organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,4-Di­chloro­phen­yl)-N-(1,5-di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)acetamide

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bLake Braddock Secondary School, 9200 Burke Lake Road, Burke, VA 22015, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 2 December 2012; accepted 3 December 2012; online 8 December 2012)

In the crystal structure of the title compound, C19H17Cl2N3O2, the mol­ecules form dimers of the R22(10) type through N—H⋯O hydrogen bonding. As a result of steric repulsion, the amide group is rotated with respect to both the dichloro­phenyl and 2,3-dihydro-1H-pyrazol-4-yl rings, making dihedral angles of 80.70 (13) and 64.82 (12)°, respectively. The dihedral angle between the dichloro­phenyl and 2,3-dihydro-1H-pyrazol-4-yl rings is 48.45 (5)° while that between the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings is 56.33 (6)°.

Related literature

For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For N-substituted 2-aryl­acetamides and amides, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]); Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.]); Fun, Shahani et al. (2012[Fun, H.-K., Shahani, T., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o519.]); Fun, Quah et al. (2012[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2677.]); Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17Cl2N3O2

  • Mr = 390.26

  • Monoclinic, C 2/c

  • a = 25.1853 (5) Å

  • b = 8.18108 (9) Å

  • c = 21.0978 (4) Å

  • β = 119.772 (3)°

  • V = 3773.26 (16) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.25 mm−1

  • T = 123 K

  • 0.59 × 0.22 × 0.08 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.429, Tmax = 0.804

  • 12628 measured reflections

  • 3849 independent reflections

  • 3663 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.05

  • 3849 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.88 1.92 2.7938 (15) 171
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one, N-(4-bromophenyl)-2-(naphthalen-1-yl)acetamide, N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-\[4-(methylsulfanyl)phenyl]acetamide, N-(4-bromophenyl)-2-(4-chlorophenyl)acetamide (Fun et al., 2011a; Fun et al., 2011b; Fun, Shahani et al., 2012; Fun, Quah et al., 2012) have been reported. In view of the importance of amides we report herein the crystal structure of the title compound (I).

In the title compound, I, C19H17Cl2N3O2 the amide group is planar and through N—H···O hydrogen bonding to an adjoining molecule forms dimers of the R22(10) type (Bernstein et al., 1995). Due to steric repulsion the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings with dihedral angles of 80.70 (13)° and 64.82 (12)° respectively. The dihedral angles between the three rings are 48.45 (5)° for the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings and and 56.33 (6)° for the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings, respectively. All other metrical parameters are in the normal ranges (Allen, 2002).

Related literature top

For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For N-substituted 2-arylacetamides and amides, see: Mijin & Marinkovic (2006); Mijin et al. (2008); Fun et al. (2011a,b); Fun, Shahani et al. (2012); Fun, Quah et al. (2012); Wu et al. (2008, 2010).

Experimental top

2,4-Dichlorophenylacetic acid (0.240 g, 1 mmol) and 4-aminoantipyrine (0.203 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methylene chloride by the slow evaporation method (m.p.: 473–475 K).

Refinement top

The H atoms were placed in calculated positions and refined in the riding mode: N—H = 0.88 Å, C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(O,C) for other H atoms.

Structure description top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one, N-(4-bromophenyl)-2-(naphthalen-1-yl)acetamide, N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-\[4-(methylsulfanyl)phenyl]acetamide, N-(4-bromophenyl)-2-(4-chlorophenyl)acetamide (Fun et al., 2011a; Fun et al., 2011b; Fun, Shahani et al., 2012; Fun, Quah et al., 2012) have been reported. In view of the importance of amides we report herein the crystal structure of the title compound (I).

In the title compound, I, C19H17Cl2N3O2 the amide group is planar and through N—H···O hydrogen bonding to an adjoining molecule forms dimers of the R22(10) type (Bernstein et al., 1995). Due to steric repulsion the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings with dihedral angles of 80.70 (13)° and 64.82 (12)° respectively. The dihedral angles between the three rings are 48.45 (5)° for the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings and and 56.33 (6)° for the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings, respectively. All other metrical parameters are in the normal ranges (Allen, 2002).

For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For N-substituted 2-arylacetamides and amides, see: Mijin & Marinkovic (2006); Mijin et al. (2008); Fun et al. (2011a,b); Fun, Shahani et al. (2012); Fun, Quah et al. (2012); Wu et al. (2008, 2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level for non-hydrogen atoms.
[Figure 2] Fig. 2. The packing view viewed along the a axis. Dashed lines indicate intermolecular N—H···O hydrogen bonds (see Table 1 for details).
2-(2,4-Dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yl)acetamide top
Crystal data top
C19H17Cl2N3O2F(000) = 1616
Mr = 390.26Dx = 1.374 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 25.1853 (5) ÅCell parameters from 9236 reflections
b = 8.18108 (9) Åθ = 3.5–75.5°
c = 21.0978 (4) ŵ = 3.25 mm1
β = 119.772 (3)°T = 123 K
V = 3773.26 (16) Å3Plate, colorless
Z = 80.59 × 0.22 × 0.08 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3849 independent reflections
Radiation source: Enhance (Cu) X-ray Source3663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 4.0°
ω scansh = 3131
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), based on expressions derived by Clark & Reid (1995)]
k = 510
Tmin = 0.429, Tmax = 0.804l = 2426
12628 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.053P)2 + 3.0975P]
where P = (Fo2 + 2Fc2)/3
3849 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C19H17Cl2N3O2V = 3773.26 (16) Å3
Mr = 390.26Z = 8
Monoclinic, C2/cCu Kα radiation
a = 25.1853 (5) ŵ = 3.25 mm1
b = 8.18108 (9) ÅT = 123 K
c = 21.0978 (4) Å0.59 × 0.22 × 0.08 mm
β = 119.772 (3)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3849 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), based on expressions derived by Clark & Reid (1995)]
3663 reflections with I > 2σ(I)
Tmin = 0.429, Tmax = 0.804Rint = 0.027
12628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.05Δρmax = 0.57 e Å3
3849 reflectionsΔρmin = 0.30 e Å3
237 parameters
Special details top

Experimental. CrysAlisPro (Agilent Technologies, 2011) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.322039 (15)0.55288 (4)0.50139 (2)0.03074 (11)
Cl20.26743 (2)1.17963 (5)0.42432 (2)0.04088 (13)
O10.48051 (5)0.65179 (13)0.60154 (6)0.0275 (2)
O20.58614 (5)0.26875 (13)0.77321 (5)0.0281 (2)
N10.46909 (5)0.42833 (14)0.65739 (6)0.0225 (2)
H1A0.45050.38810.67990.027*
N20.54781 (5)0.15657 (15)0.59681 (6)0.0229 (2)
N30.58823 (5)0.16033 (15)0.67299 (6)0.0230 (2)
C10.37725 (6)0.80141 (17)0.59726 (8)0.0237 (3)
C20.33397 (6)0.75827 (17)0.52636 (8)0.0230 (3)
C30.29970 (6)0.87188 (18)0.47298 (8)0.0255 (3)
H3A0.27010.83850.42510.031*
C40.30983 (7)1.03615 (18)0.49149 (8)0.0263 (3)
C50.35183 (7)1.08602 (19)0.56138 (9)0.0299 (3)
H5A0.35791.19890.57350.036*
C60.38487 (7)0.96809 (19)0.61340 (8)0.0288 (3)
H6A0.41361.00180.66160.035*
C70.41457 (7)0.67467 (18)0.65363 (8)0.0276 (3)
H7A0.38680.59460.65740.033*
H7B0.43870.72820.70180.033*
C80.45797 (6)0.58490 (17)0.63435 (7)0.0217 (3)
C90.50922 (6)0.32646 (16)0.64690 (7)0.0212 (3)
C100.50219 (6)0.26811 (17)0.58283 (7)0.0220 (3)
C110.45465 (7)0.30761 (19)0.50647 (8)0.0278 (3)
H11A0.42490.38380.50710.042*
H11B0.43370.20700.48110.042*
H11C0.47410.35800.48090.042*
C120.57913 (8)0.1578 (2)0.55384 (8)0.0307 (3)
H12A0.54900.14550.50190.046*
H12B0.60840.06710.56940.046*
H12C0.60100.26150.56150.046*
C130.56376 (6)0.25707 (17)0.70619 (7)0.0219 (3)
C140.62640 (6)0.02126 (18)0.70612 (7)0.0236 (3)
C150.60320 (8)0.13441 (19)0.68234 (8)0.0305 (3)
H15A0.56200.14880.64460.037*
C160.64078 (10)0.2690 (2)0.71423 (10)0.0428 (4)
H16A0.62560.37600.69780.051*
C170.70029 (10)0.2473 (3)0.76984 (10)0.0494 (5)
H17A0.72590.33950.79170.059*
C180.72255 (9)0.0917 (3)0.79377 (10)0.0491 (5)
H18A0.76340.07770.83230.059*
C190.68580 (7)0.0448 (2)0.76203 (9)0.0352 (4)
H19A0.70120.15180.77840.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02802 (19)0.01940 (18)0.0432 (2)0.00059 (12)0.01644 (16)0.00417 (13)
Cl20.0505 (2)0.0273 (2)0.0381 (2)0.01167 (16)0.01682 (19)0.00933 (15)
O10.0318 (5)0.0260 (5)0.0317 (5)0.0038 (4)0.0210 (4)0.0068 (4)
O20.0340 (5)0.0323 (6)0.0187 (5)0.0082 (4)0.0136 (4)0.0003 (4)
N10.0281 (6)0.0239 (6)0.0229 (5)0.0047 (5)0.0182 (5)0.0043 (4)
N20.0277 (6)0.0261 (6)0.0175 (5)0.0045 (5)0.0131 (5)0.0010 (4)
N30.0270 (6)0.0255 (6)0.0182 (5)0.0053 (5)0.0126 (5)0.0010 (4)
C10.0260 (6)0.0233 (7)0.0274 (7)0.0042 (5)0.0175 (6)0.0007 (5)
C20.0237 (6)0.0177 (6)0.0317 (7)0.0002 (5)0.0169 (6)0.0022 (5)
C30.0228 (6)0.0252 (7)0.0283 (7)0.0023 (5)0.0125 (6)0.0013 (6)
C40.0279 (7)0.0219 (7)0.0313 (7)0.0060 (5)0.0163 (6)0.0047 (5)
C50.0329 (7)0.0199 (7)0.0375 (8)0.0013 (6)0.0178 (6)0.0024 (6)
C60.0306 (7)0.0265 (7)0.0279 (7)0.0021 (6)0.0134 (6)0.0042 (6)
C70.0343 (7)0.0284 (7)0.0265 (7)0.0083 (6)0.0201 (6)0.0035 (6)
C80.0239 (6)0.0239 (7)0.0182 (6)0.0027 (5)0.0112 (5)0.0012 (5)
C90.0257 (6)0.0212 (6)0.0210 (6)0.0022 (5)0.0149 (5)0.0028 (5)
C100.0259 (6)0.0212 (6)0.0222 (6)0.0017 (5)0.0143 (5)0.0023 (5)
C110.0311 (7)0.0315 (8)0.0200 (6)0.0054 (6)0.0122 (6)0.0016 (5)
C120.0407 (8)0.0339 (8)0.0276 (7)0.0103 (6)0.0247 (7)0.0049 (6)
C130.0265 (6)0.0215 (6)0.0219 (6)0.0011 (5)0.0152 (5)0.0005 (5)
C140.0269 (7)0.0276 (7)0.0212 (6)0.0067 (5)0.0157 (6)0.0029 (5)
C150.0384 (8)0.0285 (8)0.0274 (7)0.0029 (6)0.0184 (6)0.0018 (6)
C160.0682 (12)0.0297 (8)0.0372 (9)0.0139 (8)0.0312 (9)0.0059 (7)
C170.0635 (12)0.0501 (11)0.0374 (9)0.0336 (10)0.0273 (9)0.0158 (8)
C180.0354 (9)0.0679 (13)0.0355 (9)0.0211 (9)0.0112 (7)0.0108 (9)
C190.0299 (7)0.0423 (9)0.0295 (7)0.0038 (7)0.0119 (6)0.0006 (7)
Geometric parameters (Å, º) top
Cl1—C21.7419 (14)C7—H7A0.9900
Cl2—C41.7388 (15)C7—H7B0.9900
O1—C81.2210 (17)C9—C101.3597 (19)
O2—C131.2390 (17)C9—C131.4378 (19)
N1—C81.3492 (18)C10—C111.4892 (19)
N1—C91.4097 (17)C11—H11A0.9800
N1—H1A0.8800C11—H11B0.9800
N2—C101.3796 (18)C11—H11C0.9800
N2—N31.4128 (15)C12—H12A0.9800
N2—C121.4678 (17)C12—H12B0.9800
N3—C131.3874 (17)C12—H12C0.9800
N3—C141.4282 (18)C14—C191.383 (2)
C1—C21.390 (2)C14—C151.387 (2)
C1—C61.395 (2)C15—C161.388 (2)
C1—C71.504 (2)C15—H15A0.9500
C2—C31.383 (2)C16—C171.381 (3)
C3—C41.387 (2)C16—H16A0.9500
C3—H3A0.9500C17—C181.382 (3)
C4—C51.382 (2)C17—H17A0.9500
C5—C61.386 (2)C18—C191.392 (3)
C5—H5A0.9500C18—H18A0.9500
C6—H6A0.9500C19—H19A0.9500
C7—C81.5302 (18)
C8—N1—C9122.77 (11)N1—C9—C13123.13 (12)
C8—N1—H1A118.6C9—C10—N2109.64 (12)
C9—N1—H1A118.6C9—C10—C11129.58 (13)
C10—N2—N3106.37 (10)N2—C10—C11120.77 (12)
C10—N2—C12120.64 (11)C10—C11—H11A109.5
N3—N2—C12113.45 (11)C10—C11—H11B109.5
C13—N3—N2109.70 (11)H11A—C11—H11B109.5
C13—N3—C14124.55 (11)C10—C11—H11C109.5
N2—N3—C14117.97 (11)H11A—C11—H11C109.5
C2—C1—C6116.75 (13)H11B—C11—H11C109.5
C2—C1—C7121.62 (13)N2—C12—H12A109.5
C6—C1—C7121.63 (13)N2—C12—H12B109.5
C3—C2—C1123.01 (13)H12A—C12—H12B109.5
C3—C2—Cl1117.25 (11)N2—C12—H12C109.5
C1—C2—Cl1119.73 (11)H12A—C12—H12C109.5
C2—C3—C4117.95 (13)H12B—C12—H12C109.5
C2—C3—H3A121.0O2—C13—N3123.76 (13)
C4—C3—H3A121.0O2—C13—C9131.24 (13)
C5—C4—C3121.51 (14)N3—C13—C9104.95 (11)
C5—C4—Cl2120.34 (12)C19—C14—C15121.28 (14)
C3—C4—Cl2118.15 (12)C19—C14—N3119.11 (14)
C4—C5—C6118.67 (14)C15—C14—N3119.61 (13)
C4—C5—H5A120.7C14—C15—C16119.30 (16)
C6—C5—H5A120.7C14—C15—H15A120.4
C5—C6—C1122.10 (14)C16—C15—H15A120.4
C5—C6—H6A119.0C17—C16—C15120.07 (18)
C1—C6—H6A119.0C17—C16—H16A120.0
C1—C7—C8111.65 (11)C15—C16—H16A120.0
C1—C7—H7A109.3C16—C17—C18120.05 (17)
C8—C7—H7A109.3C16—C17—H17A120.0
C1—C7—H7B109.3C18—C17—H17A120.0
C8—C7—H7B109.3C17—C18—C19120.76 (18)
H7A—C7—H7B108.0C17—C18—H18A119.6
O1—C8—N1123.92 (12)C19—C18—H18A119.6
O1—C8—C7122.02 (13)C14—C19—C18118.54 (17)
N1—C8—C7114.06 (12)C14—C19—H19A120.7
C10—C9—N1127.88 (13)C18—C19—H19A120.7
C10—C9—C13108.83 (12)
C10—N2—N3—C137.36 (15)N1—C9—C10—C117.1 (2)
C12—N2—N3—C13142.30 (12)C13—C9—C10—C11177.35 (14)
C10—N2—N3—C14158.08 (12)N3—N2—C10—C96.32 (15)
C12—N2—N3—C1466.98 (16)C12—N2—C10—C9137.32 (14)
C6—C1—C2—C30.5 (2)N3—N2—C10—C11174.04 (12)
C7—C1—C2—C3178.87 (13)C12—N2—C10—C1143.0 (2)
C6—C1—C2—Cl1179.45 (10)N2—N3—C13—O2172.17 (13)
C7—C1—C2—Cl10.12 (18)C14—N3—C13—O223.8 (2)
C1—C2—C3—C40.7 (2)N2—N3—C13—C95.45 (15)
Cl1—C2—C3—C4178.31 (10)C14—N3—C13—C9153.82 (13)
C2—C3—C4—C51.4 (2)C10—C9—C13—O2175.84 (15)
C2—C3—C4—Cl2179.34 (10)N1—C9—C13—O20.0 (2)
C3—C4—C5—C60.9 (2)C10—C9—C13—N31.53 (15)
Cl2—C4—C5—C6179.86 (11)N1—C9—C13—N3177.34 (12)
C4—C5—C6—C10.4 (2)C13—N3—C14—C1972.00 (19)
C2—C1—C6—C51.0 (2)N2—N3—C14—C19142.00 (13)
C7—C1—C6—C5178.33 (14)C13—N3—C14—C15107.33 (16)
C2—C1—C7—C866.19 (18)N2—N3—C14—C1538.67 (17)
C6—C1—C7—C8113.11 (15)C19—C14—C15—C161.4 (2)
C9—N1—C8—O11.2 (2)N3—C14—C15—C16179.28 (14)
C9—N1—C8—C7178.10 (13)C14—C15—C16—C171.1 (2)
C1—C7—C8—O131.9 (2)C15—C16—C17—C180.1 (3)
C1—C7—C8—N1148.72 (13)C16—C17—C18—C190.5 (3)
C8—N1—C9—C1067.1 (2)C15—C14—C19—C180.8 (2)
C8—N1—C9—C13117.97 (15)N3—C14—C19—C18179.91 (15)
N1—C9—C10—N2172.50 (13)C17—C18—C19—C140.2 (3)
C13—C9—C10—N23.05 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.881.922.7938 (15)171
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H17Cl2N3O2
Mr390.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)25.1853 (5), 8.18108 (9), 21.0978 (4)
β (°) 119.772 (3)
V3)3773.26 (16)
Z8
Radiation typeCu Kα
µ (mm1)3.25
Crystal size (mm)0.59 × 0.22 × 0.08
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2011), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.429, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
12628, 3849, 3663
Rint0.027
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.05
No. of reflections3849
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.30

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.881.922.7938 (15)171.4
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2677.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Shahani, T., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds