organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(2-{5-tert-Butyl-2-chloro-3-[2-(3-pentyl-1,3-benzo­thia­zol-2-yl­­idene)ethyl­­idene]cyclo­hex-1-en­yl}ethen­yl)-3-cyano-5,5-di­methyl­furan-2-yl­­idene]malono­nitrile

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 21 November 2012; accepted 13 December 2012; online 22 December 2012)

In the title mol­ecule, C36H39ClN4OS, the non-aromatic part of the cyclo­hex-1-enyl ring and the attached tert-butyl group are disordered over two conformations with occupancy ratios of 0.52 (3):0.48 (3) and 0.53 (3):0.47 (3), respectively. The polyene chain single- and double-bond dimensions contrast with a closely related compound [Bouit et al. (2007[Bouit, P.-A., Wetzel, G., Berginc, G., Loiseaux, B., Toupet, L., Feneyrou, P., Bretonniere, Y., Kamada, K., Maury, O. & Andraud, C. (2007). Chem. Mater. 19, 5325-5335.]). Chem. Mater. 19, 5325–5335] with an approximate 19° twist between donor and acceptor ends of the mol­ecule, related to the additional intra­molecular C—H⋯S inter­action. In the title compound, the mol­ecules pack into dimeric units about centres of symmetry utilizing weak C—H⋯N(cyano) and C—H⋯O attractive inter­actions, building both chain and ring motifs about the centres [R22(8) and R22(9)]. Adjacent dimeric sets then form a herringbone configuration.

Related literature

For general background to our ongoing research involving the development of organic non-linear optical (NLO) chromophores, see: Kay et al. (2004[Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 45, 1321-1330.]); Bhuiyan et al. (2011[Bhuiyan, M. D. H., Ashraf, M., Teshome, A., Gainsford, G. J., Kay, A. J., Asselberghs, I. & Clays, K. (2011). Dyes Pigm. 89, 177-187.]). For related structures, see: Bouit et al. (2007[Bouit, P.-A., Wetzel, G., Berginc, G., Loiseaux, B., Toupet, L., Feneyrou, P., Bretonniere, Y., Kamada, K., Maury, O. & Andraud, C. (2007). Chem. Mater. 19, 5325-5335.], 2008[Bouit, P.-A., Di Piazza, E., Rigaut, S., Le Guennic, B., Aronica, B., Toupet, L., Andraud, C. & Maury, O. (2008). Org. Lett. 10, 4159-4162.]); Gainsford et al. (2008[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616-o619.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the BLA parameter, see: Marder et al. (1993[Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524-2526.]).

[Scheme 1]

Experimental

Crystal data
  • C36H39ClN4OS

  • Mr = 611.22

  • Monoclinic, P 21 /n

  • a = 8.6293 (5) Å

  • b = 20.1267 (11) Å

  • c = 19.5299 (11) Å

  • β = 102.236 (4)°

  • V = 3314.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 116 K

  • 0.71 × 0.30 × 0.10 mm

Data collection
  • Bruker–Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) and SADABS (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.614, Tmax = 0.746

  • 32003 measured reflections

  • 5943 independent reflections

  • 3121 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.177

  • S = 1.01

  • 5943 reflections

  • 451 parameters

  • 75 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.98 2.59 3.494 (6) 154
C32—H32A⋯N2ii 0.98 2.73 3.702 (5) 166
C33—H33B⋯N1ii 0.98 2.65 3.539 (6) 150
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.] and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, C36H39ClN4OS (3, Figure 1) was synthesized as part of our ongoing research involving the development of organic nonlinear optical (NLO) chromophores. As part of this we have previously reported the crystallographic parameters for chromophores containing an indoline donor coupled to a 2-(3-cyano-4,5,5-trimethyl-5H-furan-2-ylidene)-malononitrile electron acceptor group (Bhuiyan et al., 2011). Compound 3 was synthesized to check the impact of using a benzothiazole based donor as this should influence both the degree of both length alternation (viz. bond order) as well as the crystal packing. Compound 3 was conveniently prepared in good yield by the condensation of N-pentyl-2-methylbenzothiazolinium iodide 1 with precursor 2 (Figure 1). Compound 2 was prepared by the procedure previously reported in the literature (Kay et al., 2004).

Compound REFCODES are from the C.S.D. (Version 5.33, with August 2012 updates; Allen, 2002). The asymmetric unit contents of the title compound(I) are shown in Figure 1. The 5-membered ring plane of atoms O1,C4—C7 (hereafter "CDFP", [3-cyano-5,5-dimethyl-2,5-dihydrofuran-2-ylidene]propanedinitrile) can be regarded as planar with maximum out of plane deviation for C4 of 0.029 (4) Å. The dicyano group (N1,C1,C2,C3,N2,C6) is planar but twisted by 9.4 (3) ° with respect to the "CDFP" group; this is similar to the twist in related compound NOJKUT (Gainsford et al., 2008) of 5.69 (17)°, and is consistent with alleviating intramolecular contacts with the cyano group (C10–N3). The benzothiazol-2-ylidene fused ring is approximately planar with maximum out of plane distance for N4 0.026 (3) Å. This plane makes an angle of ~7° to the polyene chain atoms (C13—C16,C23,C24), which in turn is ~18° from the "CDFP" plane. These twists in the adjacent near-planar moieties contrasts with the closely related molecule HITVIQ (Bouit et al.,2007) where the benzothiazole entity is replaced by a 1-benzyl-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene: here the CDFP and terminal donor rings make an angle of ~10°. As in HITVIQ, there are close intramolecular H···Cl interactions involving the adjacent polyene hydrogen atoms (entries 7 & 8, Table 1) but here there is an additional H···S interaction (2.68 Å, entry 9, Table 1) contributing to the twist.

The different deviation from molecular planarity is also reflected in a significant difference between the two structures in the alternation of double and single bonds beginning at the C2–C6 CDFP bond (Table 2). This alternation is described by the BLA parameter (Marder et al., 1993), reflecting the average change in bond length alternation. A related sodium salt (with the CDFP ring at both ends of the molecule EGOSOJ, Bouit et al., 2008)) appears to be have intermediate BLA values between the two.

The molecules pack into dimeric units about centres of symmetry utilizing weak CH···Cyano(N) and C–H···O attractive interactions, building both chain and ring motifs about the centres (R22(8) & R22(9)). Table 2 summarizes those attractive interactions and key elements are shown in Figure 3. The adjacent dimeric sets then form a typical "herringbone" configuration. In contrast, the HITVIQ molecules have mainly weak, close to in-plane interactions (C–H···Cl), linked via chain motif weak CH···N(cyano) interactions.

Related literature top

For general background to our ongoing research involving the development of organic non-linear optical (NLO) chromophores, see: Kay et al. (2004); Bhuiyan et al. (2011). For related structures, see: Bouit et al. (2007, 2008); Gainsford et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002). For the BLA parameter, see: Marder et al. (1993).

Experimental top

A mixture of compound 2 (5.26 g, 10 mmol) and 3-pentyl-2-methylbenzothiazolum iodide (4.51 g, 13 mmol) was stirred in the minimum amount of acetic anhydride (c. 20 ml). To this suspension, and at room temperature, was added one equivalent of triethylamine (1.4 ml, 20 mmol). The mixture was then allowed to reflux for 3 hrs, by which time its colour had changed to deep greenish black. The solvent was removed in vacuum and the residue washed with diethylether. The oily residue was then dissolved in hot isopropyl ether and kept in a fridge overnight whereupon a solid separated out. This was collected by filtration, dried under vacuum and recrystallized with hot methanol to give the title compound as a pinkish-green solid (3.66 g, 60% yield). X-Ray quality crystals were grown by slow evaporation of a solution of compound 3 in 1:1 CHCl3—MeOH. M.p. 225.8 °C. 1H NMR (500 MHz, CDCl3): δ 8.06 (d, 1H, J 15 Hz), 7.58 (d, 1H, J 10 Hz), 7.52 (d, 1H, J 10 Hz), 7.38 (t, 1H, J 4 Hz), 7.20 (t, 1H, J 4 Hz), 7.11 (d, 1H, J 8 Hz), 6.26 (d, 1H, J 15 Hz), 5.84 (d, 1H, J 12 Hz), 4.03 (t, 2H, J 7.2 Hz), 2.76 (t, 1H, J 4 Hz), 2.10 (t, 1H, J 4 Hz). 13C NMR (125 MHz, CDCl3): δ 175.81, 167.92, 161.02, 155.88, 153.48, 144.42, 143.37, 141.47, 135.36, 128.94, 127.57, 127.08, 123.85, 116.87, 115.97, 115.43, 114.42, 107.04, 103.02, 47.32, 42.11, 28.16, 27.95, 27.68, 27.12, 26.90, 26.25, 21.62, 13.73. LCMS Found: MNa+ 633.2422; C36H39ClN4NaOS requires MNa+ 633.2431; Δ = -1.4 p.p.m..

Refinement top

Nine reflections affected by the backstop and 12 others which were clearly outlier data (mostly at low angle) were omitted from the refinements (using OMIT). The methyl and other H atoms were refined with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom. All H atoms bound to carbon were constrained to their expected geometries (C—H 0.95, 0.98 & 0.99 Å).

Structure description top

The title compound, C36H39ClN4OS (3, Figure 1) was synthesized as part of our ongoing research involving the development of organic nonlinear optical (NLO) chromophores. As part of this we have previously reported the crystallographic parameters for chromophores containing an indoline donor coupled to a 2-(3-cyano-4,5,5-trimethyl-5H-furan-2-ylidene)-malononitrile electron acceptor group (Bhuiyan et al., 2011). Compound 3 was synthesized to check the impact of using a benzothiazole based donor as this should influence both the degree of both length alternation (viz. bond order) as well as the crystal packing. Compound 3 was conveniently prepared in good yield by the condensation of N-pentyl-2-methylbenzothiazolinium iodide 1 with precursor 2 (Figure 1). Compound 2 was prepared by the procedure previously reported in the literature (Kay et al., 2004).

Compound REFCODES are from the C.S.D. (Version 5.33, with August 2012 updates; Allen, 2002). The asymmetric unit contents of the title compound(I) are shown in Figure 1. The 5-membered ring plane of atoms O1,C4—C7 (hereafter "CDFP", [3-cyano-5,5-dimethyl-2,5-dihydrofuran-2-ylidene]propanedinitrile) can be regarded as planar with maximum out of plane deviation for C4 of 0.029 (4) Å. The dicyano group (N1,C1,C2,C3,N2,C6) is planar but twisted by 9.4 (3) ° with respect to the "CDFP" group; this is similar to the twist in related compound NOJKUT (Gainsford et al., 2008) of 5.69 (17)°, and is consistent with alleviating intramolecular contacts with the cyano group (C10–N3). The benzothiazol-2-ylidene fused ring is approximately planar with maximum out of plane distance for N4 0.026 (3) Å. This plane makes an angle of ~7° to the polyene chain atoms (C13—C16,C23,C24), which in turn is ~18° from the "CDFP" plane. These twists in the adjacent near-planar moieties contrasts with the closely related molecule HITVIQ (Bouit et al.,2007) where the benzothiazole entity is replaced by a 1-benzyl-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene: here the CDFP and terminal donor rings make an angle of ~10°. As in HITVIQ, there are close intramolecular H···Cl interactions involving the adjacent polyene hydrogen atoms (entries 7 & 8, Table 1) but here there is an additional H···S interaction (2.68 Å, entry 9, Table 1) contributing to the twist.

The different deviation from molecular planarity is also reflected in a significant difference between the two structures in the alternation of double and single bonds beginning at the C2–C6 CDFP bond (Table 2). This alternation is described by the BLA parameter (Marder et al., 1993), reflecting the average change in bond length alternation. A related sodium salt (with the CDFP ring at both ends of the molecule EGOSOJ, Bouit et al., 2008)) appears to be have intermediate BLA values between the two.

The molecules pack into dimeric units about centres of symmetry utilizing weak CH···Cyano(N) and C–H···O attractive interactions, building both chain and ring motifs about the centres (R22(8) & R22(9)). Table 2 summarizes those attractive interactions and key elements are shown in Figure 3. The adjacent dimeric sets then form a typical "herringbone" configuration. In contrast, the HITVIQ molecules have mainly weak, close to in-plane interactions (C–H···Cl), linked via chain motif weak CH···N(cyano) interactions.

For general background to our ongoing research involving the development of organic non-linear optical (NLO) chromophores, see: Kay et al. (2004); Bhuiyan et al. (2011). For related structures, see: Bouit et al. (2007, 2008); Gainsford et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002). For the BLA parameter, see: Marder et al. (1993).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Preparation of Compound 3.
[Figure 2] Fig. 2. Molecular structure of the asymmetric unit (Farrugia, 1999); displacement ellipsoids are shown at the 35% probability level. The minor conformations (b) in the cyclohex-1-enyl ring and bound tert-butyl ring are shown with dotted bonds without labels to avoid confusion.
[Figure 3] Fig. 3. Packing diagram [Mercury, Macrae et al.,(2008)] of the unit cell. Close contacts are indicated by dotted lines. Symmetry (i) 1 - x, 1 - y, 1 - z (ii) x - 1/2, 1/2 - y, 1/2 + z (iii) 1 - x, -y, 1 - z.
2-[4-(2-{5-tert-Butyl-2-chloro-3-[2-(3-pentyl-1,3-benzothiazol-2- ylidene)ethylidene]cyclohex-1-enyl}ethenyl)-3-cyano-5,5-dimethylfuran-2- ylidene]malononitrile top
Crystal data top
C36H39ClN4OSF(000) = 1296
Mr = 611.22Dx = 1.225 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 3784 reflections
a = 8.6293 (5) Åθ = 2.1–22.6°
b = 20.1267 (11) ŵ = 0.21 mm1
c = 19.5299 (11) ÅT = 116 K
β = 102.236 (4)°Wedge, green
V = 3314.9 (3) Å30.71 × 0.30 × 0.10 mm
Z = 4
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
5943 independent reflections
Radiation source: fine-focus sealed tube3121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
Detector resolution: 8.333 pixels mm-1θmax = 25.2°, θmin = 2.9°
φ and ω scansh = 1010
Absorption correction: multi-scan
(Blessing, 1995) and SADABS (Bruker, 2005)
k = 024
Tmin = 0.614, Tmax = 0.746l = 023
32003 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0638P)2 + 4.4837P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5943 reflectionsΔρmax = 0.45 e Å3
451 parametersΔρmin = 0.29 e Å3
75 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0116 (12)
Crystal data top
C36H39ClN4OSV = 3314.9 (3) Å3
Mr = 611.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6293 (5) ŵ = 0.21 mm1
b = 20.1267 (11) ÅT = 116 K
c = 19.5299 (11) Å0.71 × 0.30 × 0.10 mm
β = 102.236 (4)°
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
5943 independent reflections
Absorption correction: multi-scan
(Blessing, 1995) and SADABS (Bruker, 2005)
3121 reflections with I > 2σ(I)
Tmin = 0.614, Tmax = 0.746Rint = 0.106
32003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05975 restraints
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.45 e Å3
5943 reflectionsΔρmin = 0.29 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.84867 (14)0.56424 (5)0.56589 (5)0.0354 (3)
Cl10.59822 (18)0.34404 (6)0.56970 (6)0.0578 (4)
O10.2567 (4)0.01211 (13)0.53229 (13)0.0371 (8)
N10.3033 (5)0.11885 (17)0.6490 (2)0.0515 (11)
N20.4423 (6)0.05365 (18)0.7780 (2)0.0587 (12)
N30.4426 (5)0.20025 (18)0.6737 (2)0.0510 (11)
N40.8980 (4)0.60153 (15)0.44692 (17)0.0339 (9)
C10.3163 (5)0.0619 (2)0.6503 (2)0.0375 (11)
C20.3386 (5)0.00825 (19)0.6541 (2)0.0335 (10)
C30.3961 (6)0.0353 (2)0.7218 (2)0.0381 (11)
C40.3103 (5)0.1229 (2)0.5049 (2)0.0358 (11)
C50.3436 (5)0.11290 (18)0.5781 (2)0.0306 (10)
C60.3136 (5)0.04571 (19)0.5921 (2)0.0307 (10)
C70.2428 (5)0.0579 (2)0.4718 (2)0.0361 (11)
C80.0673 (6)0.0629 (2)0.4383 (2)0.0508 (13)
H8A0.02880.01970.41870.076*
H8B0.05180.09620.40090.076*
H8C0.00830.07610.47380.076*
C90.3402 (6)0.0276 (2)0.4235 (2)0.0473 (12)
H9A0.45290.02920.44620.071*
H9B0.32270.05280.37960.071*
H9C0.30790.01870.41360.071*
C100.3996 (5)0.1602 (2)0.6312 (2)0.0359 (11)
C110.3377 (6)0.1756 (2)0.4638 (2)0.0444 (12)
H110.29910.17160.41470.053*
C120.4175 (5)0.2346 (2)0.4881 (2)0.0359 (11)
H120.44290.24080.53750.043*
C130.4633 (5)0.2847 (2)0.4481 (2)0.0372 (11)
C140.5547 (5)0.33952 (19)0.4780 (2)0.0320 (10)
C150.6128 (5)0.38858 (18)0.4412 (2)0.0294 (10)
C160.5855 (6)0.38354 (19)0.3622 (2)0.0331 (10)
H16A0.690 (2)0.381 (2)0.349 (2)0.040*
H16B0.517 (4)0.4212 (13)0.3440 (19)0.040*
C190.4468 (5)0.32423 (18)0.2493 (2)0.0364 (11)
C230.6969 (5)0.44466 (18)0.4748 (2)0.0323 (10)
H230.70700.44860.52400.039*
C240.7642 (5)0.49323 (18)0.4417 (2)0.0315 (10)
H240.76420.48820.39330.038*
C250.8342 (5)0.55100 (18)0.4771 (2)0.0313 (10)
C260.9572 (5)0.65384 (19)0.4932 (2)0.0351 (10)
C271.0259 (6)0.7125 (2)0.4767 (2)0.0436 (12)
H271.03430.72200.43000.052*
C281.0818 (6)0.7565 (2)0.5310 (3)0.0497 (13)
H281.13030.79670.52120.060*
C291.0687 (6)0.7433 (2)0.5994 (3)0.0482 (13)
H291.10840.77450.63530.058*
C300.9981 (6)0.6849 (2)0.6158 (2)0.0426 (12)
H300.98850.67570.66240.051*
C310.9420 (5)0.64050 (19)0.5616 (2)0.0363 (11)
C320.9094 (6)0.6037 (2)0.3720 (2)0.0404 (11)
H32A0.91850.55780.35520.061*
H32B1.00700.62790.36810.061*
C330.7674 (6)0.6372 (2)0.3252 (2)0.0476 (13)
H33A0.74480.67910.34780.071*
H33B0.79630.64910.28030.071*
C340.6170 (6)0.5956 (2)0.3094 (2)0.0455 (13)
H34A0.59020.58220.35430.068*
H34B0.63810.55460.28490.068*
C350.4739 (7)0.6309 (2)0.2647 (2)0.0566 (15)
H35A0.49510.63970.21770.085*
H35B0.45860.67410.28650.085*
C360.3223 (7)0.5897 (3)0.2571 (3)0.0679 (18)
H36A0.33300.54880.23120.102*
H36B0.23210.61550.23150.102*
H36C0.30460.57840.30360.102*
C17A0.456 (2)0.3354 (9)0.3291 (9)0.030 (3)0.52 (3)
H17B0.35460.35780.33210.045*0.52 (3)
C18A0.457 (3)0.2721 (7)0.3690 (5)0.041 (4)0.52 (3)
H18A0.55070.24530.36410.061*0.52 (3)
H18B0.36100.24620.34880.061*0.52 (3)
C20A0.327 (3)0.2697 (10)0.2179 (17)0.065 (7)0.53 (3)
H20D0.22820.27610.23410.097*0.53 (3)
H20E0.37160.22600.23310.097*0.53 (3)
H20F0.30590.27230.16670.097*0.53 (3)
C21A0.5878 (18)0.3349 (16)0.2147 (10)0.082 (7)0.53 (3)
H21D0.55200.33230.16370.123*0.53 (3)
H21E0.66780.30060.23070.123*0.53 (3)
H21F0.63420.37880.22760.123*0.53 (3)
C22A0.389 (4)0.3895 (7)0.2107 (8)0.076 (7)0.53 (3)
H22D0.29020.40360.22320.113*0.53 (3)
H22E0.37110.38230.16000.113*0.53 (3)
H22F0.47000.42400.22440.113*0.53 (3)
C17B0.515 (2)0.3180 (8)0.3303 (9)0.023 (3)0.48 (3)
H17A0.60090.28390.33790.035*0.48 (3)
C18B0.385 (2)0.2951 (8)0.3710 (5)0.034 (4)0.48 (3)
H18C0.30120.32930.36670.051*0.48 (3)
H18D0.33570.25310.35070.051*0.48 (3)
C20B0.387 (3)0.2544 (7)0.225 (2)0.055 (6)0.47 (3)
H20A0.29560.24300.24550.083*0.47 (3)
H20B0.47150.22190.24020.083*0.47 (3)
H20C0.35410.25370.17380.083*0.47 (3)
C21B0.6072 (14)0.3068 (11)0.2329 (10)0.059 (5)0.47 (3)
H21A0.59370.29720.18280.089*0.47 (3)
H21B0.65090.26760.26010.089*0.47 (3)
H21C0.68010.34430.24540.089*0.47 (3)
C22B0.3139 (19)0.3755 (8)0.2311 (13)0.063 (5)0.47 (3)
H22A0.23690.36840.26070.095*0.47 (3)
H22B0.26100.37070.18170.095*0.47 (3)
H22C0.35860.42030.23910.095*0.47 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0532 (8)0.0223 (5)0.0285 (6)0.0038 (5)0.0034 (5)0.0020 (4)
Cl10.1076 (12)0.0406 (6)0.0267 (6)0.0273 (7)0.0177 (6)0.0036 (5)
O10.058 (2)0.0241 (14)0.0249 (15)0.0138 (14)0.0002 (14)0.0032 (12)
N10.079 (3)0.027 (2)0.045 (2)0.009 (2)0.006 (2)0.0054 (17)
N20.105 (4)0.035 (2)0.029 (2)0.005 (2)0.001 (2)0.0003 (18)
N30.077 (3)0.030 (2)0.046 (2)0.008 (2)0.014 (2)0.0047 (18)
N40.047 (2)0.0196 (16)0.033 (2)0.0038 (16)0.0037 (17)0.0035 (14)
C10.053 (3)0.028 (2)0.028 (2)0.006 (2)0.002 (2)0.0060 (18)
C20.050 (3)0.022 (2)0.027 (2)0.0055 (19)0.005 (2)0.0002 (16)
C30.055 (3)0.024 (2)0.033 (3)0.002 (2)0.006 (2)0.0050 (19)
C40.041 (3)0.028 (2)0.037 (3)0.010 (2)0.007 (2)0.0028 (19)
C50.042 (3)0.0221 (19)0.026 (2)0.0084 (19)0.0049 (19)0.0000 (16)
C60.040 (3)0.025 (2)0.027 (2)0.0045 (19)0.0082 (19)0.0009 (17)
C70.051 (3)0.029 (2)0.023 (2)0.014 (2)0.002 (2)0.0077 (17)
C80.062 (3)0.040 (3)0.044 (3)0.016 (3)0.003 (2)0.014 (2)
C90.068 (4)0.042 (3)0.030 (2)0.008 (2)0.005 (2)0.003 (2)
C100.050 (3)0.025 (2)0.034 (2)0.003 (2)0.009 (2)0.0043 (19)
C110.061 (3)0.037 (2)0.031 (2)0.018 (2)0.000 (2)0.0072 (19)
C120.046 (3)0.031 (2)0.030 (2)0.009 (2)0.005 (2)0.0071 (18)
C130.047 (3)0.033 (2)0.030 (2)0.011 (2)0.006 (2)0.0041 (18)
C140.044 (3)0.024 (2)0.029 (2)0.004 (2)0.010 (2)0.0002 (17)
C150.041 (3)0.0191 (19)0.027 (2)0.0022 (18)0.0034 (19)0.0011 (16)
C160.049 (3)0.023 (2)0.028 (2)0.005 (2)0.008 (2)0.0001 (17)
C190.049 (3)0.029 (2)0.030 (2)0.007 (2)0.007 (2)0.0017 (18)
C230.045 (3)0.024 (2)0.025 (2)0.0021 (19)0.0005 (19)0.0014 (16)
C240.042 (3)0.025 (2)0.025 (2)0.0014 (19)0.0030 (19)0.0003 (17)
C250.042 (3)0.022 (2)0.029 (2)0.0008 (19)0.005 (2)0.0027 (16)
C260.046 (3)0.020 (2)0.037 (2)0.0007 (19)0.001 (2)0.0027 (18)
C270.060 (3)0.025 (2)0.045 (3)0.002 (2)0.010 (2)0.007 (2)
C280.063 (4)0.020 (2)0.062 (3)0.004 (2)0.003 (3)0.002 (2)
C290.057 (3)0.024 (2)0.055 (3)0.001 (2)0.006 (3)0.007 (2)
C300.053 (3)0.032 (2)0.040 (3)0.003 (2)0.001 (2)0.008 (2)
C310.046 (3)0.0175 (19)0.041 (3)0.0009 (19)0.001 (2)0.0007 (18)
C320.067 (3)0.022 (2)0.033 (2)0.005 (2)0.015 (2)0.0000 (18)
C330.085 (4)0.026 (2)0.031 (2)0.001 (2)0.010 (3)0.0016 (19)
C340.076 (4)0.026 (2)0.033 (3)0.009 (2)0.007 (2)0.0007 (19)
C350.096 (5)0.037 (3)0.029 (3)0.017 (3)0.005 (3)0.005 (2)
C360.093 (5)0.050 (3)0.044 (3)0.018 (3)0.024 (3)0.016 (2)
C17A0.042 (10)0.023 (7)0.028 (5)0.002 (6)0.015 (7)0.007 (5)
C18A0.063 (10)0.024 (6)0.032 (5)0.011 (6)0.003 (5)0.005 (4)
C20A0.093 (17)0.066 (10)0.028 (7)0.042 (11)0.006 (13)0.009 (9)
C21A0.063 (10)0.14 (2)0.042 (9)0.036 (10)0.011 (7)0.008 (10)
C22A0.127 (19)0.057 (8)0.033 (7)0.043 (10)0.005 (9)0.002 (5)
C17B0.028 (9)0.014 (7)0.030 (5)0.006 (5)0.012 (6)0.011 (5)
C18B0.044 (9)0.022 (6)0.034 (5)0.012 (5)0.004 (5)0.000 (4)
C20B0.072 (15)0.050 (9)0.040 (13)0.017 (9)0.004 (12)0.015 (9)
C21B0.079 (11)0.073 (12)0.019 (8)0.002 (8)0.001 (6)0.021 (7)
C22B0.079 (12)0.051 (8)0.049 (11)0.001 (8)0.013 (7)0.004 (7)
Geometric parameters (Å, º) top
S1—C251.732 (4)C24—H240.9500
S1—C311.743 (4)C26—C271.389 (6)
Cl1—C141.752 (4)C26—C311.394 (6)
O1—C61.349 (4)C27—C281.388 (6)
O1—C71.482 (4)C27—H270.9500
N1—C11.151 (5)C28—C291.389 (6)
N2—C31.147 (5)C28—H280.9500
N3—C101.160 (5)C29—C301.393 (6)
N4—C251.350 (5)C29—H290.9500
N4—C261.411 (5)C30—C311.392 (6)
N4—C321.487 (5)C30—H300.9500
C1—C21.426 (5)C32—C331.523 (6)
C2—C61.404 (5)C32—H32A0.9900
C2—C31.418 (6)C32—H32B0.9900
C4—C111.380 (5)C33—C341.521 (6)
C4—C51.412 (5)C33—H33A0.9900
C4—C71.519 (5)C33—H33B0.9900
C5—C61.414 (5)C34—C351.528 (6)
C5—C101.415 (6)C34—H34A0.9900
C7—C91.517 (6)C34—H34B0.9900
C7—C81.520 (6)C35—C361.529 (7)
C8—H8A0.9800C35—H35A0.9900
C8—H8B0.9800C35—H35B0.9900
C8—H8C0.9800C36—H36A0.9800
C9—H9A0.9800C36—H36B0.9800
C9—H9B0.9800C36—H36C0.9800
C9—H9C0.9800C17A—C18A1.49 (3)
C11—C121.404 (6)C17A—H17B1.0000
C11—H110.9500C18A—H18A0.9900
C12—C131.384 (5)C18A—H18B0.9900
C12—H120.9500C20A—H20D0.9800
C13—C141.410 (5)C20A—H20E0.9800
C13—C18B1.529 (10)C20A—H20F0.9800
C13—C18A1.556 (10)C21A—H21D0.9800
C14—C151.377 (5)C21A—H21E0.9800
C15—C231.424 (5)C21A—H21F0.9800
C15—C161.513 (5)C22A—H22D0.9800
C16—C17A1.515 (17)C22A—H22E0.9800
C16—C17B1.530 (15)C22A—H22F0.9800
C16—H16A0.992 (10)C17B—C18B1.57 (3)
C16—H16B0.982 (10)C17B—H17A1.0000
C19—C21B1.526 (8)C18B—H18C0.9900
C19—C21A1.527 (8)C18B—H18D0.9900
C19—C22B1.528 (8)C20B—H20A0.9800
C19—C20B1.539 (8)C20B—H20B0.9800
C19—C20A1.542 (8)C20B—H20C0.9800
C19—C22A1.544 (7)C21B—H21A0.9800
C19—C17A1.559 (17)C21B—H21B0.9800
C19—C17B1.571 (18)C21B—H21C0.9800
C23—C241.367 (5)C22B—H22A0.9800
C23—H230.9500C22B—H22B0.9800
C24—C251.421 (5)C22B—H22C0.9800
C25—S1—C3191.3 (2)C27—C28—H28119.1
C6—O1—C7109.4 (3)C29—C28—H28119.1
C25—N4—C26114.1 (3)C28—C29—C30120.7 (4)
C25—N4—C32124.8 (3)C28—C29—H29119.6
C26—N4—C32121.2 (3)C30—C29—H29119.6
N1—C1—C2177.6 (5)C31—C30—C29117.8 (4)
C6—C2—C3123.9 (3)C31—C30—H30121.1
C6—C2—C1119.5 (4)C29—C30—H30121.1
C3—C2—C1116.4 (3)C30—C31—C26121.1 (4)
N2—C3—C2176.2 (4)C30—C31—S1128.2 (4)
C11—C4—C5132.4 (4)C26—C31—S1110.7 (3)
C11—C4—C7120.8 (4)N4—C32—C33113.1 (4)
C5—C4—C7106.6 (3)N4—C32—H32A109.0
C4—C5—C6108.9 (3)C33—C32—H32A109.0
C4—C5—C10127.6 (4)N4—C32—H32B109.0
C6—C5—C10123.4 (4)C33—C32—H32B109.0
O1—C6—C2116.0 (3)H32A—C32—H32B107.8
O1—C6—C5111.1 (3)C34—C33—C32114.9 (3)
C2—C6—C5132.8 (4)C34—C33—H33A108.6
O1—C7—C9106.5 (3)C32—C33—H33A108.6
O1—C7—C4103.7 (3)C34—C33—H33B108.6
C9—C7—C4113.3 (4)C32—C33—H33B108.6
O1—C7—C8106.8 (3)H33A—C33—H33B107.5
C9—C7—C8113.1 (4)C33—C34—C35114.3 (4)
C4—C7—C8112.5 (4)C33—C34—H34A108.7
C7—C8—H8A109.5C35—C34—H34A108.7
C7—C8—H8B109.5C33—C34—H34B108.7
H8A—C8—H8B109.5C35—C34—H34B108.7
C7—C8—H8C109.5H34A—C34—H34B107.6
H8A—C8—H8C109.5C34—C35—C36112.0 (4)
H8B—C8—H8C109.5C34—C35—H35A109.2
C7—C9—H9A109.5C36—C35—H35A109.2
C7—C9—H9B109.5C34—C35—H35B109.2
H9A—C9—H9B109.5C36—C35—H35B109.2
C7—C9—H9C109.5H35A—C35—H35B107.9
H9A—C9—H9C109.5C35—C36—H36A109.5
H9B—C9—H9C109.5C35—C36—H36B109.5
N3—C10—C5178.1 (5)H36A—C36—H36B109.5
C4—C11—C12125.8 (4)C35—C36—H36C109.5
C4—C11—H11117.1H36A—C36—H36C109.5
C12—C11—H11117.1H36B—C36—H36C109.5
C13—C12—C11127.1 (4)C18A—C17A—C16113.6 (15)
C13—C12—H12116.4C18A—C17A—C19113.1 (13)
C11—C12—H12116.4C16—C17A—C19113.4 (11)
C12—C13—C14122.6 (4)C18A—C17A—H17B105.2
C12—C13—C18B122.5 (6)C16—C17A—H17B105.2
C14—C13—C18B113.1 (6)C19—C17A—H17B105.2
C12—C13—C18A119.3 (5)C17A—C18A—C13112.0 (13)
C14—C13—C18A115.9 (5)C17A—C18A—H18A109.2
C15—C14—C13125.3 (4)C13—C18A—H18A109.2
C15—C14—Cl1118.3 (3)C17A—C18A—H18B109.2
C13—C14—Cl1116.4 (3)C13—C18A—H18B109.2
C14—C15—C23122.3 (4)H18A—C18A—H18B107.9
C14—C15—C16119.3 (3)C19—C20A—H20D109.5
C23—C15—C16118.5 (3)C19—C20A—H20E109.5
C15—C16—C17A114.8 (7)C19—C20A—H20F109.5
C15—C16—C17B115.8 (7)C19—C21A—H21D109.5
C15—C16—H16A109 (2)C19—C21A—H21E109.5
C17A—C16—H16A119 (3)C19—C21A—H21F109.5
C15—C16—H16B106 (2)C19—C22A—H22D109.5
C17B—C16—H16B111 (3)C19—C22A—H22E109.5
C21B—C19—C22B140.9 (18)C19—C22A—H22F109.5
C21B—C19—C20B89.3 (17)C16—C17B—C18B108.3 (14)
C22B—C19—C20B110.9 (12)C16—C17B—C19111.9 (10)
C21B—C19—C20A108.2 (17)C18B—C17B—C19112.3 (13)
C21A—C19—C20A116.9 (18)C16—C17B—H17A108.1
C22B—C19—C20A89.0 (12)C18B—C17B—H17A108.1
C21B—C19—C22A107.8 (19)C19—C17B—H17A108.1
C21A—C19—C22A82 (2)C13—C18B—C17B109.0 (13)
C20A—C19—C22A107.0 (12)C13—C18B—H18C109.9
C21A—C19—C17A123.0 (11)C17B—C18B—H18C109.9
C20A—C19—C17A112.9 (15)C13—C18B—H18D109.9
C22A—C19—C17A108.0 (10)C17B—C18B—H18D109.9
C21B—C19—C17B91.9 (11)H18C—C18B—H18D108.3
C22B—C19—C17B112.9 (12)C19—C20B—H20A109.5
C20B—C19—C17B105.5 (16)C19—C20B—H20B109.5
C24—C23—C15125.1 (4)H20A—C20B—H20B109.5
C24—C23—H23117.4C19—C20B—H20C109.5
C15—C23—H23117.4H20A—C20B—H20C109.5
C23—C24—C25122.3 (4)H20B—C20B—H20C109.5
C23—C24—H24118.8C19—C21B—H21A109.5
C25—C24—H24118.8C19—C21B—H21B109.5
N4—C25—C24125.0 (4)H21A—C21B—H21B109.5
N4—C25—S1111.8 (3)C19—C21B—H21C109.5
C24—C25—S1123.1 (3)H21A—C21B—H21C109.5
C27—C26—C31121.2 (4)H21B—C21B—H21C109.5
C27—C26—N4126.8 (4)C19—C22B—H22A109.5
C31—C26—N4112.0 (3)C19—C22B—H22B109.5
C28—C27—C26117.4 (4)H22A—C22B—H22B109.5
C28—C27—H27121.3C19—C22B—H22C109.5
C26—C27—H27121.3H22A—C22B—H22C109.5
C27—C28—C29121.8 (4)H22B—C22B—H22C109.5
C11—C4—C5—C6170.6 (5)C23—C24—C25—S12.7 (6)
C7—C4—C5—C64.6 (5)C31—S1—C25—N40.5 (3)
C11—C4—C5—C108.7 (9)C31—S1—C25—C24180.0 (4)
C7—C4—C5—C10176.1 (4)C25—N4—C26—C27178.6 (4)
C7—O1—C6—C2177.9 (4)C32—N4—C26—C272.2 (7)
C7—O1—C6—C50.8 (5)C25—N4—C26—C312.3 (5)
C3—C2—C6—O1179.3 (4)C32—N4—C26—C31177.0 (4)
C1—C2—C6—O15.2 (6)C31—C26—C27—C281.4 (7)
C3—C2—C6—C54.4 (8)N4—C26—C27—C28177.7 (4)
C1—C2—C6—C5171.1 (5)C26—C27—C28—C290.7 (7)
C4—C5—C6—O12.5 (5)C27—C28—C29—C300.1 (8)
C10—C5—C6—O1178.1 (4)C28—C29—C30—C310.2 (7)
C4—C5—C6—C2174.0 (5)C29—C30—C31—C260.5 (7)
C10—C5—C6—C25.4 (8)C29—C30—C31—S1179.8 (4)
C6—O1—C7—C9123.3 (4)C27—C26—C31—C301.4 (7)
C6—O1—C7—C43.5 (4)N4—C26—C31—C30177.9 (4)
C6—O1—C7—C8115.6 (4)C27—C26—C31—S1179.0 (4)
C11—C4—C7—O1171.0 (4)N4—C26—C31—S11.8 (5)
C5—C4—C7—O14.8 (5)C25—S1—C31—C30178.9 (4)
C11—C4—C7—C955.9 (6)C25—S1—C31—C260.8 (3)
C5—C4—C7—C9119.9 (4)C25—N4—C32—C3391.7 (5)
C11—C4—C7—C873.9 (5)C26—N4—C32—C3389.1 (5)
C5—C4—C7—C8110.3 (4)N4—C32—C33—C3475.2 (5)
C5—C4—C11—C123.2 (9)C32—C33—C34—C35177.7 (4)
C7—C4—C11—C12171.5 (4)C33—C34—C35—C36173.9 (4)
C4—C11—C12—C13171.7 (5)C15—C16—C17A—C18A41 (2)
C11—C12—C13—C14174.6 (5)C15—C16—C17A—C19172.2 (9)
C11—C12—C13—C18B21.9 (12)C21A—C19—C17A—C18A107 (2)
C11—C12—C13—C18A12.4 (12)C20A—C19—C17A—C18A43 (3)
C12—C13—C14—C15175.5 (4)C22A—C19—C17A—C18A161 (2)
C18B—C13—C14—C1519.7 (11)C21A—C19—C17A—C1625 (2)
C18A—C13—C14—C1512.7 (11)C20A—C19—C17A—C16173.9 (16)
C12—C13—C14—Cl13.8 (6)C22A—C19—C17A—C1668 (2)
C18B—C13—C14—Cl1161.1 (9)C16—C17A—C18A—C1350 (3)
C18A—C13—C14—Cl1166.6 (10)C19—C17A—C18A—C13178.8 (8)
C13—C14—C15—C23176.4 (4)C12—C13—C18A—C17A160.6 (15)
Cl1—C14—C15—C234.4 (6)C14—C13—C18A—C17A36 (2)
C13—C14—C15—C163.0 (7)C15—C16—C17B—C18B39.7 (18)
Cl1—C14—C15—C16176.2 (3)C17A—C16—C17B—C18B53 (3)
C14—C15—C16—C17A17.0 (11)C15—C16—C17B—C19164.0 (8)
C23—C15—C16—C17A162.4 (10)C21B—C19—C17B—C1688.1 (15)
C14—C15—C16—C17B8.5 (10)C22B—C19—C17B—C1660.8 (17)
C23—C15—C16—C17B172.1 (9)C20B—C19—C17B—C16177.9 (16)
C14—C15—C23—C24176.6 (4)C21B—C19—C17B—C18B149.9 (17)
C16—C15—C23—C244.1 (6)C22B—C19—C17B—C18B61.1 (19)
C15—C23—C24—C25174.2 (4)C20B—C19—C17B—C18B60 (2)
C26—N4—C25—C24178.8 (4)C12—C13—C18B—C17B143.8 (11)
C32—N4—C25—C242.0 (7)C14—C13—C18B—C17B51.3 (18)
C26—N4—C25—S11.6 (5)C16—C17B—C18B—C1361 (2)
C32—N4—C25—S1177.6 (3)C19—C17B—C18B—C13175.3 (7)
C23—C24—C25—N4177.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.982.593.494 (6)154
C32—H32A···N2ii0.982.733.702 (5)166
C33—H33B···N1ii0.982.653.539 (6)150
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC36H39ClN4OS
Mr611.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)116
a, b, c (Å)8.6293 (5), 20.1267 (11), 19.5299 (11)
β (°) 102.236 (4)
V3)3314.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.71 × 0.30 × 0.10
Data collection
DiffractometerBruker–Nonius APEXII CCD area-detector
Absorption correctionMulti-scan
(Blessing, 1995) and SADABS (Bruker, 2005)
Tmin, Tmax0.614, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
32003, 5943, 3121
Rint0.106
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.177, 1.01
No. of reflections5943
No. of parameters451
No. of restraints75
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.982.593.494 (6)154
C32—H32A···N2ii0.982.733.702 (5)166
C33—H33B···N1ii0.982.653.539 (6)150
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z1/2.
Bond Distances(Å)a top
AtomA—AtomBHereHITVIQEGOSOJ
C2–C61.404 (5)1.378 (3)1.385 (6)
C6–C71.414 (5)1.429 (3)1.417 (6)
C7–C41.412 (5)1.370 (3)1.402 (6)
C4–c111.381 (6)1.416 (3)1.373 (5)
Average dba1.411 (9)1.368 (7)1.397 (8)
Average sba1.385 (18)1.426 (10)1.395 (16)
BLAb-0.0260.058-0.002
a. db,sb double,single bonds (10). b. Marder et al., 1993.
 

Acknowledgements

We thank Drs J. Wikaira & C. Fitchett of the University of Canterbury, New Zealand, for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBhuiyan, M. D. H., Ashraf, M., Teshome, A., Gainsford, G. J., Kay, A. J., Asselberghs, I. & Clays, K. (2011). Dyes Pigm. 89, 177–187.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBouit, P.-A., Di Piazza, E., Rigaut, S., Le Guennic, B., Aronica, B., Toupet, L., Andraud, C. & Maury, O. (2008). Org. Lett. 10, 4159–4162.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBouit, P.-A., Wetzel, G., Berginc, G., Loiseaux, B., Toupet, L., Feneyrou, P., Bretonniere, Y., Kamada, K., Maury, O. & Andraud, C. (2007). Chem. Mater. 19, 5325–5335.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 45, 1321–1330.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524–2526.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds