organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­methyl-5-(2-nitro­benzyl­­idene)-1,3-dioxane-4,6-dione

aCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Pue., Mexico, and bDivisión Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, AP 24, 86690, Cuanduacán Tab., Mexico
*Correspondence e-mail: angel.mendoza.m@gmail.com

(Received 28 November 2012; accepted 3 December 2012; online 8 December 2012)

The asymmetric unit of the title compound, C13H11NO6, contains two mol­ecules in both of which the six-membered 1,3-dioxane-4,6-dione ring shows a screw-boat conformation. The dihedral angles between the best planes through the six-membered rings are 47.8 (2) and 49.8 (2)°. In the crystal, C—H⋯O inter­actions link the mol­ecules, building a supramolecular sheet parallel to the c axis.

Related literature

For general applications of Meldrum's acid, see: Palasz et al. (2007[Palasz, A., Jelska, K., Ozóg, M. & Serda, P. (2007). Monatsh. Chem. 138, 481-488.]); Fillion et al. (2006[Fillion, E., Dumas, A. & Hogg, S. A. (2006). J. Org. Chem. 71, 9899-9902.]); Mizukami et al. (1993[Mizukami, S., Kihara, N. & Endo, T. (1993). Tetrahedron Lett. 34, 7437-7440.]). For the synthesis of heterocyclic compounds, see: Scott & Raston (2000[Scott, J. L. & Raston, C. L. (2000). Green Chem. 2, 245-247.]); Alvim et al. (2005[Alvim, J. Jr, Días, R. L. A., Castilhob, M. S., Olivab, G. & y Corréa, A. G. (2005). J. Braz. Chem. Soc. 16, 763-773.]); Fillion & Dumas (2008[Fillion, E. & Dumas, A.-M. (2008). J. Org. Chem. 73, 2920-2923.]). For combinatorial synthesis, see: Shaabani et al. (2004[Shaabani, A., Teimouri, M. B. & Bijanzadeh, H. R. (2004). Russ. J. Org. Chem. 40, 976-981.]); Wang et al. (2007[Wang, X.-S., Zhang, M.-M., Jiang, H., Yaoa, C.-S. & Tua, S.-J. (2007). Tetrahedron, 63, 4439-4449.]); Cochard et al. (2004[Cochard, F., Laronze, M., Sigaut, P., SAPI, J. & Laronze, J.-Y. (2004). Tetrahedron Lett. 45, 1703-1707.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For NMR data, see: Bigi et al. (2001[Bigi, F., Carloni, S., Ferrari, L., Maggi, R., Mazzacani, A. & Sartori, G. (2001). Tetrahedron Lett. 42, 5203-5205.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO6

  • Mr = 277.23

  • Triclinic, [P \overline 1]

  • a = 10.0240 (4) Å

  • b = 10.4830 (5) Å

  • c = 12.4076 (5) Å

  • α = 105.385 (4)°

  • β = 94.669 (3)°

  • γ = 93.096 (3)°

  • V = 1249.03 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 130 K

  • 0.39 × 0.22 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.968, Tmax = 0.985

  • 8703 measured reflections

  • 4526 independent reflections

  • 3902 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.03

  • 4526 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H7⋯O5 0.93 2.43 2.7970 (16) 104
C11—H10⋯O8 0.93 2.45 3.239 (2) 143
C21—H13⋯O5i 0.96 2.58 3.4188 (17) 145
C16—H18⋯O12 0.93 2.54 2.8582 (18) 100
C16—H18⋯O2ii 0.93 2.55 3.4486 (18) 163
C24—H21⋯O5iii 0.93 2.48 3.3676 (19) 160
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The 5-arylidenes Meldrum's acid derivatives, like title compound, are versatile intermediates in organic synthesis, for example, this type of compounds were used in hetero-Diels-Alder reaction (Palasz et al. 2007; Fillion et al. 2006 and Mizukami et al. 1993), as well as in the synthesis of heterocycle compound, like coumarins (Scott et al. 2000 and Alvim et al. 2005); γ-Butyrolactones and pyrrole derivatives (Fillion et al. 2008). Also, the 5-arylidene derivatives of Meldrum's acid possess an α, β-unsaturated carbonyl system, which is considered as a key building block in combinatorial reaction for three components synthesis (Shaabani et al. 2004 and Wang et al. 2007), alike four components reaction (Cochard et al. 2004). The title compound was obtained by a green Knoevenagel condensation of Meldrum acid with 2-nitrobenzaldehyde employing ultrasonic radiation and water as solvent.

In the title compound C13 H11 N O6, the ASU contains two molecules showing a 2,2-dimethyl-1,3-dioxane-4,6-dione group opposite to o-nitrophenyl ring for each molecule. The 1,3-dioxane ring shows a screw-boat conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.4807 (14) Å, θ2 = 73.12° (17), φ2 = 300.32° (17), q2 = 0.4600 (14) Å and q3 = 0.1396 (14) Å for the six member ring O3/C5/C4/C7/O4/C6 and Q = 0.5031 (14) Å, θ2 = 103.03 (16)°, φ2 = 121.91 (16)°, q2 = 0.4901 (14) Å and q3 = -0.1135 (14) Å for the six member ring O9/C18/C17/C20/O10/C19. The C=O groups and carbon atom between them show a maximun deviation from mean plane of 0.256 Å for molecule 1 and 0.311 Å for molecule 2. The dihedral angle for p-nitrophenyl rings and C=C bond are 56.1 (2)° for molecule 1 (C2/C3/C4/C10) and 60.5 (2)° for molecule 2 (C15/C16/C17/C23). The crystal packing present six intermolecular interactions of the type C—H···O hydrogen bonds (table 1).

Related literature top

For general applications of Meldrum's acid, see: Palasz et al. (2007); Fillion et al. (2006); Mizukami et al. (1993). For the synthesis of heterocyclic compounds, see: Scott & Raston (2000); Alvim et al. (2005); Fillion & Dumas (2008). For combinatorial synthesis, see: Shaabani et al. (2004); Wang et al. (2007); Cochard et al. (2004). For puckering parameters, see: Cremer & Pople (1975). For NMR data, see: Bigi et al. (2001).

Experimental top

In a balloon flask was placed 0.33 mmol of 2-nitrobenzaldehyde, 1 eq. of Meldrum's acid and 3 ml of water. The mixture was subjected to ultrasonic radiation for 37 min. The reaction product was isolated from the aqueous medium by liquid-liquid extraction 3 x 10 ml. CH2Cl2 and the crude product recrystallized from CH2Cl2/Et2O (1:1) to give (I) in 72% yield. m.p 117°C. For ultrasonic radiation we employed an ultrasonic bath Cole-Parmer 08890–21. All chemicals were purchased from Sigma-Aldrich. Spectroscopic analysis: ν max/cm-1 (neat KBr) 2925, 1737, 1640, 1600, 1525, 1350, 1380, 1290, 1200, and 725. 1H NMR (400 MHz, CDCl3): δ (p.p.m.) = 8.80 (s, 1H); 8.3 (dd, 1H); 7.77 (t, 1H); 7.6(t, 1H); 7.5(d, 1H); 1.8 (s, 6H). 13C NMR data are in good agreement with those described in the literature (Bigi et al., 2001)

Refinement top

H atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C).

Structure description top

The 5-arylidenes Meldrum's acid derivatives, like title compound, are versatile intermediates in organic synthesis, for example, this type of compounds were used in hetero-Diels-Alder reaction (Palasz et al. 2007; Fillion et al. 2006 and Mizukami et al. 1993), as well as in the synthesis of heterocycle compound, like coumarins (Scott et al. 2000 and Alvim et al. 2005); γ-Butyrolactones and pyrrole derivatives (Fillion et al. 2008). Also, the 5-arylidene derivatives of Meldrum's acid possess an α, β-unsaturated carbonyl system, which is considered as a key building block in combinatorial reaction for three components synthesis (Shaabani et al. 2004 and Wang et al. 2007), alike four components reaction (Cochard et al. 2004). The title compound was obtained by a green Knoevenagel condensation of Meldrum acid with 2-nitrobenzaldehyde employing ultrasonic radiation and water as solvent.

In the title compound C13 H11 N O6, the ASU contains two molecules showing a 2,2-dimethyl-1,3-dioxane-4,6-dione group opposite to o-nitrophenyl ring for each molecule. The 1,3-dioxane ring shows a screw-boat conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.4807 (14) Å, θ2 = 73.12° (17), φ2 = 300.32° (17), q2 = 0.4600 (14) Å and q3 = 0.1396 (14) Å for the six member ring O3/C5/C4/C7/O4/C6 and Q = 0.5031 (14) Å, θ2 = 103.03 (16)°, φ2 = 121.91 (16)°, q2 = 0.4901 (14) Å and q3 = -0.1135 (14) Å for the six member ring O9/C18/C17/C20/O10/C19. The C=O groups and carbon atom between them show a maximun deviation from mean plane of 0.256 Å for molecule 1 and 0.311 Å for molecule 2. The dihedral angle for p-nitrophenyl rings and C=C bond are 56.1 (2)° for molecule 1 (C2/C3/C4/C10) and 60.5 (2)° for molecule 2 (C15/C16/C17/C23). The crystal packing present six intermolecular interactions of the type C—H···O hydrogen bonds (table 1).

For general applications of Meldrum's acid, see: Palasz et al. (2007); Fillion et al. (2006); Mizukami et al. (1993). For the synthesis of heterocyclic compounds, see: Scott & Raston (2000); Alvim et al. (2005); Fillion & Dumas (2008). For combinatorial synthesis, see: Shaabani et al. (2004); Wang et al. (2007); Cochard et al. (2004). For puckering parameters, see: Cremer & Pople (1975). For NMR data, see: Bigi et al. (2001).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
2,2-Dimethyl-5-(2-nitrobenzylidene)-1,3-dioxane-4,6-dione top
Crystal data top
C13H11NO6Z = 4
Mr = 277.23F(000) = 576
Triclinic, P1Dx = 1.474 Mg m3
a = 10.0240 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4830 (5) ÅCell parameters from 5470 reflections
c = 12.4076 (5) Åθ = 3.4–25.2°
α = 105.385 (4)°µ = 0.12 mm1
β = 94.669 (3)°T = 130 K
γ = 93.096 (3)°Prism, colorless
V = 1249.03 (10) Å30.39 × 0.22 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
4526 independent reflections
Graphite monochromator3902 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.018
ω scansθmax = 25.3°, θmin = 3.4°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1212
Tmin = 0.968, Tmax = 0.985k = 1012
8703 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.3347P]
where P = (Fo2 + 2Fc2)/3
4526 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H11NO6γ = 93.096 (3)°
Mr = 277.23V = 1249.03 (10) Å3
Triclinic, P1Z = 4
a = 10.0240 (4) ÅMo Kα radiation
b = 10.4830 (5) ŵ = 0.12 mm1
c = 12.4076 (5) ÅT = 130 K
α = 105.385 (4)°0.39 × 0.22 × 0.14 mm
β = 94.669 (3)°
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
4526 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
3902 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.985Rint = 0.018
8703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
4526 reflectionsΔρmin = 0.24 e Å3
365 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61144 (10)0.10481 (11)0.54216 (9)0.0347 (3)
O20.53572 (11)0.09437 (10)0.69780 (9)0.0351 (3)
O60.23911 (10)0.16149 (11)0.32752 (8)0.0334 (3)
O50.68803 (9)0.16562 (11)0.25320 (8)0.0293 (2)
O30.29864 (9)0.16222 (10)0.16040 (8)0.0260 (2)
O40.52511 (9)0.16412 (10)0.12250 (8)0.0255 (2)
N10.54108 (11)0.14413 (11)0.61912 (10)0.0241 (3)
C20.44468 (13)0.30112 (13)0.52086 (11)0.0203 (3)
C10.46117 (13)0.25651 (13)0.61755 (11)0.0203 (3)
C130.40048 (14)0.31165 (14)0.71352 (11)0.0240 (3)
H80.41370.27930.77620.029*
C120.32022 (14)0.41500 (14)0.71558 (12)0.0264 (3)
H90.28030.45430.78010.032*
C110.29991 (14)0.45936 (14)0.62034 (12)0.0263 (3)
H100.24460.52790.62070.032*
C100.36058 (13)0.40341 (14)0.52468 (12)0.0243 (3)
H110.3450.43470.46160.029*
C30.51994 (13)0.25533 (13)0.42226 (11)0.0215 (3)
H70.61260.25770.43710.026*
C40.47179 (13)0.21081 (13)0.31422 (11)0.0209 (3)
C50.32781 (14)0.17904 (14)0.27213 (12)0.0241 (3)
C70.57212 (13)0.18052 (14)0.23029 (11)0.0222 (3)
C60.39619 (13)0.21135 (15)0.09837 (12)0.0243 (3)
C80.35526 (15)0.14531 (17)0.02350 (12)0.0330 (4)
H10.27190.17640.04580.05*
H20.34440.05090.03510.05*
H30.42330.16630.06760.05*
C90.40534 (15)0.36051 (15)0.12822 (13)0.0302 (3)
H40.31970.38990.10910.045*
H50.47160.39120.08720.045*
H60.43060.39570.20740.045*
O70.21049 (10)0.63351 (11)0.34639 (9)0.0367 (3)
O80.12315 (15)0.64061 (17)0.49838 (11)0.0703 (5)
O110.11562 (10)0.62735 (10)0.09585 (9)0.0305 (2)
O120.33877 (10)0.68213 (12)0.06066 (9)0.0380 (3)
O100.04438 (9)0.64388 (9)0.06351 (8)0.0235 (2)
O90.18763 (9)0.66645 (9)0.08312 (8)0.0230 (2)
N20.12876 (12)0.67424 (13)0.41284 (10)0.0297 (3)
C150.04065 (13)0.81061 (14)0.29236 (11)0.0236 (3)
C230.05066 (14)0.90041 (15)0.27642 (12)0.0282 (3)
H220.04970.93180.21310.034*
C240.14323 (14)0.94452 (15)0.35226 (13)0.0291 (3)
H210.20311.00490.33950.035*
C250.14677 (14)0.89901 (14)0.44700 (12)0.0267 (3)
H200.20910.92850.49780.032*
C260.05768 (14)0.80991 (14)0.46575 (11)0.0246 (3)
H190.05960.77820.52890.029*
C140.03491 (13)0.76803 (13)0.38935 (11)0.0218 (3)
C160.14020 (14)0.77088 (15)0.21051 (12)0.0263 (3)
H180.23040.78940.23750.032*
C170.11190 (13)0.71080 (14)0.10134 (12)0.0232 (3)
C180.22400 (14)0.68726 (14)0.02790 (12)0.0256 (3)
C200.02527 (13)0.65966 (13)0.04834 (11)0.0220 (3)
C190.05674 (13)0.70168 (14)0.11726 (11)0.0223 (3)
C210.05316 (14)0.85027 (14)0.08805 (12)0.0265 (3)
H120.03390.87220.11250.04*
H130.12020.88680.12490.04*
H140.07090.88650.00820.04*
C220.02837 (15)0.63545 (16)0.24028 (12)0.0321 (4)
H150.06180.64860.26510.048*
H160.03850.54210.25390.048*
H170.09020.67310.28080.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0352 (6)0.0324 (6)0.0391 (6)0.0151 (5)0.0113 (5)0.0096 (5)
O20.0461 (7)0.0304 (6)0.0325 (6)0.0077 (5)0.0012 (5)0.0158 (5)
O60.0196 (5)0.0511 (7)0.0312 (6)0.0000 (5)0.0079 (4)0.0131 (5)
O50.0189 (5)0.0423 (6)0.0304 (6)0.0084 (5)0.0056 (4)0.0143 (5)
O30.0199 (5)0.0345 (6)0.0234 (5)0.0002 (4)0.0016 (4)0.0084 (4)
O40.0213 (5)0.0358 (6)0.0218 (5)0.0085 (4)0.0049 (4)0.0097 (4)
N10.0233 (6)0.0215 (6)0.0259 (7)0.0011 (5)0.0038 (5)0.0056 (5)
C20.0161 (6)0.0212 (7)0.0232 (7)0.0007 (5)0.0007 (5)0.0059 (6)
C10.0171 (7)0.0173 (7)0.0252 (7)0.0004 (5)0.0016 (5)0.0050 (5)
C130.0264 (7)0.0248 (7)0.0208 (7)0.0013 (6)0.0008 (6)0.0072 (6)
C120.0267 (8)0.0246 (7)0.0262 (8)0.0015 (6)0.0084 (6)0.0026 (6)
C110.0238 (7)0.0232 (7)0.0332 (8)0.0067 (6)0.0070 (6)0.0075 (6)
C100.0226 (7)0.0270 (8)0.0264 (8)0.0038 (6)0.0034 (6)0.0121 (6)
C30.0171 (7)0.0225 (7)0.0274 (8)0.0032 (6)0.0035 (5)0.0105 (6)
C40.0188 (7)0.0222 (7)0.0244 (7)0.0039 (6)0.0047 (5)0.0098 (6)
C50.0212 (7)0.0260 (8)0.0259 (8)0.0044 (6)0.0037 (6)0.0076 (6)
C70.0219 (7)0.0232 (7)0.0231 (7)0.0028 (6)0.0042 (6)0.0084 (6)
C60.0164 (7)0.0332 (8)0.0259 (8)0.0042 (6)0.0038 (5)0.0116 (6)
C80.0300 (8)0.0439 (10)0.0249 (8)0.0053 (7)0.0005 (6)0.0091 (7)
C90.0273 (8)0.0311 (8)0.0343 (9)0.0036 (7)0.0014 (6)0.0126 (7)
O70.0308 (6)0.0402 (7)0.0411 (7)0.0121 (5)0.0056 (5)0.0124 (5)
O80.0808 (10)0.1092 (13)0.0500 (9)0.0550 (10)0.0230 (7)0.0579 (9)
O110.0240 (5)0.0348 (6)0.0374 (6)0.0012 (5)0.0082 (4)0.0173 (5)
O120.0183 (5)0.0609 (8)0.0386 (6)0.0095 (5)0.0038 (4)0.0185 (6)
O100.0185 (5)0.0263 (5)0.0243 (5)0.0002 (4)0.0039 (4)0.0045 (4)
O90.0186 (5)0.0264 (5)0.0246 (5)0.0066 (4)0.0055 (4)0.0061 (4)
N20.0281 (7)0.0360 (7)0.0262 (7)0.0032 (6)0.0032 (5)0.0120 (6)
C150.0199 (7)0.0275 (8)0.0230 (7)0.0015 (6)0.0011 (5)0.0077 (6)
C230.0289 (8)0.0315 (8)0.0282 (8)0.0021 (6)0.0000 (6)0.0158 (6)
C240.0250 (8)0.0255 (8)0.0363 (9)0.0039 (6)0.0005 (6)0.0080 (6)
C250.0214 (7)0.0265 (8)0.0289 (8)0.0022 (6)0.0031 (6)0.0023 (6)
C260.0245 (7)0.0282 (8)0.0202 (7)0.0054 (6)0.0004 (5)0.0074 (6)
C140.0192 (7)0.0234 (7)0.0220 (7)0.0007 (6)0.0044 (5)0.0069 (6)
C160.0203 (7)0.0346 (8)0.0275 (8)0.0028 (6)0.0009 (6)0.0149 (6)
C170.0190 (7)0.0266 (7)0.0279 (8)0.0044 (6)0.0049 (6)0.0131 (6)
C180.0215 (8)0.0282 (8)0.0293 (8)0.0037 (6)0.0048 (6)0.0103 (6)
C200.0217 (7)0.0189 (7)0.0276 (8)0.0058 (6)0.0051 (6)0.0084 (6)
C190.0163 (7)0.0279 (8)0.0239 (7)0.0040 (6)0.0054 (5)0.0078 (6)
C210.0263 (8)0.0278 (8)0.0285 (8)0.0071 (6)0.0073 (6)0.0106 (6)
C220.0259 (8)0.0423 (9)0.0253 (8)0.0048 (7)0.0044 (6)0.0031 (7)
Geometric parameters (Å, º) top
O1—N11.2293 (15)O7—N21.2223 (15)
O2—N11.2263 (15)O8—N21.2083 (16)
O6—C51.2024 (16)O11—C201.2009 (16)
O5—C71.2018 (16)O12—C181.1974 (17)
O3—C51.3554 (17)O10—C201.3497 (16)
O3—C61.4464 (16)O10—C191.4482 (16)
O4—C71.3442 (16)O9—C181.3521 (17)
O4—C61.4455 (16)O9—C191.4430 (16)
N1—C11.4634 (17)N2—C141.4642 (18)
C2—C101.3928 (19)C15—C231.388 (2)
C2—C11.3996 (19)C15—C141.3944 (19)
C2—C31.4745 (18)C15—C161.4785 (19)
C1—C131.3830 (19)C23—C241.385 (2)
C13—C121.380 (2)C23—H220.93
C13—H80.93C24—C251.383 (2)
C12—C111.385 (2)C24—H210.93
C12—H90.93C25—C261.377 (2)
C11—C101.3818 (19)C25—H200.93
C11—H100.93C26—C141.3853 (19)
C10—H110.93C26—H190.93
C3—C41.3364 (19)C16—C171.333 (2)
C3—H70.93C16—H180.93
C4—C51.4831 (19)C17—C201.4820 (19)
C4—C71.4921 (18)C17—C181.4938 (19)
C6—C81.499 (2)C19—C221.4961 (19)
C6—C91.504 (2)C19—C211.506 (2)
C8—H10.96C21—H120.96
C8—H20.96C21—H130.96
C8—H30.96C21—H140.96
C9—H40.96C22—H150.96
C9—H50.96C22—H160.96
C9—H60.96C22—H170.96
C5—O3—C6119.09 (10)C20—O10—C19118.89 (10)
C7—O4—C6118.75 (10)C18—O9—C19118.26 (10)
O2—N1—O1123.04 (12)O8—N2—O7122.23 (13)
O2—N1—C1118.41 (11)O8—N2—C14118.42 (12)
O1—N1—C1118.54 (11)O7—N2—C14119.35 (12)
C10—C2—C1116.46 (12)C23—C15—C14116.39 (13)
C10—C2—C3119.36 (12)C23—C15—C16119.29 (12)
C1—C2—C3123.91 (12)C14—C15—C16124.26 (13)
C13—C1—C2122.65 (12)C24—C23—C15121.82 (13)
C13—C1—N1116.92 (12)C24—C23—H22119.1
C2—C1—N1120.40 (12)C15—C23—H22119.1
C12—C13—C1119.50 (13)C25—C24—C23120.14 (14)
C12—C13—H8120.3C25—C24—H21119.9
C1—C13—H8120.3C23—C24—H21119.9
C13—C12—C11119.10 (13)C26—C25—C24119.73 (13)
C13—C12—H9120.5C26—C25—H20120.1
C11—C12—H9120.5C24—C25—H20120.1
C10—C11—C12121.01 (13)C25—C26—C14119.18 (13)
C10—C11—H10119.5C25—C26—H19120.4
C12—C11—H10119.5C14—C26—H19120.4
C11—C10—C2121.25 (13)C26—C14—C15122.73 (13)
C11—C10—H11119.4C26—C14—N2117.53 (12)
C2—C10—H11119.4C15—C14—N2119.74 (12)
C4—C3—C2128.19 (12)C17—C16—C15125.68 (13)
C4—C3—H7115.9C17—C16—H18117.2
C2—C3—H7115.9C15—C16—H18117.2
C3—C4—C5125.32 (12)C16—C17—C20123.63 (12)
C3—C4—C7116.92 (12)C16—C17—C18119.06 (12)
C5—C4—C7117.57 (12)C20—C17—C18117.25 (12)
O6—C5—O3119.04 (12)O12—C18—O9120.03 (12)
O6—C5—C4125.42 (13)O12—C18—C17124.61 (13)
O3—C5—C4115.44 (11)O9—C18—C17115.32 (11)
O5—C7—O4119.64 (12)O11—C20—O10119.26 (12)
O5—C7—C4124.14 (12)O11—C20—C17125.36 (13)
O4—C7—C4116.15 (11)O10—C20—C17115.31 (11)
O4—C6—O3109.08 (10)O9—C19—O10109.68 (10)
O4—C6—C8105.46 (11)O9—C19—C22106.65 (11)
O3—C6—C8106.45 (11)O10—C19—C22105.78 (11)
O4—C6—C9110.69 (11)O9—C19—C21110.39 (11)
O3—C6—C9110.72 (11)O10—C19—C21110.60 (11)
C8—C6—C9114.17 (12)C22—C19—C21113.56 (12)
C6—C8—H1109.5C19—C21—H12109.5
C6—C8—H2109.5C19—C21—H13109.5
H1—C8—H2109.5H12—C21—H13109.5
C6—C8—H3109.5C19—C21—H14109.5
H1—C8—H3109.5H12—C21—H14109.5
H2—C8—H3109.5H13—C21—H14109.5
C6—C9—H4109.5C19—C22—H15109.5
C6—C9—H5109.5C19—C22—H16109.5
H4—C9—H5109.5H15—C22—H16109.5
C6—C9—H6109.5C19—C22—H17109.5
H4—C9—H6109.5H15—C22—H17109.5
H5—C9—H6109.5H16—C22—H17109.5
C10—C2—C1—C131.4 (2)C14—C15—C23—C240.5 (2)
C3—C2—C1—C13172.63 (13)C16—C15—C23—C24177.84 (13)
C10—C2—C1—N1176.31 (11)C15—C23—C24—C250.1 (2)
C3—C2—C1—N19.7 (2)C23—C24—C25—C260.2 (2)
O2—N1—C1—C139.41 (18)C24—C25—C26—C140.4 (2)
O1—N1—C1—C13169.89 (12)C25—C26—C14—C151.1 (2)
O2—N1—C1—C2168.41 (12)C25—C26—C14—N2179.42 (12)
O1—N1—C1—C212.29 (18)C23—C15—C14—C261.2 (2)
C2—C1—C13—C120.1 (2)C16—C15—C14—C26178.33 (13)
N1—C1—C13—C12177.85 (12)C23—C15—C14—N2179.42 (12)
C1—C13—C12—C111.4 (2)C16—C15—C14—N22.2 (2)
C13—C12—C11—C101.2 (2)O8—N2—C14—C261.8 (2)
C12—C11—C10—C20.3 (2)O7—N2—C14—C26178.86 (13)
C1—C2—C10—C111.6 (2)O8—N2—C14—C15178.79 (15)
C3—C2—C10—C11172.72 (13)O7—N2—C14—C150.60 (19)
C10—C2—C3—C456.1 (2)C23—C15—C16—C1760.5 (2)
C1—C2—C3—C4130.06 (16)C14—C15—C16—C17122.41 (16)
C2—C3—C4—C59.8 (2)C15—C16—C17—C207.9 (2)
C2—C3—C4—C7175.41 (13)C15—C16—C17—C18174.98 (13)
C6—O3—C5—O6166.16 (13)C19—O9—C18—O12166.58 (13)
C6—O3—C5—C417.28 (17)C19—O9—C18—C1715.59 (17)
C3—C4—C5—O616.9 (2)C16—C17—C18—O1222.6 (2)
C7—C4—C5—O6157.82 (14)C20—C17—C18—O12154.70 (14)
C3—C4—C5—O3166.76 (13)C16—C17—C18—O9159.71 (13)
C7—C4—C5—O318.49 (18)C20—C17—C18—O923.02 (18)
C6—O4—C7—O5165.93 (13)C19—O10—C20—O11170.43 (12)
C6—O4—C7—C416.79 (17)C19—O10—C20—C1712.53 (17)
C3—C4—C7—O516.9 (2)C16—C17—C20—O1124.8 (2)
C5—C4—C7—O5158.32 (14)C18—C17—C20—O11152.33 (14)
C3—C4—C7—O4165.97 (12)C16—C17—C20—O10158.34 (13)
C5—C4—C7—O418.83 (18)C18—C17—C20—O1024.51 (17)
C7—O4—C6—O350.14 (15)C18—O9—C19—O1050.65 (15)
C7—O4—C6—C8164.12 (12)C18—O9—C19—C22164.75 (12)
C7—O4—C6—C971.93 (15)C18—O9—C19—C2171.46 (14)
C5—O3—C6—O450.57 (15)C20—O10—C19—O949.17 (15)
C5—O3—C6—C8163.91 (12)C20—O10—C19—C22163.83 (11)
C5—O3—C6—C971.47 (15)C20—O10—C19—C2172.81 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H7···O50.932.432.7970 (16)104
C11—H10···O80.932.453.239 (2)143
C21—H13···O5i0.962.583.4188 (17)145
C16—H18···O120.932.542.8582 (18)100
C16—H18···O2ii0.932.553.4486 (18)163
C24—H21···O5iii0.932.483.3676 (19)160
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H11NO6
Mr277.23
Crystal system, space groupTriclinic, P1
Temperature (K)130
a, b, c (Å)10.0240 (4), 10.4830 (5), 12.4076 (5)
α, β, γ (°)105.385 (4), 94.669 (3), 93.096 (3)
V3)1249.03 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.39 × 0.22 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur (Atlas, Gemini)
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.968, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
8703, 4526, 3902
Rint0.018
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.03
No. of reflections4526
No. of parameters365
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H7···O50.932.432.7970 (16)104
C11—H10···O80.932.453.239 (2)143
C21—H13···O5i0.962.583.4188 (17)145
C16—H18···O120.932.542.8582 (18)100
C16—H18···O2ii0.932.553.4486 (18)163
C24—H21···O5iii0.932.483.3676 (19)160
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y+1, z.
 

Acknowledgements

The authors acknowledge the Universidad Juárez Autónoma de Tabasco for financial support via projects UJAT-2009-C05–02 and UJAT-2011-C07–22

References

First citationAlvim, J. Jr, Días, R. L. A., Castilhob, M. S., Olivab, G. & y Corréa, A. G. (2005). J. Braz. Chem. Soc. 16, 763–773.  Google Scholar
First citationBigi, F., Carloni, S., Ferrari, L., Maggi, R., Mazzacani, A. & Sartori, G. (2001). Tetrahedron Lett. 42, 5203–5205.  Web of Science CrossRef CAS Google Scholar
First citationCochard, F., Laronze, M., Sigaut, P., SAPI, J. & Laronze, J.-Y. (2004). Tetrahedron Lett. 45, 1703–1707.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFillion, E. & Dumas, A.-M. (2008). J. Org. Chem. 73, 2920–2923.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFillion, E., Dumas, A. & Hogg, S. A. (2006). J. Org. Chem. 71, 9899–9902.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMizukami, S., Kihara, N. & Endo, T. (1993). Tetrahedron Lett. 34, 7437–7440.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPalasz, A., Jelska, K., Ozóg, M. & Serda, P. (2007). Monatsh. Chem. 138, 481–488.  CAS Google Scholar
First citationScott, J. L. & Raston, C. L. (2000). Green Chem. 2, 245–247.  Web of Science CrossRef CAS Google Scholar
First citationShaabani, A., Teimouri, M. B. & Bijanzadeh, H. R. (2004). Russ. J. Org. Chem. 40, 976–981.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Zhang, M.-M., Jiang, H., Yaoa, C.-S. & Tua, S.-J. (2007). Tetrahedron, 63, 4439–4449.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds