organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Meth­­oxy­phen­yl)-1-pentyl-4,5-di­phenyl-1H-imidazole

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, bChemistry Department, Faculty of Science, Minia University, El-Minia, Egypt, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dPharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, Egypt, eManedaliev Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan, and fChemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 27 November 2012; accepted 29 November 2012; online 5 December 2012)

The title compound, C27H28N2O, is a lophine (2,4,5-triphenyl-1H-imidazole) derivative with an n-pentyl chain on the amine N atom and a 4-meth­oxy substituent on the benzene ring. The two phenyl and meth­oxy­benzene rings are inclined to the imidazole ring at angles of 25.32 (7), 76.79 (5) and 35.42 (7)°, respectively, while the meth­oxy substituent lies close to the plane of its benzene ring, with a maximum deviation of 0.126 (3) Å for the meth­oxy C atom. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(22) loops. These dimers are stacked along the a-axis direction.

Related literature

For the non-linear optical and chemiluminescence properties of lophine and its derivatives, see: Santos et al. (2001[Santos, J., Mintz, E. A., Zehnder, O., Bosshard, C., Bu, X. R. & Gunter, P. (2001). Tetrahedron Lett. 42, 805-808.]); Radziszewski (1877[Radziszewski, B. (1877). Chem. Ber. 10, 70-75.]); Maeda & Hayashi (1969[Maeda, K. & Hayashi, T. (1969). Bull. Chem. Soc. Jpn, 42, 3509-3514.], 1970[Maeda, K. & Hayashi, T. (1970). Bull. Chem. Soc. Jpn, 43, 429-438.]). For the bioactivity of imidazoles, see: Antolini et al. (1999[Antolini, M., Bozzoli, A., Ghiron, C., Kennedy, G., Rossi, T. & Ursini, A. (1999). Bioorg. Med. Chem. Lett. 9, 1023-1028.]); Eyers et al. (1998[Eyers, P. A., Craxton, M., Morrice, N. & Cohen, P. (1998). J. Chem. Biol. 5, 321-328.]); Laszlo et al. (1999[Laszlo, De S. E., Hacker, C., Li, B., Kim, D., MacCoss, M., Mantlo, N., Pivnichny, J. V., Colwell, L., Koch, G. E., Cascieri, M. A. & Hagmann, W. K. (1999). Bioorg. Med. Chem. Lett. 9, 641-646.]); Newman et al. (2000[Newman, M. J., Rodarte, J. C., Benbatoul, K. D., Romano, S. J., Zhang, C., Krane, S., Moran, E. J., Uyeda, R. T., Dixon, R., Guns, E. S. & Mayer, L. D. V. (2000). Cancer Res. 60, 2964-2972.]); Veisi et al. (2012[Veisi, H., Khazaei, A., Heshmati, L. & Hemmati, S. (2012). Bull. Korean Chem. Soc. 33, 1231-1234.]); Wang et al. (2002[Wang, L., Woods, K. W., Li, Q., Barr, K. J., McCroskey, R. W., Hannick, S. M., Gherke, L., Credo, R. B., Hui, Y.-H., Marsh, K., Warner, R., Lee, J. Y., Zielinsky-Mozng, N., Frost, D., Rosenberg, S. H. & Sham, H. L. (2002). J. Med. Chem. 45, 1697-1711.]). For related structures, see, for example: Yanover & Kaftory (2009a[Yanover, D. & Kaftory, M. (2009a). Acta Cryst. E65, o711.],b[Yanover, D. & Kaftory, M. (2009b). Acta Cryst. C65, o365-o370.]); Kison & Opatz (2009[Kison, C. & Opatz, T. (2009). Chem. Eur. J. 15, 843-845.]); Zhao et al. (2012[Zhao, B., Li, Z., Fan, M., Song, B. & Deng, Q. (2012). Acta Cryst. E68, o542.]). For representative bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C27H28N2O

  • Mr = 396.51

  • Triclinic, [P \overline 1]

  • a = 9.7214 (19) Å

  • b = 10.739 (1) Å

  • c = 11.7367 (10) Å

  • α = 114.069 (4)°

  • β = 99.021 (6)°

  • γ = 95.425 (6)°

  • V = 1087.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 93 K

  • 0.47 × 0.18 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.619, Tmax = 0.746

  • 15574 measured reflections

  • 4968 independent reflections

  • 3542 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.06

  • 4968 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O119i 0.95 2.61 3.4393 (19) 146
Symmetry code: (i) -x+2, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chemilumescence properties of lophine, (2,4,5-triphenyl-1H-imidazole), and its derivatives have been known since the late 19t h century (Radziszewski, 1877) and their non-linear optical (Santos et al., 2001) and related optical properties (Maeda & Hayashi, 1969, 1970) have been extensively investigated. In addition, substituted imidazoles exhibit a wide range of biological activities for example as glucagon receptors (Laszlo et al., 1999), CB1 cannabinoid receptor antagonists (Eyers et al., 1998) and modulators of P-glycoprotein (P-gp)-mediated multi drug resistance (MDR) (Newman et al., 2000). They can also act as both antibacterial (Antolini et al., 1999) and antitumor agents (Wang et al., 2002) or as pesticides (Veisi et al., 2012). As part of our work on the synthesis of imidazole derivatives, we have prepared 2-(4-methoxyphenyl)-1-pentyl-4,5-diphenyl-1H-imidazole and report its preparation and structure here.

In the title compound, the lophine (2,4,5-triphenyl-1H-imidazole) skeleton (Yanover & Kaftory, 2009a) is embellished with a nicely ordered C22—C26 n-pentyl substituent on the amine N atom of the imidazole ring and a p-methoxy substituent on the C17—C21 benzene ring. The n-pentyl chain is almost orthogonal to the imidazole with a meanplane through C22···C26 (r.m.s. deviation = 0.047 /%A) that subtends a dihedral angle of 78.91 (7) ° to the plane of the imidazole ring. The two C4···C9 and C10···C15 phenyl rings are inclined to the imidazole ring at angles of 25.32 (7)°, 76.79 (5)° respectively while the methoxy substituted C17···C21 ring makes and angle of 35.42 (7)°. The methoxy substituent lies close to the plane of the C17···C21 benzene ring with a maximum deviation of only 0.126 (3) Å for the C119 atom. Bond distances in the structure are normal (Allen et al., 1987) and are comparable to those reported for related structures (Yanover & Kaftory, 2009a,b; Kison & Opatz, 2009; Zhao et al., 2012). In the crystal structure the only significant intermolecular contacts are C15—H15···O119 hydrogen bonds which form inversion dimers with R22(22) ring motifs (Bernstein et al., 1995). These dimers are further stacked along the a axis (Fig. 2), with alternating molecules arranged in a head to tail fashion (Fig. 3).

Related literature top

For the non-linear optical and chemiluminescence properties of lophine and its derivatives, see: Santos et al. (2001); Radziszewski (1877); Maeda & Hayashi (1969, 1970). For the bioactivity of imidazoles, see: Antolini et al. (1999); Eyers et al. (1998); Laszlo et al. (1999); Newman et al. (2000); Veisi et al. (2012); Wang et al. (2002). For related structures, see, for example: Yanover & Kaftory (2009a,b); Kison & Opatz (2009); Zhao et al. (2012). For representative bond lengths, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A 50-ml. volumetric flask equipped with a magnetic stirring bar was charged with 25 ml. of dimethyl sulfoxide and 2.4 g (40 mmol) potassium hydroxide. The mixture was stirred at room temperature for 5 minutes, then 3.26 g (10 mmol) 2-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazole was added with stirring for a further 45 minutes. To this reaction mixture, 3.02 g. (20 mmol) pentyl bromide was added. After stirring for an additional 45 minutes the mixture was diluted with 20 ml water then extracted with diethyl ether (3x 20 ml). The combined ether layers were dried over calcium chloride and evaporated under slightly reduced pressure. The excess pentyl bromide was removed by distillation at approximately 15 mm, and the residue was crystallized from ethanol yielding 3.35 g (84%) of 2-(4-methoxyphenyl)-1-pentyl-4,5-diphenyl-1H-imidazole, m.p. 382–384 K.

Refinement top

All H-atoms bound were refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic, 0.99 Å Uiso=1.2Ueq (C) for methylene and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.

Structure description top

The chemilumescence properties of lophine, (2,4,5-triphenyl-1H-imidazole), and its derivatives have been known since the late 19t h century (Radziszewski, 1877) and their non-linear optical (Santos et al., 2001) and related optical properties (Maeda & Hayashi, 1969, 1970) have been extensively investigated. In addition, substituted imidazoles exhibit a wide range of biological activities for example as glucagon receptors (Laszlo et al., 1999), CB1 cannabinoid receptor antagonists (Eyers et al., 1998) and modulators of P-glycoprotein (P-gp)-mediated multi drug resistance (MDR) (Newman et al., 2000). They can also act as both antibacterial (Antolini et al., 1999) and antitumor agents (Wang et al., 2002) or as pesticides (Veisi et al., 2012). As part of our work on the synthesis of imidazole derivatives, we have prepared 2-(4-methoxyphenyl)-1-pentyl-4,5-diphenyl-1H-imidazole and report its preparation and structure here.

In the title compound, the lophine (2,4,5-triphenyl-1H-imidazole) skeleton (Yanover & Kaftory, 2009a) is embellished with a nicely ordered C22—C26 n-pentyl substituent on the amine N atom of the imidazole ring and a p-methoxy substituent on the C17—C21 benzene ring. The n-pentyl chain is almost orthogonal to the imidazole with a meanplane through C22···C26 (r.m.s. deviation = 0.047 /%A) that subtends a dihedral angle of 78.91 (7) ° to the plane of the imidazole ring. The two C4···C9 and C10···C15 phenyl rings are inclined to the imidazole ring at angles of 25.32 (7)°, 76.79 (5)° respectively while the methoxy substituted C17···C21 ring makes and angle of 35.42 (7)°. The methoxy substituent lies close to the plane of the C17···C21 benzene ring with a maximum deviation of only 0.126 (3) Å for the C119 atom. Bond distances in the structure are normal (Allen et al., 1987) and are comparable to those reported for related structures (Yanover & Kaftory, 2009a,b; Kison & Opatz, 2009; Zhao et al., 2012). In the crystal structure the only significant intermolecular contacts are C15—H15···O119 hydrogen bonds which form inversion dimers with R22(22) ring motifs (Bernstein et al., 1995). These dimers are further stacked along the a axis (Fig. 2), with alternating molecules arranged in a head to tail fashion (Fig. 3).

For the non-linear optical and chemiluminescence properties of lophine and its derivatives, see: Santos et al. (2001); Radziszewski (1877); Maeda & Hayashi (1969, 1970). For the bioactivity of imidazoles, see: Antolini et al. (1999); Eyers et al. (1998); Laszlo et al. (1999); Newman et al. (2000); Veisi et al. (2012); Wang et al. (2002). For related structures, see, for example: Yanover & Kaftory (2009a,b); Kison & Opatz (2009); Zhao et al. (2012). For representative bond lengths, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of I with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of I viewed along b showing centrosymmetric dimer formation. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. Crystal packing of I showing stacks formed along a. Hydrogen bonds are drawn as dashed lines.
2-(4-Methoxyphenyl)-1-pentyl-4,5-diphenyl-1H-imidazole top
Crystal data top
C27H28N2OZ = 2
Mr = 396.51F(000) = 424
Triclinic, P1Dx = 1.211 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7214 (19) ÅCell parameters from 3238 reflections
b = 10.739 (1) Åθ = 2.6–26.1°
c = 11.7367 (10) ŵ = 0.07 mm1
α = 114.069 (4)°T = 93 K
β = 99.021 (6)°Rectangular plate, colourless
γ = 95.425 (6)°0.47 × 0.18 × 0.08 mm
V = 1087.7 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4968 independent reflections
Radiation source: fine-focus sealed tube3542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 27.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1212
Tmin = 0.619, Tmax = 0.746k = 1314
15574 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.0245P]
where P = (Fo2 + 2Fc2)/3
4968 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C27H28N2Oγ = 95.425 (6)°
Mr = 396.51V = 1087.7 (3) Å3
Triclinic, P1Z = 2
a = 9.7214 (19) ÅMo Kα radiation
b = 10.739 (1) ŵ = 0.07 mm1
c = 11.7367 (10) ÅT = 93 K
α = 114.069 (4)°0.47 × 0.18 × 0.08 mm
β = 99.021 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4968 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
3542 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.746Rint = 0.043
15574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
4968 reflectionsΔρmin = 0.25 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65447 (14)1.04609 (14)0.93573 (12)0.0209 (3)
C20.63626 (14)0.90460 (14)0.87092 (12)0.0208 (3)
N20.73101 (12)0.86376 (11)0.94408 (10)0.0214 (3)
C30.80178 (14)0.98139 (14)1.04912 (13)0.0206 (3)
N10.75725 (12)1.09265 (12)1.04654 (10)0.0218 (3)
C40.58701 (15)1.14575 (14)0.89992 (12)0.0213 (3)
C50.65877 (16)1.28159 (15)0.94687 (13)0.0252 (3)
H50.74901.30861.00310.030*
C60.60042 (16)1.37763 (15)0.91278 (14)0.0276 (3)
H60.65071.46960.94540.033*
C70.46848 (16)1.33933 (16)0.83088 (14)0.0290 (4)
H70.42881.40450.80640.035*
C80.39535 (17)1.20596 (16)0.78529 (14)0.0283 (4)
H80.30451.17980.73020.034*
C90.45371 (15)1.11015 (15)0.81940 (13)0.0244 (3)
H90.40221.01880.78750.029*
C100.54830 (15)0.80462 (14)0.74497 (13)0.0210 (3)
C110.42624 (16)0.71869 (15)0.73438 (14)0.0279 (4)
H110.39700.72260.80910.033*
C120.34667 (17)0.62676 (16)0.61431 (15)0.0334 (4)
H120.26370.56770.60770.040*
C130.38700 (17)0.62053 (16)0.50497 (14)0.0310 (4)
H130.33210.55770.42330.037*
C140.50733 (17)0.70598 (16)0.51489 (14)0.0329 (4)
H140.53530.70260.43980.040*
C150.58783 (16)0.79690 (15)0.63386 (13)0.0280 (4)
H150.67130.85480.63960.034*
C160.90797 (15)0.98543 (14)1.15551 (13)0.0216 (3)
C171.00822 (15)0.89913 (15)1.14112 (13)0.0240 (3)
H171.01020.83291.05790.029*
C181.10545 (15)0.90705 (15)1.24484 (13)0.0249 (3)
H181.17230.84621.23260.030*
C191.10445 (15)1.00433 (15)1.36650 (13)0.0243 (3)
O1191.19783 (10)1.02238 (11)1.47489 (9)0.0288 (3)
C1191.28969 (17)0.92355 (17)1.46185 (15)0.0351 (4)
H11A1.23320.83031.42560.053*
H11B1.34710.94421.54590.053*
H11C1.35180.92831.40500.053*
C201.00777 (15)1.09470 (15)1.38280 (13)0.0255 (3)
H201.00871.16331.46580.031*
C210.91080 (15)1.08526 (15)1.27931 (13)0.0242 (3)
H210.84501.14711.29180.029*
C220.75400 (15)0.72148 (14)0.90983 (13)0.0228 (3)
H22A0.66250.65740.86690.027*
H22B0.79080.71140.98860.027*
C230.85838 (15)0.68150 (14)0.82145 (13)0.0241 (3)
H23A0.81030.66480.73440.029*
H23B0.93790.75990.85180.029*
C240.91712 (16)0.55285 (15)0.81503 (14)0.0260 (3)
H24A0.96240.56800.90240.031*
H24B0.83810.47340.78140.031*
C251.02476 (16)0.51780 (16)0.73060 (14)0.0311 (4)
H25A0.97620.49060.64110.037*
H25B1.09660.60170.75710.037*
C261.09912 (18)0.40151 (16)0.73654 (16)0.0359 (4)
H26A1.15290.43010.82370.054*
H26B1.16370.38090.67750.054*
H26C1.02860.31850.71220.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0207 (7)0.0229 (7)0.0170 (7)0.0013 (6)0.0033 (6)0.0072 (6)
C20.0205 (7)0.0251 (7)0.0170 (7)0.0031 (6)0.0037 (5)0.0097 (6)
N20.0241 (6)0.0216 (6)0.0168 (6)0.0025 (5)0.0030 (5)0.0075 (5)
C30.0221 (7)0.0216 (7)0.0172 (7)0.0025 (6)0.0059 (6)0.0071 (6)
N10.0229 (6)0.0238 (6)0.0180 (6)0.0035 (5)0.0047 (5)0.0081 (5)
C40.0243 (7)0.0244 (7)0.0154 (7)0.0067 (6)0.0074 (6)0.0070 (6)
C50.0268 (8)0.0255 (8)0.0196 (7)0.0052 (6)0.0032 (6)0.0066 (6)
C60.0352 (9)0.0212 (7)0.0255 (8)0.0044 (6)0.0090 (7)0.0083 (6)
C70.0373 (9)0.0294 (8)0.0235 (8)0.0136 (7)0.0083 (7)0.0124 (7)
C80.0292 (8)0.0331 (8)0.0209 (7)0.0088 (7)0.0034 (6)0.0098 (7)
C90.0259 (8)0.0235 (8)0.0211 (7)0.0045 (6)0.0054 (6)0.0067 (6)
C100.0229 (7)0.0201 (7)0.0182 (7)0.0053 (6)0.0031 (6)0.0067 (6)
C110.0296 (8)0.0271 (8)0.0222 (7)0.0021 (6)0.0084 (6)0.0056 (6)
C120.0265 (8)0.0299 (8)0.0327 (9)0.0018 (7)0.0048 (7)0.0047 (7)
C130.0321 (9)0.0293 (8)0.0208 (7)0.0055 (7)0.0042 (6)0.0038 (6)
C140.0405 (9)0.0363 (9)0.0184 (7)0.0037 (7)0.0042 (7)0.0096 (7)
C150.0292 (8)0.0305 (8)0.0223 (7)0.0008 (6)0.0031 (6)0.0116 (7)
C160.0223 (7)0.0227 (7)0.0187 (7)0.0009 (6)0.0033 (6)0.0089 (6)
C170.0254 (8)0.0257 (8)0.0177 (7)0.0023 (6)0.0049 (6)0.0065 (6)
C180.0225 (8)0.0286 (8)0.0238 (7)0.0046 (6)0.0053 (6)0.0114 (6)
C190.0217 (7)0.0316 (8)0.0189 (7)0.0009 (6)0.0008 (6)0.0128 (6)
O1190.0271 (6)0.0383 (6)0.0204 (5)0.0066 (5)0.0007 (4)0.0135 (5)
C1190.0310 (9)0.0456 (10)0.0290 (8)0.0105 (8)0.0007 (7)0.0180 (8)
C200.0277 (8)0.0267 (8)0.0185 (7)0.0024 (6)0.0055 (6)0.0064 (6)
C210.0243 (8)0.0255 (7)0.0210 (7)0.0040 (6)0.0048 (6)0.0084 (6)
C220.0249 (7)0.0206 (7)0.0214 (7)0.0022 (6)0.0013 (6)0.0092 (6)
C230.0268 (8)0.0234 (7)0.0188 (7)0.0033 (6)0.0026 (6)0.0068 (6)
C240.0276 (8)0.0263 (8)0.0227 (7)0.0054 (6)0.0037 (6)0.0095 (6)
C250.0320 (9)0.0300 (8)0.0292 (8)0.0073 (7)0.0080 (7)0.0097 (7)
C260.0339 (9)0.0317 (9)0.0369 (9)0.0088 (7)0.0076 (7)0.0091 (7)
Geometric parameters (Å, º) top
C1—C21.3721 (19)C16—C171.390 (2)
C1—N11.3811 (17)C16—C211.4045 (19)
C1—C41.4716 (19)C17—C181.3864 (19)
C2—N21.3833 (17)C17—H170.9500
C2—C101.4848 (18)C18—C191.386 (2)
N2—C31.3742 (17)C18—H180.9500
N2—C221.4622 (17)C19—O1191.3724 (16)
C3—N11.3188 (17)C19—C201.393 (2)
C3—C161.4730 (19)O119—C1191.4272 (18)
C4—C91.3950 (19)C119—H11A0.9800
C4—C51.396 (2)C119—H11B0.9800
C5—C61.386 (2)C119—H11C0.9800
C5—H50.9500C20—C211.3772 (19)
C6—C71.389 (2)C20—H200.9500
C6—H60.9500C21—H210.9500
C7—C81.381 (2)C22—C231.529 (2)
C7—H70.9500C22—H22A0.9900
C8—C91.384 (2)C22—H22B0.9900
C8—H80.9500C23—C241.5225 (19)
C9—H90.9500C23—H23A0.9900
C10—C151.389 (2)C23—H23B0.9900
C10—C111.389 (2)C24—C251.521 (2)
C11—C121.392 (2)C24—H24A0.9900
C11—H110.9500C24—H24B0.9900
C12—C131.378 (2)C25—C261.521 (2)
C12—H120.9500C25—H25A0.9900
C13—C141.375 (2)C25—H25B0.9900
C13—H130.9500C26—H26A0.9800
C14—C151.384 (2)C26—H26B0.9800
C14—H140.9500C26—H26C0.9800
C15—H150.9500
C2—C1—N1110.31 (12)C18—C17—C16121.84 (13)
C2—C1—C4129.52 (12)C18—C17—H17119.1
N1—C1—C4120.10 (12)C16—C17—H17119.1
C1—C2—N2105.42 (11)C19—C18—C17119.52 (14)
C1—C2—C10132.42 (13)C19—C18—H18120.2
N2—C2—C10121.98 (12)C17—C18—H18120.2
C3—N2—C2107.27 (11)O119—C19—C18124.04 (13)
C3—N2—C22127.52 (12)O119—C19—C20116.28 (12)
C2—N2—C22125.14 (11)C18—C19—C20119.63 (13)
N1—C3—N2111.01 (12)C19—O119—C119117.07 (11)
N1—C3—C16123.28 (12)O119—C119—H11A109.5
N2—C3—C16125.62 (12)O119—C119—H11B109.5
C3—N1—C1105.98 (11)H11A—C119—H11B109.5
C9—C4—C5118.02 (13)O119—C119—H11C109.5
C9—C4—C1122.72 (13)H11A—C119—H11C109.5
C5—C4—C1119.25 (13)H11B—C119—H11C109.5
C6—C5—C4121.02 (13)C21—C20—C19120.41 (13)
C6—C5—H5119.5C21—C20—H20119.8
C4—C5—H5119.5C19—C20—H20119.8
C5—C6—C7119.98 (14)C20—C21—C16120.87 (14)
C5—C6—H6120.0C20—C21—H21119.6
C7—C6—H6120.0C16—C21—H21119.6
C8—C7—C6119.63 (14)N2—C22—C23112.03 (12)
C8—C7—H7120.2N2—C22—H22A109.2
C6—C7—H7120.2C23—C22—H22A109.2
C7—C8—C9120.34 (14)N2—C22—H22B109.2
C7—C8—H8119.8C23—C22—H22B109.2
C9—C8—H8119.8H22A—C22—H22B107.9
C8—C9—C4121.00 (14)C24—C23—C22113.10 (12)
C8—C9—H9119.5C24—C23—H23A109.0
C4—C9—H9119.5C22—C23—H23A109.0
C15—C10—C11118.59 (13)C24—C23—H23B109.0
C15—C10—C2119.43 (13)C22—C23—H23B109.0
C11—C10—C2121.97 (13)H23A—C23—H23B107.8
C10—C11—C12120.06 (14)C25—C24—C23112.34 (12)
C10—C11—H11120.0C25—C24—H24A109.1
C12—C11—H11120.0C23—C24—H24A109.1
C13—C12—C11120.69 (15)C25—C24—H24B109.1
C13—C12—H12119.7C23—C24—H24B109.1
C11—C12—H12119.7H24A—C24—H24B107.9
C14—C13—C12119.50 (14)C26—C25—C24113.26 (14)
C14—C13—H13120.2C26—C25—H25A108.9
C12—C13—H13120.2C24—C25—H25A108.9
C13—C14—C15120.24 (15)C26—C25—H25B108.9
C13—C14—H14119.9C24—C25—H25B108.9
C15—C14—H14119.9H25A—C25—H25B107.7
C14—C15—C10120.91 (15)C25—C26—H26A109.5
C14—C15—H15119.5C25—C26—H26B109.5
C10—C15—H15119.5H26A—C26—H26B109.5
C17—C16—C21117.68 (13)C25—C26—H26C109.5
C17—C16—C3124.27 (12)H26A—C26—H26C109.5
C21—C16—C3118.03 (13)H26B—C26—H26C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O119i0.952.613.4393 (19)146
Symmetry code: (i) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC27H28N2O
Mr396.51
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)9.7214 (19), 10.739 (1), 11.7367 (10)
α, β, γ (°)114.069 (4), 99.021 (6), 95.425 (6)
V3)1087.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.47 × 0.18 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.619, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15574, 4968, 3542
Rint0.043
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.06
No. of reflections4968
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: APEX2 (Bruker, 2011), APEX2 and SAINT (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O119i0.952.613.4393 (19)145.6
Symmetry code: (i) x+2, y+2, z+2.
 

Acknowledgements

We thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAntolini, M., Bozzoli, A., Ghiron, C., Kennedy, G., Rossi, T. & Ursini, A. (1999). Bioorg. Med. Chem. Lett. 9, 1023–1028.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEyers, P. A., Craxton, M., Morrice, N. & Cohen, P. (1998). J. Chem. Biol. 5, 321–328.  CrossRef CAS Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKison, C. & Opatz, T. (2009). Chem. Eur. J. 15, 843–845.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLaszlo, De S. E., Hacker, C., Li, B., Kim, D., MacCoss, M., Mantlo, N., Pivnichny, J. V., Colwell, L., Koch, G. E., Cascieri, M. A. & Hagmann, W. K. (1999). Bioorg. Med. Chem. Lett. 9, 641–646.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaeda, K. & Hayashi, T. (1969). Bull. Chem. Soc. Jpn, 42, 3509–3514.  CrossRef CAS Web of Science Google Scholar
First citationMaeda, K. & Hayashi, T. (1970). Bull. Chem. Soc. Jpn, 43, 429–438.  CrossRef CAS Web of Science Google Scholar
First citationNewman, M. J., Rodarte, J. C., Benbatoul, K. D., Romano, S. J., Zhang, C., Krane, S., Moran, E. J., Uyeda, R. T., Dixon, R., Guns, E. S. & Mayer, L. D. V. (2000). Cancer Res. 60, 2964–2972.  Web of Science PubMed CAS Google Scholar
First citationRadziszewski, B. (1877). Chem. Ber. 10, 70–75.  CrossRef Google Scholar
First citationSantos, J., Mintz, E. A., Zehnder, O., Bosshard, C., Bu, X. R. & Gunter, P. (2001). Tetrahedron Lett. 42, 805–808.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeisi, H., Khazaei, A., Heshmati, L. & Hemmati, S. (2012). Bull. Korean Chem. Soc. 33, 1231–1234.  CrossRef CAS Google Scholar
First citationWang, L., Woods, K. W., Li, Q., Barr, K. J., McCroskey, R. W., Hannick, S. M., Gherke, L., Credo, R. B., Hui, Y.-H., Marsh, K., Warner, R., Lee, J. Y., Zielinsky-Mozng, N., Frost, D., Rosenberg, S. H. & Sham, H. L. (2002). J. Med. Chem. 45, 1697–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYanover, D. & Kaftory, M. (2009a). Acta Cryst. E65, o711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYanover, D. & Kaftory, M. (2009b). Acta Cryst. C65, o365–o370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B., Li, Z., Fan, M., Song, B. & Deng, Q. (2012). Acta Cryst. E68, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds