05628 (12) | −0.00011 (13) | 0.02308 (8) | −0.00157 (14) |
O1 | 0.0358 (16) | 0.028 (2) | 0.0381 (17) | −0.001 (2) | 0.0180 (14) | 0.001 (2) |
O2 | 0.045 (2) | 0.024 (2) | 0.041 (2) | −0.0006 (18) | 0.0196 (19) | 0.0013 (17) |
O3 | 0.042 (2) | 0.047 (3) | 0.051 (3) | 0.010 (2) | 0.024 (2) | 0.002 (2) |
C1 | 0.036 (3) | 0.029 (3) | 0.043 (3) | 0.002 (2) | 0.022 (2) | −0.003 (2) |
C2 | 0.041 (3) | 0.036 (4) | 0.042 (3) | −0.004 (3) | 0.021 (3) | 0.000 (3) |
C3 | 0.047 (4) | 0.044 (4) | 0.055 (4) | −0.008 (3) | 0.025 (3) | −0.009 (3) |
C4 | 0.058 (4) | 0.031 (4) | 0.067 (4) | −0.012 (3) | 0.037 (4) | −0.010 (3) |
C5 | 0.049 (3) | 0.031 (4) | 0.069 (4) | 0.003 (3) | 0.038 (3) | 0.008 (3) |
C6 | 0.035 (3) | 0.033 (3) | 0.045 (3) | 0.007 (3) | 0.024 (2) | 0.010 (3) |
C7 | 0.036 (3) | 0.054 (5) | 0.061 (4) | 0.006 (3) | 0.020 (3) | 0.022 (4) |
C8 | 0.040 (3) | 0.028 (3) | 0.038 (3) | −0.003 (3) | 0.013 (2) | 0.001 (2) |
C9 | 0.042 (3) | 0.041 (4) | 0.046 (3) | 0.004 (3) | 0.019 (3) | 0.002 (3) |
C10 | 0.055 (4) | 0.041 (4) | 0.051 (4) | 0.015 (3) | 0.020 (3) | 0.006 (3) |
C11 | 0.075 (5) | 0.040 (4) | 0.052 (4) | 0.015 (4) | 0.032 (4) | 0.006 (3) |
C12 | 0.083 (5) | 0.039 (4) | 0.044 (4) | 0.006 (4) | 0.030 (4) | 0.012 (3) |
C13 | 0.054 (4) | 0.028 (3) | 0.042 (3) | 0.003 (3) | 0.021 (3) | −0.001 (3) |
C14 | 0.079 (5) | 0.038 (4) | 0.058 (4) | −0.004 (4) | 0.040 (4) | −0.001 (3) |
C15 | 0.047 (4) | 0.044 (4) | 0.050 (4) | 0.009 (3) | 0.032 (3) | 0.008 (3) |
C16 | 0.050 (4) | 0.062 (6) | 0.045 (4) | 0.012 (4) | 0.024 (3) | 0.006 (4) |
C17 | 0.057 (5) | 0.079 (7) | 0.062 (5) | 0.029 (5) | 0.027 (4) | 0.027 (5) |
C18 | 0.059 (5) | 0.044 (5) | 0.095 (7) | 0.012 (4) | 0.046 (5) | 0.019 (4) |
C19 | 0.069 (5) | 0.035 (4) | 0.084 (6) | 0.002 (4) | 0.055 (5) | 0.007 (4) |
C20 | 0.044 (3) | 0.047 (4) | 0.063 (3) | 0.001 (5) | 0.034 (3) | 0.010 (5) |
C21 | 0.043 (3) | 0.047 (4) | 0.067 (5) | −0.003 (3) | 0.027 (3) | 0.001 (3) |
O4 | 0.033 (4) | 0.047 (4) | 0.049 (4) | 0.004 (3) | 0.018 (3) | −0.007 (3) |
C22 | 0.046 (5) | 0.036 (6) | 0.034 (5) | 0.000 (4) | 0.010 (4) | −0.007 (4) |
C23 | 0.067 (7) | 0.068 (8) | 0.040 (6) | 0.013 (6) | 0.022 (5) | 0.001 (5) |
C24 | 0.087 (10) | 0.098 (16) | 0.037 (6) | 0.031 (9) | 0.012 (6) | −0.004 (7) |
C25 | 0.087 (10) | 0.064 (9) | 0.052 (7) | 0.012 (8) | −0.013 (7) | −0.013 (6) |
C26 | 0.073 (9) | 0.046 (7) | 0.058 (8) | 0.003 (7) | −0.015 (7) | −0.004 (6) |
C27 | 0.050 (5) | 0.054 (9) | 0.055 (6) | 0.001 (5) | 0.003 (4) | 0.017 (5) |
C28 | 0.042 (6) | 0.060 (10) | 0.082 (8) | −0.012 (6) | 0.014 (6) | 0.020 (7) |
O4A | 0.014 (8) | 0.058 (14) | 0.056 (14) | 0.003 (8) | 0.010 (8) | −0.007 (11) |
C22A | 0.044 (17) | 0.05 (2) | 0.047 (18) | 0.011 (15) | −0.003 (15) | 0.016 (15) |
C23A | 0.028 (13) | 0.044 (19) | 0.067 (19) | −0.008 (12) | 0.014 (13) | −0.015 (14) |
C24A | 0.039 (10) | 0.044 (11) | 0.051 (10) | −0.010 (8) | 0.015 (8) | 0.005 (8) |
C25A | 0.047 (17) | 0.042 (18) | 0.06 (2) | −0.017 (15) | −0.008 (15) | 0.011 (15) |
C26A | 0.050 (11) | 0.040 (11) | 0.033 (10) | −0.003 (8) | 0.005 (8) | −0.001 (8) |
C27A | 0.033 (10) | 0.060 (16) | 0.072 (15) | 0.016 (18) | 0.025 (10) | 0.03 (2) |
C28A | 0.039 (15) | 0.19 (8) | 0.04 (2) | −0.01 (3) | 0.015 (16) | −0.02 (3) |
P1—O1 | 1.608 (4) | C15—C16 | 1.394 (11) |
P1—O2 | 1.609 (5) | C15—C20 | 1.406 (14) |
P1—S1 | 1.980 (2) | C16—C17 | 1.419 (13) |
P1—S2 | 1.984 (2) | C16—H16A | 0.9300 |
P2—O3 | 1.612 (6) | C17—C18 | 1.388 (15) |
P2—O4 | 1.611 (8) | C17—H17A | 0.9300 |
P2—O4A | 1.67 (2) | C18—C19 | 1.337 (14) |
P2—S3 | 1.969 (3) | C18—H18A | 0.9300 |
P2—S4 | 1.980 (2) | C19—C20 | 1.403 (15) |
S1—Pb | 2.8205 (16) | C19—H19A | 0.9300 |
S2—Pb | 2.8104 (16) | C20—C21 | 1.503 (10) |
S3—Pb | 3.0910 (18) | C21—H21A | 0.9600 |
S4—Pb | 2.7710 (18) | C21—H21B | 0.9600 |
O1—C1 | 1.414 (8) | C21—H21C | 0.9600 |
O2—C8 | 1.413 (8) | O4—C22 | 1.379 (9) |
O3—C15 | 1.404 (10) | C22—C23 | 1.3900 |
C1—C2 | 1.376 (9) | C22—C27 | 1.3900 |
C1—C6 | 1.384 (9) | C23—C24 | 1.3900 |
C2—C3 | 1.402 (10) | C23—H23 | 0.9300 |
C2—H2A | 0.9300 | C24—C25 | 1.3900 |
C3—C4 | 1.373 (12) | C24—H24 | 0.9300 |
C3—H3A | 0.9300 | C25—C26 | 1.3900 |
C4—C5 | 1.382 (12) | C25—H25 | 0.9300 |
C4—H4A | 0.9300 | C26—C27 | 1.3900 |
C5—C6 | 1.410 (10) | C26—H26 | 0.9300 |
C5—H5A | 0.9300 | C27—C28 | 1.502 (14) |
C6—C7 | 1.501 (10) | C28—H28A | 0.9600 |
C7—H7A | 0.9600 | C28—H28B | 0.9600 |
C7—H7B | 0.9600 | C28—H28C | 0.9600 |
C7—H7C | 0.9600 | O4A—C22A | 1.371 (16) |
C8—C9 | 1.370 (10) | C22A—C23A | 1.3900 |
C8—C13 | 1.397 (10) | C22A—C27A | 1.3900 |
C9—C10 | 1.384 (11) | C23A—C24A | 1.3900 |
C9—H9A | 0.9300 | C23A—H23A | 0.9300 |
C10—C11 | 1.387 (12) | C24A—C25A | 1.3900 |
C10—H10A | 0.9300 | C24A—H24A | 0.9300 |
C11—C12 | 1.387 (12) | C25A—C26A | 1.3900 |
C11—H11A | 0.9300 | C25A—H25A | 0.9300 |
C12—C13 | 1.391 (11) | C26A—C27A | 1.3900 |
C12—H12A | 0.9300 | C26A—H26A | 0.9300 |
C13—C14 | 1.500 (11) | C27A—C28A | 1.50 (2) |
C14—H14A | 0.9600 | C28A—H28D | 0.9600 |
C14—H14B | 0.9600 | C28A—H28E | 0.9600 |
C14—H14C | 0.9600 | C28A—H28F | 0.9600 |
O1—P1—O2 | 104.9 (2) | H14A—C14—H14B | 109.5 |
O1—P1—S1 | 110.6 (2) | C13—C14—H14C | 109.5 |
O2—P1—S1 | 106.93 (19) | H14A—C14—H14C | 109.5 |
O1—P1—S2 | 107.4 (2) | H14B—C14—H14C | 109.5 |
O2—P1—S2 | 109.71 (19) | C16—C15—O3 | 119.2 (8) |
S1—P1—S2 | 116.68 (10) | C16—C15—C20 | 122.0 (9) |
O3—P2—O4 | 107.3 (4) | O3—C15—C20 | 118.9 (7) |
O3—P2—O4A | 87.0 (8) | C15—C16—C17 | 119.2 (9) |
O4—P2—O4A | 21.9 (7) | C15—C16—H16A | 120.4 |
O3—P2—S3 | 111.9 (2) | C17—C16—H16A | 120.4 |
O4—P2—S3 | 104.0 (3) | C18—C17—C16 | 117.7 (9) |
O4A—P2—S3 | 120.3 (8) | C18—C17—H17A | 121.2 |
O3—P2—S4 | 106.1 (2) | C16—C17—H17A | 121.2 |
O4—P2—S4 | 111.2 (3) | C19—C18—C17 | 122.5 (9) |
O4A—P2—S4 | 110.9 (8) | C19—C18—H18A | 118.8 |
S3—P2—S4 | 116.12 (12) | C17—C18—H18A | 118.8 |
P1—S1—Pb | 84.63 (7) | C18—C19—C20 | 122.3 (9) |
P1—S2—Pb | 84.84 (7) | C18—C19—H19A | 118.9 |
P2—S3—Pb | 81.99 (8) | C20—C19—H19A | 118.9 |
P2—S4—Pb | 90.71 (8) | C19—C20—C15 | 116.4 (8) |
S4—Pb—S2 | 81.03 (5) | C19—C20—C21 | 123.3 (9) |
S4—Pb—S1 | 100.49 (5) | C15—C20—C21 | 120.3 (10) |
S2—Pb—S1 | 73.63 (4) | C20—C21—H21A | 109.5 |
S4—Pb—S3 | 69.50 (4) | C20—C21—H21B | 109.5 |
S2—Pb—S3 | 143.66 (5) | H21A—C21—H21B | 109.5 |
S1—Pb—S3 | 90.89 (5) | C20—C21—H21C | 109.5 |
C1—O1—P1 | 119.7 (4) | H21A—C21—H21C | 109.5 |
C8—O2—P1 | 120.7 (4) | H21B—C21—H21C | 109.5 |
C15—O3—P2 | 120.7 (5) | C22—O4—P2 | 120.1 (6) |
C2—C1—C6 | 123.2 (6) | O4—C22—C23 | 121.4 (6) |
C2—C1—O1 | 120.1 (6) | O4—C22—C27 | 118.6 (6) |
C6—C1—O1 | 116.6 (6) | C23—C22—C27 | 120.0 |
C1—C2—C3 | 118.9 (7) | C22—C23—C24 | 120.0 |
C1—C2—H2A | 120.5 | C22—C23—H23 | 120.0 |
C3—C2—H2A | 120.5 | C24—C23—H23 | 120.0 |
C4—C3—C2 | 119.9 (7) | C25—C24—C23 | 120.0 |
C4—C3—H3A | 120.1 | C25—C24—H24 | 120.0 |
C2—C3—H3A | 120.1 | C23—C24—H24 | 120.0 |
C3—C4—C5 | 119.9 (7) | C26—C25—C24 | 120.0 |
C3—C4—H4A | 120.0 | C26—C25—H25 | 120.0 |
C5—C4—H4A | 120.0 | C24—C25—H25 | 120.0 |
C4—C5—C6 | 121.9 (7) | C27—C26—C25 | 120.0 |
C4—C5—H5A | 119.0 | C27—C26—H26 | 120.0 |
C6—C5—H5A | 119.0 | C25—C26—H26 | 120.0 |
C1—C6—C5 | 116.1 (6) | C26—C27—C22 | 120.0 |
C1—C6—C7 | 122.0 (6) | C26—C27—C28 | 120.9 (8) |
C5—C6—C7 | 121.9 (6) | C22—C27—C28 | 119.1 (8) |
C6—C7—H7A | 109.5 | C22A—O4A—P2 | 118.4 (18) |
C6—C7—H7B | 109.5 | O4A—C22A—C23A | 122.3 (15) |
H7A—C7—H7B | 109.5 | O4A—C22A—C27A | 117.6 (15) |
C6—C7—H7C | 109.5 | C23A—C22A—C27A | 120.0 |
H7A—C7—H7C | 109.5 | C24A—C23A—C22A | 120.0 |
H7B—C7—H7C | 109.5 | C24A—C23A—H23A | 120.0 |
C9—C8—C13 | 123.0 (7) | C22A—C23A—H23A | 120.0 |
C9—C8—O2 | 120.4 (6) | C25A—C24A—C23A | 120.0 |
C13—C8—O2 | 116.6 (6) | C25A—C24A—H24A | 120.0 |
C8—C9—C10 | 119.4 (7) | C23A—C24A—H24A | 120.0 |
C8—C9—H9A | 120.3 | C24A—C25A—C26A | 120.0 |
C10—C9—H9A | 120.3 | C24A—C25A—H25A | 120.0 |
C9—C10—C11 | 119.7 (8) | C26A—C25A—H25A | 120.0 |
C9—C10—H10A | 120.2 | C27A—C26A—C25A | 120.0 |
C11—C10—H10A | 120.2 | C27A—C26A—H26A | 120.0 |
C12—C11—C10 | 119.6 (8) | C25A—C26A—H26A | 120.0 |
C12—C11—H11A | 120.2 | C26A—C27A—C22A | 120.0 |
C10—C11—H11A | 120.2 | C26A—C27A—C28A | 122 (2) |
C11—C12—C13 | 122.1 (8) | C22A—C27A—C28A | 118 (2) |
C11—C12—H12A | 118.9 | C27A—C28A—H28D | 109.5 |
C13—C12—H12A | 118.9 | C27A—C28A—H28E | 109.5 |
C12—C13—C8 | 116.1 (7) | H28D—C28A—H28E | 109.5 |
C12—C13—C14 | 121.7 (7) | C27A—C28A—H28F | 109.5 |
C8—C13—C14 | 122.2 (7) | H28D—C28A—H28F | 109.5 |
C13—C14—H14A | 109.5 | H28E—C28A—H28F | 109.5 |
C13—C14—H14B | 109.5 | ||
O1—P1—S1—Pb | −118.69 (17) | C10—C11—C12—C13 | 0.0 (14) |
O2—P1—S1—Pb | 127.58 (19) | C11—C12—C13—C8 | 2.5 (12) |
S2—P1—S1—Pb | 4.39 (10) | C11—C12—C13—C14 | −179.2 (8) |
O1—P1—S2—Pb | 120.3 (2) | C9—C8—C13—C12 | −2.9 (11) |
O2—P1—S2—Pb | −126.2 (2) | O2—C8—C13—C12 | 175.9 (6) |
S1—P1—S2—Pb | −4.41 (11) | C9—C8—C13—C14 | 178.8 (7) |
O3—P2—S3—Pb | 133.5 (2) | O2—C8—C13—C14 | −2.4 (10) |
O4—P2—S3—Pb | −110.9 (4) | P2—O3—C15—C16 | 75.9 (8) |
O4A—P2—S3—Pb | −126.8 (9) | P2—O3—C15—C20 | −104.6 (7) |
S4—P2—S3—Pb | 11.61 (11) | O3—C15—C16—C17 | 178.3 (9) |
O3—P2—S4—Pb | −137.8 (2) | C20—C15—C16—C17 | −1.1 (13) |
O4—P2—S4—Pb | 105.8 (3) | C15—C16—C17—C18 | 1.3 (15) |
O4A—P2—S4—Pb | 129.3 (8) | C16—C17—C18—C19 | −1.1 (16) |
S3—P2—S4—Pb | −12.84 (12) | C17—C18—C19—C20 | 0.7 (14) |
P2—S4—Pb—S2 | 166.17 (8) | C18—C19—C20—C15 | −0.4 (11) |
P2—S4—Pb—S1 | 94.80 (8) | C18—C19—C20—C21 | −179.1 (8) |
P2—S4—Pb—S3 | 7.80 (7) | C16—C15—C20—C19 | 0.7 (10) |
P1—S2—Pb—S4 | −100.91 (7) | O3—C15—C20—C19 | −178.7 (7) |
P1—S2—Pb—S1 | 2.88 (7) | C16—C15—C20—C21 | 179.4 (7) |
P1—S2—Pb—S3 | −65.29 (11) | O3—C15—C20—C21 | −0.1 (10) |
P1—S1—Pb—S4 | 74.43 (7) | O3—P2—O4—C22 | −87.1 (8) |
P1—S1—Pb—S2 | −2.89 (7) | O4A—P2—O4—C22 | −65 (2) |
P1—S1—Pb—S3 | 143.73 (7) | S3—P2—O4—C22 | 154.3 (7) |
P2—S3—Pb—S4 | −7.92 (7) | S4—P2—O4—C22 | 28.5 (8) |
P2—S3—Pb—S2 | −45.83 (12) | P2—O4—C22—C23 | 57.5 (9) |
P2—S3—Pb—S1 | −108.79 (8) | P2—O4—C22—C27 | −123.2 (6) |
O2—P1—O1—C1 | 76.3 (5) | O4—C22—C23—C24 | 179.3 (8) |
S1—P1—O1—C1 | −38.7 (5) | C27—C22—C23—C24 | 0.0 |
S2—P1—O1—C1 | −167.0 (4) | C22—C23—C24—C25 | 0.0 |
O1—P1—O2—C8 | 77.3 (5) | C23—C24—C25—C26 | 0.0 |
S1—P1—O2—C8 | −165.2 (4) | C24—C25—C26—C27 | 0.0 |
S2—P1—O2—C8 | −37.8 (5) | C25—C26—C27—C22 | 0.0 |
O4—P2—O3—C15 | −68.9 (6) | C25—C26—C27—C28 | 178.4 (8) |
O4A—P2—O3—C15 | −77.0 (10) | O4—C22—C27—C26 | −179.3 (7) |
S3—P2—O3—C15 | 44.6 (6) | C23—C22—C27—C26 | 0.0 |
S4—P2—O3—C15 | 172.1 (5) | O4—C22—C27—C28 | 2.3 (9) |
P1—O1—C1—C2 | −69.4 (7) | C23—C22—C27—C28 | −178.4 (8) |
P1—O1—C1—C6 | 114.0 (5) | O3—P2—O4A—C22A | −153.3 (16) |
C6—C1—C2—C3 | −2.2 (10) | O4—P2—O4A—C22A | 47.8 (19) |
O1—C1—C2—C3 | −178.5 (6) | S3—P2—O4A—C22A | 93.1 (16) |
C1—C2—C3—C4 | 1.4 (11) | S4—P2—O4A—C22A | −47.2 (18) |
C2—C3—C4—C5 | −0.6 (12) | P2—O4A—C22A—C23A | −69 (2) |
C3—C4—C5—C6 | 0.6 (12) | P2—O4A—C22A—C27A | 114.4 (17) |
C2—C1—C6—C5 | 2.0 (9) | O4A—C22A—C23A—C24A | −177 (2) |
O1—C1—C6—C5 | 178.5 (5) | C27A—C22A—C23A—C24A | 0.0 |
C2—C1—C6—C7 | −177.7 (6) | C22A—C23A—C24A—C25A | 0.0 |
O1—C1—C6—C7 | −1.2 (9) | C23A—C24A—C25A—C26A | 0.0 |
C4—C5—C6—C1 | −1.2 (10) | C24A—C25A—C26A—C27A | 0.0 |
C4—C5—C6—C7 | 178.6 (7) | C25A—C26A—C27A—C22A | 0.0 |
P1—O2—C8—C9 | −63.7 (8) | C25A—C26A—C27A—C28A | −179 (3) |
P1—O2—C8—C13 | 117.6 (6) | O4A—C22A—C27A—C26A | 177 (2) |
C13—C8—C9—C10 | 0.7 (11) | C23A—C22A—C27A—C26A | 0.0 |
O2—C8—C9—C10 | −178.0 (6) | O4A—C22A—C27A—C28A | −5 (3) |
C8—C9—C10—C11 | 2.0 (12) | C23A—C22A—C27A—C28A | 179 (3) |
C9—C10—C11—C12 | −2.3 (13) |
Experimental details
Crystal data | |
Chemical formula | [Pb(C14H14O2PS2)2] |
Mr | 825.87 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 123 |
a, b, c (Å) | 12.0263 (6), 10.7420 (4), 13.0499 (8) |
β (°) | 112.849 (6) |
V (Å3) | 1553.58 (15) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 14.31 |
Crystal size (mm) | 0.46 × 0.05 × 0.03 |
Data collection | |
Diffractometer | Agilent Xcalibur (Ruby, Gemini) |
Absorption correction | Analytical [CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)] |
Tmin, Tmax | 0.094, 0.675 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10226, 4494, 4269 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.075, 1.03 |
No. of reflections | 4494 |
No. of parameters | 406 |
No. of restraints | 55 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.12, −1.15 |
Absolute structure | Flack (1983), 1093 Friedel pairs |
Absolute structure parameter | −0.03 (8) |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Footnotes
‡Deceased.
Acknowledgements
RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.
References
Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Bajia, S., Butcher, R. J., Drake, J. E. & Ratnani, R. (2009). Polyhedron, 28, 1556–1560. Web of Science CSD CrossRef CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Davidovich, R. L., Stavila, V. & Whitmire, K. H. (2010). Coord. Chem. Rev. 254, 2193–2226. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gillespie, R. J. & Nyholm, R. S. (1957). Q. Rev. 11, 339–380. CrossRef CAS Google Scholar
Harrison, Ph. G., Steel, A., Pelizzi, G. & Pellizi, C. (1988). Main Group Met. Chem. 11, 181–204. CAS Google Scholar
Ito, T. (1972). Acta Cryst. B28, 1034–1040. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Ito, T. & Maeda, Y. (2004). Acta Cryst. E60, m1349–m1350. CrossRef IUCr Journals Google Scholar
Larsson, A.-C., Ivanov, A. V., Antzutkin, O. N., Gerasimenko, A. V. & Forsling, W. (2004). Inorg. Chim. Acta, 357, 2510–2518. Web of Science CSD CrossRef CAS Google Scholar
Lawton, S. L. & Kokotailo, G. T. (1969). Nature (London), 221, 550–551. CrossRef CAS Web of Science Google Scholar
Lawton, S. L. & Kokotailo, G. T. (1972). Inorg. Chem. 11, 363–368. CSD CrossRef CAS Web of Science Google Scholar
Maheshwari, S., Drake, J. E., Kori, K., Light, M. E. & Ratnani, R. (2009). Polyhedron, 28, 689–694. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45. Web of Science CrossRef CAS Google Scholar
Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
O,O'-Dialkyl derivatives of phosphorus(V) dithioacids are characterized by wide possibilities for practical applications in various areas, namely, as flotation reagents (in the concentration of sulfide ores of nonferrous metals), fungicides, insecticides, herbicides, antioxidants, additives to lubricating oils, and technological precursors of film sulfides of transition and nontransition metals. The structural variety of metal complexes with dialkyldithiophosphates has been explained in terms of coordination chemistry by the ability of these compounds to perform different structural functions and act as bidentate terminal, bidentate bridging or combined ligands. As a result, compounds with different types of structural organization can be formed: mono-, bi-, tetra-, or polynuclear complexes. A unique alternation of the conformationally different (`chair`-`saddle`) eight-membered rings [Cd2S4P2] has been revealed in the chains of polynuclear cadmium(II) complexes [Cd{S(S)P(OR)2}2]n (Lawton & Kokotailo, 1969; Lawton & Kokotailo, 1972; Ito, 1972; Harrison et al., 1988). General and convenient methods to prepare dithiophosphato salt derivatives have been reported (Van Zyl & Fackler, 2000; Van Zyl, 2010). In view of the importance of these compounds and in continuation of our earlier work (Bajia et al., 2009; Maheshwari et al., 2009) we have undertaken the crystal structure determination of the title compound, and the results are presented here. Pb2+ complexes of these types of ligands are of particular interest because of the possibility of exhibiting stereochemically active lone pairs (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).
The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The structure consists of a linear zigzag chain of molecules in the b direction composed of one Pb atom and two chelating bis(2-methylphenyl) phosphato ligands and linked by Pb—S—Pb bonds. The two bis(2-methylphenyl) phosphato ligands are coordinated through both S atoms to the metal. Three of the Pb—S bond lengths are insignificantly different at 2.7710 (18), 2.8104 (16) and 2.8205 (16) Å, while the fourth Pb—S bond is elongated at 3.0910 (18) Å and reflects the fact that this atom is involved in intermolecular bridging (symmetry code, 2 - x,1/2 + y,1 - z) to an adjacent Pb (intermolecular Pb—S distance, 3.145 (2) Å).
The bond angles reflect the fact that Pb contains a stereochemically active lone pair so the geometry about the Pb is best described using VSEPR theory as AX5E (Gillespie & Nyholm, 1957) and is thus distorted octahedral. The S—Pb—S bite angles are small at 73.63 (4) and 69.50 (4)° while the remaining S—Pb—S angles range from 81.03 (5) to 143.66 (5)°. Thus the relative bond distances and angles for the title compound agree with the presence of an electron lone pair in a distorted octahedral PbS5E (with one S as a bridging ligand) environment. Evidence for the presence of a stereochemically active electron lone pair of the lead atom has also been reported for other Pb2+ complexes with similar ligands (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).
In the molecule one of the 1-methoxy-2-methyl-benzene rings (O4—C22—C28) shows positional disorder over two orientations with occupancy ratio of 0.747 (11):0.253 (11).
No evidence for C—H···O or C—H···S interactions were found in the crystal.