metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[O,O′-bis­­(2-methyl­phen­yl) di­thio­phosphato-κ2S,S]lead(II)]-μ-O,O′-bis­­(2-methyl­phen­yl) di­thio­phosphato-κ3S,S′:S]

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bDepartment of Pure & Applied Chemistry, M.D.S. University, Ajmer 305 009, India, and cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 16 November 2012; accepted 21 November 2012; online 8 December 2012)

In the title compound, [Pb(C14H14O2PS2)2]n, the metal atom is surrounded by two O,O′-bis­(2-methyl­phen­yl) dithio­phosphate ligands bonding through the S-donor atoms. Three of the Pb—S bond lengths are are close to each other at 2.7710 (18), 2.8104 (16) and 2.8205 (16) Å, while the fourth Pb—S bond is elongated at 3.0910 (18) Å and reflects the fact that this atom is involved in inter­molecular bridging to an adjacent PbII atom [Pb—S = 3.145 (2) Å]. The bond angles demonstrate that the PbII atom contains a stereochemically active lone pair with a distorted octa­hedral geometry about the PbII atom. This distortion is shown by the S—Pb—S bite angles of 73.63 (4) and 69.50 (4)°, while the remaining S—Pb—S angles range from 81.03 (5) to 143.66 (5)°. One of the benzene rings shows positional disorder over two orientations with occupancy factors of 0.747 (11) and 0.253 (11).

Related literature

For applications of related O,O′-dialkyl derivatives of phospho­rus(V) dithio­acids, see: Lawton & Kokotailo (1969[Lawton, S. L. & Kokotailo, G. T. (1969). Nature (London), 221, 550-551.], 1972[Lawton, S. L. & Kokotailo, G. T. (1972). Inorg. Chem. 11, 363-368.]); Ito (1972[Ito, T. (1972). Acta Cryst. B28, 1034-1040.]); Harrison et al. (1988[Harrison, Ph. G., Steel, A., Pelizzi, G. & Pellizi, C. (1988). Main Group Met. Chem. 11, 181-204.]). For general and convenient methods for the preparation of dithio­phosphato salt derivatives and their metal derivatives, see: Bajia et al. (2009[Bajia, S., Butcher, R. J., Drake, J. E. & Ratnani, R. (2009). Polyhedron, 28, 1556-1560.]); Maheshwari et al. (2009[Maheshwari, S., Drake, J. E., Kori, K., Light, M. E. & Ratnani, R. (2009). Polyhedron, 28, 689-694.]); Lawton & Kokotailo (1969[Lawton, S. L. & Kokotailo, G. T. (1969). Nature (London), 221, 550-551.], 1972[Lawton, S. L. & Kokotailo, G. T. (1972). Inorg. Chem. 11, 363-368.]); Ito (1972[Ito, T. (1972). Acta Cryst. B28, 1034-1040.]); Harrison et al. (1988[Harrison, Ph. G., Steel, A., Pelizzi, G. & Pellizi, C. (1988). Main Group Met. Chem. 11, 181-204.]); Van Zyl & Fackler, (2000[Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117-132.]); Van Zyl (2010[Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13-45.]). For VSEPR theory, see: Gillespie & Nyholm (1957[Gillespie, R. J. & Nyholm, R. S. (1957). Q. Rev. 11, 339-380.]). For stereochemically active lone pairs in Pb2+ complexes, see: Davidovich et al. (2010[Davidovich, R. L., Stavila, V. & Whitmire, K. H. (2010). Coord. Chem. Rev. 254, 2193-2226.]); Ito & Maeda (2004[Ito, T. & Maeda, Y. (2004). Acta Cryst. E60, m1349-m1350.]); Larsson et al. (2004[Larsson, A.-C., Ivanov, A. V., Antzutkin, O. N., Gerasimenko, A. V. & Forsling, W. (2004). Inorg. Chim. Acta, 357, 2510-2518.]); Lawton & Kokotailo (1972[Lawton, S. L. & Kokotailo, G. T. (1972). Inorg. Chem. 11, 363-368.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C14H14O2PS2)2]

  • Mr = 825.87

  • Monoclinic, P 21

  • a = 12.0263 (6) Å

  • b = 10.7420 (4) Å

  • c = 13.0499 (8) Å

  • β = 112.849 (6)°

  • V = 1553.58 (15) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 14.31 mm−1

  • T = 123 K

  • 0.46 × 0.05 × 0.03 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), using a multi-faceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.094, Tmax = 0.675

  • 10226 measured reflections

  • 4494 independent reflections

  • 4269 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.03

  • 4494 reflections

  • 406 parameters

  • 55 restraints

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −1.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1093 Friedel pairs

  • Flack parameter: −0.03 (8)

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

O,O'-Dialkyl derivatives of phosphorus(V) dithioacids are characterized by wide possibilities for practical applications in various areas, namely, as flotation reagents (in the concentration of sulfide ores of nonferrous metals), fungicides, insecticides, herbicides, antioxidants, additives to lubricating oils, and technological precursors of film sulfides of transition and nontransition metals. The structural variety of metal complexes with dialkyldithiophosphates has been explained in terms of coordination chemistry by the ability of these compounds to perform different structural functions and act as bidentate terminal, bidentate bridging or combined ligands. As a result, compounds with different types of structural organization can be formed: mono-, bi-, tetra-, or polynuclear complexes. A unique alternation of the conformationally different (`chair`-`saddle`) eight-membered rings [Cd2S4P2] has been revealed in the chains of polynuclear cadmium(II) complexes [Cd{S(S)P(OR)2}2]n (Lawton & Kokotailo, 1969; Lawton & Kokotailo, 1972; Ito, 1972; Harrison et al., 1988). General and convenient methods to prepare dithiophosphato salt derivatives have been reported (Van Zyl & Fackler, 2000; Van Zyl, 2010). In view of the importance of these compounds and in continuation of our earlier work (Bajia et al., 2009; Maheshwari et al., 2009) we have undertaken the crystal structure determination of the title compound, and the results are presented here. Pb2+ complexes of these types of ligands are of particular interest because of the possibility of exhibiting stereochemically active lone pairs (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The structure consists of a linear zigzag chain of molecules in the b direction composed of one Pb atom and two chelating bis(2-methylphenyl) phosphato ligands and linked by Pb—S—Pb bonds. The two bis(2-methylphenyl) phosphato ligands are coordinated through both S atoms to the metal. Three of the Pb—S bond lengths are insignificantly different at 2.7710 (18), 2.8104 (16) and 2.8205 (16) Å, while the fourth Pb—S bond is elongated at 3.0910 (18) Å and reflects the fact that this atom is involved in intermolecular bridging (symmetry code, 2 - x,1/2 + y,1 - z) to an adjacent Pb (intermolecular Pb—S distance, 3.145 (2) Å).

The bond angles reflect the fact that Pb contains a stereochemically active lone pair so the geometry about the Pb is best described using VSEPR theory as AX5E (Gillespie & Nyholm, 1957) and is thus distorted octahedral. The S—Pb—S bite angles are small at 73.63 (4) and 69.50 (4)° while the remaining S—Pb—S angles range from 81.03 (5) to 143.66 (5)°. Thus the relative bond distances and angles for the title compound agree with the presence of an electron lone pair in a distorted octahedral PbS5E (with one S as a bridging ligand) environment. Evidence for the presence of a stereochemically active electron lone pair of the lead atom has also been reported for other Pb2+ complexes with similar ligands (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).

In the molecule one of the 1-methoxy-2-methyl-benzene rings (O4—C22—C28) shows positional disorder over two orientations with occupancy ratio of 0.747 (11):0.253 (11).

No evidence for C—H···O or C—H···S interactions were found in the crystal.

Related literature top

For applications of related O,O'-dialkyl derivatives of phosphorus(V) dithioacids, see: Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988). For general and convenient methods for the preparation of dithiophosphato salt derivatives and their metal derivatives, see: Bajia et al. (2009); Maheshwari et al. (2009); Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988); Van Zyl & Fackler, (2000); Van Zyl (2010). For VSEPR theory, see: Gillespie & Nyholm (1957). For stereochemically active lone pairs in Pb2+ complexes, see: Davidovich et al. (2010); Ito & Maeda (2004); Larsson et al. (2004); Lawton & Kokotailo (1972).

Experimental top

Title compound was published methods (Bajia et al., 2009; Maheshwari et al., 2009; Lawton & Kokotailo, 1969; Lawton & Kokotailo, 1972; Ito, 1972; Harrison et al., 1988). Crystals were grown by slow evaporation of a mixture of absolute ethyl alcohol (90%) and chloroform (10%) solution.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96(CH3) Å and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.69 Å from Pb the deepest hole 0.82 Å from Pb.

In the molecule one 1-methoxy-2-methyl-benzene ring (O4—C22—C28) shows positional disorder in a 0.747 (1):0.253 (1) ratio. The highest maximum (0.69 e/Å3) in the final difference map is at 1.12 Å from Pb and the deepest hole (0.82 e/Å3) is at -1.15 Å from Pb. Nine outliers, (-12 - 5 12), (-13 - 4 11), (-14 - 3 10), (-12 - 6 10), (-7 - 11 7), (-13 - 5 10), (0 - 8 12), (0 1 15) and (-5 - 12 6), were omitted in the final refinement.

The SIMU and DELU constraint instructions in SHELXL97 were used for atoms O4/O4a, C22/C22a, C23/C23a, C24/C24a, C25/C25a, C26/C26a, C27/C27a,C28/C28a and ISOR (0.01) was used for atoms C24a and C26a in order to model the disorder properly during the refinement.

Structure description top

O,O'-Dialkyl derivatives of phosphorus(V) dithioacids are characterized by wide possibilities for practical applications in various areas, namely, as flotation reagents (in the concentration of sulfide ores of nonferrous metals), fungicides, insecticides, herbicides, antioxidants, additives to lubricating oils, and technological precursors of film sulfides of transition and nontransition metals. The structural variety of metal complexes with dialkyldithiophosphates has been explained in terms of coordination chemistry by the ability of these compounds to perform different structural functions and act as bidentate terminal, bidentate bridging or combined ligands. As a result, compounds with different types of structural organization can be formed: mono-, bi-, tetra-, or polynuclear complexes. A unique alternation of the conformationally different (`chair`-`saddle`) eight-membered rings [Cd2S4P2] has been revealed in the chains of polynuclear cadmium(II) complexes [Cd{S(S)P(OR)2}2]n (Lawton & Kokotailo, 1969; Lawton & Kokotailo, 1972; Ito, 1972; Harrison et al., 1988). General and convenient methods to prepare dithiophosphato salt derivatives have been reported (Van Zyl & Fackler, 2000; Van Zyl, 2010). In view of the importance of these compounds and in continuation of our earlier work (Bajia et al., 2009; Maheshwari et al., 2009) we have undertaken the crystal structure determination of the title compound, and the results are presented here. Pb2+ complexes of these types of ligands are of particular interest because of the possibility of exhibiting stereochemically active lone pairs (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The structure consists of a linear zigzag chain of molecules in the b direction composed of one Pb atom and two chelating bis(2-methylphenyl) phosphato ligands and linked by Pb—S—Pb bonds. The two bis(2-methylphenyl) phosphato ligands are coordinated through both S atoms to the metal. Three of the Pb—S bond lengths are insignificantly different at 2.7710 (18), 2.8104 (16) and 2.8205 (16) Å, while the fourth Pb—S bond is elongated at 3.0910 (18) Å and reflects the fact that this atom is involved in intermolecular bridging (symmetry code, 2 - x,1/2 + y,1 - z) to an adjacent Pb (intermolecular Pb—S distance, 3.145 (2) Å).

The bond angles reflect the fact that Pb contains a stereochemically active lone pair so the geometry about the Pb is best described using VSEPR theory as AX5E (Gillespie & Nyholm, 1957) and is thus distorted octahedral. The S—Pb—S bite angles are small at 73.63 (4) and 69.50 (4)° while the remaining S—Pb—S angles range from 81.03 (5) to 143.66 (5)°. Thus the relative bond distances and angles for the title compound agree with the presence of an electron lone pair in a distorted octahedral PbS5E (with one S as a bridging ligand) environment. Evidence for the presence of a stereochemically active electron lone pair of the lead atom has also been reported for other Pb2+ complexes with similar ligands (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).

In the molecule one of the 1-methoxy-2-methyl-benzene rings (O4—C22—C28) shows positional disorder over two orientations with occupancy ratio of 0.747 (11):0.253 (11).

No evidence for C—H···O or C—H···S interactions were found in the crystal.

For applications of related O,O'-dialkyl derivatives of phosphorus(V) dithioacids, see: Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988). For general and convenient methods for the preparation of dithiophosphato salt derivatives and their metal derivatives, see: Bajia et al. (2009); Maheshwari et al. (2009); Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988); Van Zyl & Fackler, (2000); Van Zyl (2010). For VSEPR theory, see: Gillespie & Nyholm (1957). For stereochemically active lone pairs in Pb2+ complexes, see: Davidovich et al. (2010); Ito & Maeda (2004); Larsson et al. (2004); Lawton & Kokotailo (1972).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only major disordered component for the 1-methoxy-2-methyl-benzene ring is shown. Atoms labelled with suffix A were generated by the symmetry operator 2 - x, 0.5 + y, 1 - z.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound.
catena-Poly[[[O,O'-bis(2-methylphenyl) dithiophosphato- κ2S,S]lead(II)]-µ-O,O'-bis(2-methylphenyl) dithiophosphato-κ3S,S':S] top
Crystal data top
[Pb(C14H14O2PS2)2]F(000) = 808
Mr = 825.87Dx = 1.765 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 4674 reflections
a = 12.0263 (6) Åθ = 3.7–75.4°
b = 10.7420 (4) ŵ = 14.31 mm1
c = 13.0499 (8) ÅT = 123 K
β = 112.849 (6)°Needle, colorless
V = 1553.58 (15) Å30.46 × 0.05 × 0.03 mm
Z = 2
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
4494 independent reflections
Radiation source: Enhance (Cu) X-ray Source4269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.5081 pixels mm-1θmax = 75.6°, θmin = 3.7°
ω scansh = 1514
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)]
k = 138
Tmin = 0.094, Tmax = 0.675l = 1416
10226 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0329P)2 + 1.1401P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.007
4494 reflectionsΔρmax = 1.12 e Å3
406 parametersΔρmin = 1.15 e Å3
55 restraintsAbsolute structure: Flack (1983), 1093 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
[Pb(C14H14O2PS2)2]V = 1553.58 (15) Å3
Mr = 825.87Z = 2
Monoclinic, P21Cu Kα radiation
a = 12.0263 (6) ŵ = 14.31 mm1
b = 10.7420 (4) ÅT = 123 K
c = 13.0499 (8) Å0.46 × 0.05 × 0.03 mm
β = 112.849 (6)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
4494 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)]
4269 reflections with I > 2σ(I)
Tmin = 0.094, Tmax = 0.675Rint = 0.045
10226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075Δρmax = 1.12 e Å3
S = 1.03Δρmin = 1.15 e Å3
4494 reflectionsAbsolute structure: Flack (1983), 1093 Friedel pairs
406 parametersAbsolute structure parameter: 0.03 (8)
55 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.58111 (14)0.59159 (15)0.27999 (13)0.0313 (3)
P20.94672 (15)0.36924 (17)0.63559 (15)0.0397 (4)
S10.65999 (14)0.43767 (15)0.25837 (14)0.0372 (3)
S20.68892 (13)0.72496 (15)0.37035 (14)0.0360 (3)
S30.97595 (15)0.29732 (17)0.50949 (16)0.0426 (4)
S40.84998 (14)0.52418 (15)0.60457 (14)0.0428 (4)
Pb0.874757 (17)0.55165 (2)0.403361 (19)0.03788 (6)
O10.4862 (3)0.5601 (6)0.3355 (3)0.0329 (9)
O20.5005 (4)0.6443 (4)0.1582 (4)0.0354 (9)
O30.8792 (4)0.2724 (5)0.6864 (4)0.0452 (12)
C10.4143 (5)0.4517 (6)0.3029 (5)0.0334 (13)
C20.3246 (6)0.4438 (7)0.1981 (6)0.0379 (14)
H2A0.31190.50860.14760.045*
C30.2528 (7)0.3365 (8)0.1688 (7)0.0470 (17)
H3A0.19300.32880.09780.056*
C40.2710 (7)0.2427 (7)0.2451 (7)0.0483 (17)
H4A0.22300.17170.22610.058*
C50.3608 (7)0.2538 (7)0.3502 (7)0.0453 (16)
H5A0.37260.18930.40080.054*
C60.4350 (5)0.3602 (6)0.3828 (5)0.0350 (13)
C70.5306 (6)0.3735 (8)0.4978 (7)0.0502 (19)
H7A0.51980.45100.52950.075*
H7B0.60880.37220.49410.075*
H7C0.52440.30590.54340.075*
C80.4551 (6)0.7671 (6)0.1443 (5)0.0359 (13)
C90.3744 (6)0.8024 (8)0.1895 (6)0.0424 (15)
H9A0.35080.74640.23160.051*
C100.3283 (7)0.9222 (8)0.1720 (7)0.0490 (17)
H10A0.27540.94790.20420.059*
C110.3614 (8)1.0035 (8)0.1062 (7)0.0534 (19)
H11A0.32861.08320.09180.064*
C120.4437 (9)0.9654 (8)0.0621 (6)0.054 (2)
H12A0.46531.02070.01810.064*
C130.4950 (7)0.8473 (7)0.0814 (6)0.0407 (15)
C140.5853 (8)0.8076 (8)0.0345 (7)0.0540 (19)
H14A0.64870.76100.08950.081*
H14B0.61880.87980.01390.081*
H14C0.54610.75650.02990.081*
C150.9162 (7)0.1475 (8)0.7050 (7)0.0428 (17)
C161.0210 (8)0.1178 (10)0.7962 (7)0.051 (2)
H16A1.06690.18010.84300.061*
C171.0567 (9)0.0087 (11)0.8169 (9)0.065 (3)
H17A1.12530.03150.87790.078*
C180.9857 (8)0.0971 (9)0.7428 (9)0.061 (2)
H18A1.00860.18030.75440.073*
C190.8856 (8)0.0673 (8)0.6553 (8)0.055 (2)
H19A0.84090.13050.60880.065*
C200.8456 (5)0.0560 (12)0.6314 (6)0.0472 (15)
C210.7325 (7)0.0918 (8)0.5346 (7)0.0509 (19)
H21A0.74960.15940.49490.076*
H21B0.67200.11710.56130.076*
H21C0.70360.02170.48580.076*
O41.0800 (7)0.3917 (8)0.7289 (7)0.043 (2)0.747 (11)
C221.0991 (7)0.4823 (6)0.8088 (6)0.040 (3)0.747 (11)
C231.0368 (7)0.4817 (8)0.8790 (7)0.058 (3)0.747 (11)
H230.98020.41990.87210.069*0.747 (11)
C241.0591 (9)0.5736 (10)0.9595 (6)0.077 (6)0.747 (11)
H241.01750.57331.00650.093*0.747 (11)
C251.1437 (10)0.6661 (8)0.9699 (6)0.080 (5)0.747 (11)
H251.15860.72761.02380.096*0.747 (11)
C261.2060 (8)0.6666 (7)0.8997 (8)0.071 (5)0.747 (11)
H261.26250.72850.90660.086*0.747 (11)
C271.1836 (7)0.5747 (7)0.8192 (7)0.058 (3)0.747 (11)
C281.2475 (11)0.5753 (14)0.7405 (11)0.064 (4)0.747 (11)
H28A1.30500.64220.75960.096*0.747 (11)
H28B1.18970.58670.66580.096*0.747 (11)
H28C1.28870.49760.74580.096*0.747 (11)
O4A1.0570 (17)0.374 (2)0.762 (2)0.044 (6)0.253 (11)
C22A1.1269 (15)0.4788 (17)0.7926 (16)0.054 (11)0.253 (11)
C23A1.2071 (17)0.5125 (19)0.7443 (16)0.048 (8)0.253 (11)
H23A1.21180.46530.68630.057*0.253 (11)
C24A1.2802 (16)0.617 (2)0.7825 (18)0.045 (8)0.253 (11)
H24A1.33390.63910.75020.055*0.253 (11)
C25A1.2731 (19)0.6870 (18)0.8691 (18)0.060 (10)0.253 (11)
H25A1.32210.75670.89470.072*0.253 (11)
C26A1.193 (2)0.653 (2)0.9175 (16)0.045 (8)0.253 (11)
H26A1.18820.70050.97550.054*0.253 (11)
C27A1.1198 (16)0.549 (2)0.8793 (16)0.053 (7)0.253 (11)
C28A1.030 (3)0.511 (6)0.927 (3)0.09 (2)0.253 (11)
H28D1.04420.42620.95140.134*0.253 (11)
H28E0.94980.51890.87100.134*0.253 (11)
H28F1.03810.56380.98890.134*0.253 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0341 (6)0.0230 (7)0.0404 (7)0.0005 (5)0.0186 (6)0.0006 (5)
P20.0325 (7)0.0354 (9)0.0492 (9)0.0053 (7)0.0139 (6)0.0042 (7)
S10.0395 (7)0.0256 (8)0.0518 (8)0.0014 (6)0.0234 (6)0.0039 (6)
S20.0345 (7)0.0259 (7)0.0480 (8)0.0006 (6)0.0163 (6)0.0032 (6)
S30.0477 (10)0.0303 (8)0.0595 (10)0.0064 (8)0.0314 (8)0.0042 (7)
S40.0401 (7)0.0366 (12)0.0516 (8)0.0103 (6)0.0178 (6)0.0056 (6)
Pb0.03314 (9)0.02947 (11)0.05628 (12)0.00011 (13)0.02308 (8)0.00157 (14)
O10.0358 (16)0.028 (2)0.0381 (17)0.001 (2)0.0180 (14)0.001 (2)
O20.045 (2)0.024 (2)0.041 (2)0.0006 (18)0.0196 (19)0.0013 (17)
O30.042 (2)0.047 (3)0.051 (3)0.010 (2)0.024 (2)0.002 (2)
C10.036 (3)0.029 (3)0.043 (3)0.002 (2)0.022 (2)0.003 (2)
C20.041 (3)0.036 (4)0.042 (3)0.004 (3)0.021 (3)0.000 (3)
C30.047 (4)0.044 (4)0.055 (4)0.008 (3)0.025 (3)0.009 (3)
C40.058 (4)0.031 (4)0.067 (4)0.012 (3)0.037 (4)0.010 (3)
C50.049 (3)0.031 (4)0.069 (4)0.003 (3)0.038 (3)0.008 (3)
C60.035 (3)0.033 (3)0.045 (3)0.007 (3)0.024 (2)0.010 (3)
C70.036 (3)0.054 (5)0.061 (4)0.006 (3)0.020 (3)0.022 (4)
C80.040 (3)0.028 (3)0.038 (3)0.003 (3)0.013 (2)0.001 (2)
C90.042 (3)0.041 (4)0.046 (3)0.004 (3)0.019 (3)0.002 (3)
C100.055 (4)0.041 (4)0.051 (4)0.015 (3)0.020 (3)0.006 (3)
C110.075 (5)0.040 (4)0.052 (4)0.015 (4)0.032 (4)0.006 (3)
C120.083 (5)0.039 (4)0.044 (4)0.006 (4)0.030 (4)0.012 (3)
C130.054 (4)0.028 (3)0.042 (3)0.003 (3)0.021 (3)0.001 (3)
C140.079 (5)0.038 (4)0.058 (4)0.004 (4)0.040 (4)0.001 (3)
C150.047 (4)0.044 (4)0.050 (4)0.009 (3)0.032 (3)0.008 (3)
C160.050 (4)0.062 (6)0.045 (4)0.012 (4)0.024 (3)0.006 (4)
C170.057 (5)0.079 (7)0.062 (5)0.029 (5)0.027 (4)0.027 (5)
C180.059 (5)0.044 (5)0.095 (7)0.012 (4)0.046 (5)0.019 (4)
C190.069 (5)0.035 (4)0.084 (6)0.002 (4)0.055 (5)0.007 (4)
C200.044 (3)0.047 (4)0.063 (3)0.001 (5)0.034 (3)0.010 (5)
C210.043 (3)0.047 (4)0.067 (5)0.003 (3)0.027 (3)0.001 (3)
O40.033 (4)0.047 (4)0.049 (4)0.004 (3)0.018 (3)0.007 (3)
C220.046 (5)0.036 (6)0.034 (5)0.000 (4)0.010 (4)0.007 (4)
C230.067 (7)0.068 (8)0.040 (6)0.013 (6)0.022 (5)0.001 (5)
C240.087 (10)0.098 (16)0.037 (6)0.031 (9)0.012 (6)0.004 (7)
C250.087 (10)0.064 (9)0.052 (7)0.012 (8)0.013 (7)0.013 (6)
C260.073 (9)0.046 (7)0.058 (8)0.003 (7)0.015 (7)0.004 (6)
C270.050 (5)0.054 (9)0.055 (6)0.001 (5)0.003 (4)0.017 (5)
C280.042 (6)0.060 (10)0.082 (8)0.012 (6)0.014 (6)0.020 (7)
O4A0.014 (8)0.058 (14)0.056 (14)0.003 (8)0.010 (8)0.007 (11)
C22A0.044 (17)0.05 (2)0.047 (18)0.011 (15)0.003 (15)0.016 (15)
C23A0.028 (13)0.044 (19)0.067 (19)0.008 (12)0.014 (13)0.015 (14)
C24A0.039 (10)0.044 (11)0.051 (10)0.010 (8)0.015 (8)0.005 (8)
C25A0.047 (17)0.042 (18)0.06 (2)0.017 (15)0.008 (15)0.011 (15)
C26A0.050 (11)0.040 (11)0.033 (10)0.003 (8)0.005 (8)0.001 (8)
C27A0.033 (10)0.060 (16)0.072 (15)0.016 (18)0.025 (10)0.03 (2)
C28A0.039 (15)0.19 (8)0.04 (2)0.01 (3)0.015 (16)0.02 (3)
Geometric parameters (Å, º) top
P1—O11.608 (4)C15—C161.394 (11)
P1—O21.609 (5)C15—C201.406 (14)
P1—S11.980 (2)C16—C171.419 (13)
P1—S21.984 (2)C16—H16A0.9300
P2—O31.612 (6)C17—C181.388 (15)
P2—O41.611 (8)C17—H17A0.9300
P2—O4A1.67 (2)C18—C191.337 (14)
P2—S31.969 (3)C18—H18A0.9300
P2—S41.980 (2)C19—C201.403 (15)
S1—Pb2.8205 (16)C19—H19A0.9300
S2—Pb2.8104 (16)C20—C211.503 (10)
S3—Pb3.0910 (18)C21—H21A0.9600
S4—Pb2.7710 (18)C21—H21B0.9600
O1—C11.414 (8)C21—H21C0.9600
O2—C81.413 (8)O4—C221.379 (9)
O3—C151.404 (10)C22—C231.3900
C1—C21.376 (9)C22—C271.3900
C1—C61.384 (9)C23—C241.3900
C2—C31.402 (10)C23—H230.9300
C2—H2A0.9300C24—C251.3900
C3—C41.373 (12)C24—H240.9300
C3—H3A0.9300C25—C261.3900
C4—C51.382 (12)C25—H250.9300
C4—H4A0.9300C26—C271.3900
C5—C61.410 (10)C26—H260.9300
C5—H5A0.9300C27—C281.502 (14)
C6—C71.501 (10)C28—H28A0.9600
C7—H7A0.9600C28—H28B0.9600
C7—H7B0.9600C28—H28C0.9600
C7—H7C0.9600O4A—C22A1.371 (16)
C8—C91.370 (10)C22A—C23A1.3900
C8—C131.397 (10)C22A—C27A1.3900
C9—C101.384 (11)C23A—C24A1.3900
C9—H9A0.9300C23A—H23A0.9300
C10—C111.387 (12)C24A—C25A1.3900
C10—H10A0.9300C24A—H24A0.9300
C11—C121.387 (12)C25A—C26A1.3900
C11—H11A0.9300C25A—H25A0.9300
C12—C131.391 (11)C26A—C27A1.3900
C12—H12A0.9300C26A—H26A0.9300
C13—C141.500 (11)C27A—C28A1.50 (2)
C14—H14A0.9600C28A—H28D0.9600
C14—H14B0.9600C28A—H28E0.9600
C14—H14C0.9600C28A—H28F0.9600
O1—P1—O2104.9 (2)H14A—C14—H14B109.5
O1—P1—S1110.6 (2)C13—C14—H14C109.5
O2—P1—S1106.93 (19)H14A—C14—H14C109.5
O1—P1—S2107.4 (2)H14B—C14—H14C109.5
O2—P1—S2109.71 (19)C16—C15—O3119.2 (8)
S1—P1—S2116.68 (10)C16—C15—C20122.0 (9)
O3—P2—O4107.3 (4)O3—C15—C20118.9 (7)
O3—P2—O4A87.0 (8)C15—C16—C17119.2 (9)
O4—P2—O4A21.9 (7)C15—C16—H16A120.4
O3—P2—S3111.9 (2)C17—C16—H16A120.4
O4—P2—S3104.0 (3)C18—C17—C16117.7 (9)
O4A—P2—S3120.3 (8)C18—C17—H17A121.2
O3—P2—S4106.1 (2)C16—C17—H17A121.2
O4—P2—S4111.2 (3)C19—C18—C17122.5 (9)
O4A—P2—S4110.9 (8)C19—C18—H18A118.8
S3—P2—S4116.12 (12)C17—C18—H18A118.8
P1—S1—Pb84.63 (7)C18—C19—C20122.3 (9)
P1—S2—Pb84.84 (7)C18—C19—H19A118.9
P2—S3—Pb81.99 (8)C20—C19—H19A118.9
P2—S4—Pb90.71 (8)C19—C20—C15116.4 (8)
S4—Pb—S281.03 (5)C19—C20—C21123.3 (9)
S4—Pb—S1100.49 (5)C15—C20—C21120.3 (10)
S2—Pb—S173.63 (4)C20—C21—H21A109.5
S4—Pb—S369.50 (4)C20—C21—H21B109.5
S2—Pb—S3143.66 (5)H21A—C21—H21B109.5
S1—Pb—S390.89 (5)C20—C21—H21C109.5
C1—O1—P1119.7 (4)H21A—C21—H21C109.5
C8—O2—P1120.7 (4)H21B—C21—H21C109.5
C15—O3—P2120.7 (5)C22—O4—P2120.1 (6)
C2—C1—C6123.2 (6)O4—C22—C23121.4 (6)
C2—C1—O1120.1 (6)O4—C22—C27118.6 (6)
C6—C1—O1116.6 (6)C23—C22—C27120.0
C1—C2—C3118.9 (7)C22—C23—C24120.0
C1—C2—H2A120.5C22—C23—H23120.0
C3—C2—H2A120.5C24—C23—H23120.0
C4—C3—C2119.9 (7)C25—C24—C23120.0
C4—C3—H3A120.1C25—C24—H24120.0
C2—C3—H3A120.1C23—C24—H24120.0
C3—C4—C5119.9 (7)C26—C25—C24120.0
C3—C4—H4A120.0C26—C25—H25120.0
C5—C4—H4A120.0C24—C25—H25120.0
C4—C5—C6121.9 (7)C27—C26—C25120.0
C4—C5—H5A119.0C27—C26—H26120.0
C6—C5—H5A119.0C25—C26—H26120.0
C1—C6—C5116.1 (6)C26—C27—C22120.0
C1—C6—C7122.0 (6)C26—C27—C28120.9 (8)
C5—C6—C7121.9 (6)C22—C27—C28119.1 (8)
C6—C7—H7A109.5C22A—O4A—P2118.4 (18)
C6—C7—H7B109.5O4A—C22A—C23A122.3 (15)
H7A—C7—H7B109.5O4A—C22A—C27A117.6 (15)
C6—C7—H7C109.5C23A—C22A—C27A120.0
H7A—C7—H7C109.5C24A—C23A—C22A120.0
H7B—C7—H7C109.5C24A—C23A—H23A120.0
C9—C8—C13123.0 (7)C22A—C23A—H23A120.0
C9—C8—O2120.4 (6)C25A—C24A—C23A120.0
C13—C8—O2116.6 (6)C25A—C24A—H24A120.0
C8—C9—C10119.4 (7)C23A—C24A—H24A120.0
C8—C9—H9A120.3C24A—C25A—C26A120.0
C10—C9—H9A120.3C24A—C25A—H25A120.0
C9—C10—C11119.7 (8)C26A—C25A—H25A120.0
C9—C10—H10A120.2C27A—C26A—C25A120.0
C11—C10—H10A120.2C27A—C26A—H26A120.0
C12—C11—C10119.6 (8)C25A—C26A—H26A120.0
C12—C11—H11A120.2C26A—C27A—C22A120.0
C10—C11—H11A120.2C26A—C27A—C28A122 (2)
C11—C12—C13122.1 (8)C22A—C27A—C28A118 (2)
C11—C12—H12A118.9C27A—C28A—H28D109.5
C13—C12—H12A118.9C27A—C28A—H28E109.5
C12—C13—C8116.1 (7)H28D—C28A—H28E109.5
C12—C13—C14121.7 (7)C27A—C28A—H28F109.5
C8—C13—C14122.2 (7)H28D—C28A—H28F109.5
C13—C14—H14A109.5H28E—C28A—H28F109.5
C13—C14—H14B109.5
O1—P1—S1—Pb118.69 (17)C10—C11—C12—C130.0 (14)
O2—P1—S1—Pb127.58 (19)C11—C12—C13—C82.5 (12)
S2—P1—S1—Pb4.39 (10)C11—C12—C13—C14179.2 (8)
O1—P1—S2—Pb120.3 (2)C9—C8—C13—C122.9 (11)
O2—P1—S2—Pb126.2 (2)O2—C8—C13—C12175.9 (6)
S1—P1—S2—Pb4.41 (11)C9—C8—C13—C14178.8 (7)
O3—P2—S3—Pb133.5 (2)O2—C8—C13—C142.4 (10)
O4—P2—S3—Pb110.9 (4)P2—O3—C15—C1675.9 (8)
O4A—P2—S3—Pb126.8 (9)P2—O3—C15—C20104.6 (7)
S4—P2—S3—Pb11.61 (11)O3—C15—C16—C17178.3 (9)
O3—P2—S4—Pb137.8 (2)C20—C15—C16—C171.1 (13)
O4—P2—S4—Pb105.8 (3)C15—C16—C17—C181.3 (15)
O4A—P2—S4—Pb129.3 (8)C16—C17—C18—C191.1 (16)
S3—P2—S4—Pb12.84 (12)C17—C18—C19—C200.7 (14)
P2—S4—Pb—S2166.17 (8)C18—C19—C20—C150.4 (11)
P2—S4—Pb—S194.80 (8)C18—C19—C20—C21179.1 (8)
P2—S4—Pb—S37.80 (7)C16—C15—C20—C190.7 (10)
P1—S2—Pb—S4100.91 (7)O3—C15—C20—C19178.7 (7)
P1—S2—Pb—S12.88 (7)C16—C15—C20—C21179.4 (7)
P1—S2—Pb—S365.29 (11)O3—C15—C20—C210.1 (10)
P1—S1—Pb—S474.43 (7)O3—P2—O4—C2287.1 (8)
P1—S1—Pb—S22.89 (7)O4A—P2—O4—C2265 (2)
P1—S1—Pb—S3143.73 (7)S3—P2—O4—C22154.3 (7)
P2—S3—Pb—S47.92 (7)S4—P2—O4—C2228.5 (8)
P2—S3—Pb—S245.83 (12)P2—O4—C22—C2357.5 (9)
P2—S3—Pb—S1108.79 (8)P2—O4—C22—C27123.2 (6)
O2—P1—O1—C176.3 (5)O4—C22—C23—C24179.3 (8)
S1—P1—O1—C138.7 (5)C27—C22—C23—C240.0
S2—P1—O1—C1167.0 (4)C22—C23—C24—C250.0
O1—P1—O2—C877.3 (5)C23—C24—C25—C260.0
S1—P1—O2—C8165.2 (4)C24—C25—C26—C270.0
S2—P1—O2—C837.8 (5)C25—C26—C27—C220.0
O4—P2—O3—C1568.9 (6)C25—C26—C27—C28178.4 (8)
O4A—P2—O3—C1577.0 (10)O4—C22—C27—C26179.3 (7)
S3—P2—O3—C1544.6 (6)C23—C22—C27—C260.0
S4—P2—O3—C15172.1 (5)O4—C22—C27—C282.3 (9)
P1—O1—C1—C269.4 (7)C23—C22—C27—C28178.4 (8)
P1—O1—C1—C6114.0 (5)O3—P2—O4A—C22A153.3 (16)
C6—C1—C2—C32.2 (10)O4—P2—O4A—C22A47.8 (19)
O1—C1—C2—C3178.5 (6)S3—P2—O4A—C22A93.1 (16)
C1—C2—C3—C41.4 (11)S4—P2—O4A—C22A47.2 (18)
C2—C3—C4—C50.6 (12)P2—O4A—C22A—C23A69 (2)
C3—C4—C5—C60.6 (12)P2—O4A—C22A—C27A114.4 (17)
C2—C1—C6—C52.0 (9)O4A—C22A—C23A—C24A177 (2)
O1—C1—C6—C5178.5 (5)C27A—C22A—C23A—C24A0.0
C2—C1—C6—C7177.7 (6)C22A—C23A—C24A—C25A0.0
O1—C1—C6—C71.2 (9)C23A—C24A—C25A—C26A0.0
C4—C5—C6—C11.2 (10)C24A—C25A—C26A—C27A0.0
C4—C5—C6—C7178.6 (7)C25A—C26A—C27A—C22A0.0
P1—O2—C8—C963.7 (8)C25A—C26A—C27A—C28A179 (3)
P1—O2—C8—C13117.6 (6)O4A—C22A—C27A—C26A177 (2)
C13—C8—C9—C100.7 (11)C23A—C22A—C27A—C26A0.0
O2—C8—C9—C10178.0 (6)O4A—C22A—C27A—C28A5 (3)
C8—C9—C10—C112.0 (12)C23A—C22A—C27A—C28A179 (3)
C9—C10—C11—C122.3 (13)

Experimental details

Crystal data
Chemical formula[Pb(C14H14O2PS2)2]
Mr825.87
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)12.0263 (6), 10.7420 (4), 13.0499 (8)
β (°) 112.849 (6)
V3)1553.58 (15)
Z2
Radiation typeCu Kα
µ (mm1)14.31
Crystal size (mm)0.46 × 0.05 × 0.03
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)]
Tmin, Tmax0.094, 0.675
No. of measured, independent and
observed [I > 2σ(I)] reflections
10226, 4494, 4269
Rint0.045
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.03
No. of reflections4494
No. of parameters406
No. of restraints55
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 1.15
Absolute structureFlack (1983), 1093 Friedel pairs
Absolute structure parameter0.03 (8)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Footnotes

Deceased.

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBajia, S., Butcher, R. J., Drake, J. E. & Ratnani, R. (2009). Polyhedron, 28, 1556–1560.  Web of Science CSD CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDavidovich, R. L., Stavila, V. & Whitmire, K. H. (2010). Coord. Chem. Rev. 254, 2193–2226.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGillespie, R. J. & Nyholm, R. S. (1957). Q. Rev. 11, 339–380.  CrossRef CAS Google Scholar
First citationHarrison, Ph. G., Steel, A., Pelizzi, G. & Pellizi, C. (1988). Main Group Met. Chem. 11, 181–204.  CAS Google Scholar
First citationIto, T. (1972). Acta Cryst. B28, 1034–1040.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationIto, T. & Maeda, Y. (2004). Acta Cryst. E60, m1349–m1350.  CrossRef IUCr Journals Google Scholar
First citationLarsson, A.-C., Ivanov, A. V., Antzutkin, O. N., Gerasimenko, A. V. & Forsling, W. (2004). Inorg. Chim. Acta, 357, 2510–2518.  Web of Science CSD CrossRef CAS Google Scholar
First citationLawton, S. L. & Kokotailo, G. T. (1969). Nature (London), 221, 550–551.  CrossRef CAS Web of Science Google Scholar
First citationLawton, S. L. & Kokotailo, G. T. (1972). Inorg. Chem. 11, 363–368.  CSD CrossRef CAS Web of Science Google Scholar
First citationMaheshwari, S., Drake, J. E., Kori, K., Light, M. E. & Ratnani, R. (2009). Polyhedron, 28, 689–694.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45.  Web of Science CrossRef CAS Google Scholar
First citationVan Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds