organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[3a-(4-Bromo­phen­yl)-8b-hy­dr­oxy-6,8-dimeth­­oxy-3-phenyl-2,3,3a,8b-tetra­hydro-1H-cyclo­penta­[b]benzo­furan-1-yl]formamide monohydrate

aCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS-UHP 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, Bd des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France, and bTherapeutic Innovation Laboratory (UMR7200), Department of Medicinal Chemistry, Faculté de Pharmacie, CNRS Université de Strasbourg, 74 Route du Rhin, BP 60024, 67401 Illkirch, France
*Correspondence e-mail: emmanuel.aubert@crm2.uhp-nancy.fr

(Received 22 November 2012; accepted 3 December 2012; online 8 December 2012)

In the title compound, C26H24BrNO5·H2O, a synthetic analogue of natural flavagline, the cyclo­pentane ring adopts an envelope conformation (the flap atom bearing the phenyl group) and the vicinal phenyl and bromo­phenyl groups are slightly shifted relative to each other [CPh—C—C—CPhBr = 36.3 (2)°]. Intra­molecular N—H⋯O and C—H⋯O hydrogen bonds form S(5) motifs. In the crystal, the organic and the water mol­ecules are linked by an O—H⋯O hydrogen bond. Pairs of organic and water mol­ecules, located about inversion centers, inter­act through O—H⋯O hydrogen bonds, forming R44(20) and R44(26) motifs, which together lead to C22(9) motifs. The crystal packing is also characterized by N—H⋯O and C—H⋯O hydrogen bonds between neighbouring organic mol­ecules, forming R22(10) and R22(18) motifs, respectively.

Related literature

For flavaglines and their anti­cancer, neuro- and cardioprotective activities, see: Ribeiro et al. (2012a[Ribeiro, N., Thuaud, F., Bernard, Y., Gaiddon, C., Cresteil, T., Hild, A., Hirsch, E., Michel, P. P., Nebigil, C. G. & Désaubry, L. (2012a). J. Med. Chem. 55. In the press. doi:10.1021/jm301201z.],b[Ribeiro, N., Thuaud, F., Nebigil, C. G. & Désaubry, L. (2012b). Bioorg. Med. Chem. 20, 1857-1864.]); Bernard et al. (2011[Bernard, Y., Ribeiro, N., Thuaud, F., Türkeri, G., Dirr, R., Boulberdaa, M., Nebigil, C. G. & Désaubry, L. (2011). PLoS ONE, 6, e25302.]); Thuaud et al. (2011[Thuaud, F., Ribeiro, N., Gaiddon, C., Cresteil, T. & Désaubry, L. (2011). J. Med. Chem. 54, 411-415.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24BrNO5·H2O

  • Mr = 528.39

  • Triclinic, [P \overline 1]

  • a = 8.5941 (2) Å

  • b = 12.1107 (4) Å

  • c = 12.6642 (3) Å

  • α = 70.537 (2)°

  • β = 73.495 (2)°

  • γ = 73.898 (2)°

  • V = 1166.98 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.77 mm−1

  • T = 110 K

  • 0.34 × 0.26 × 0.07 mm

Data collection
  • Agilent SuperNova diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), based on expressions derived from Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.551, Tmax = 0.868

  • 24473 measured reflections

  • 4860 independent reflections

  • 4814 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.05

  • 4860 reflections

  • 322 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N18—H18⋯O17 0.83 2.31 2.652 (2) 106
C32—H32⋯O1 0.95 2.28 2.661 (2) 103
O17—H17⋯O33 0.84 1.90 2.686 (2) 156
N18—H18⋯O17i 0.83 2.38 3.185 (2) 163
C28—H28⋯O33i 0.95 2.53 3.328 (2) 142
C29—H29⋯O15i 0.95 2.62 3.516 (2) 157
O33—H33A⋯O13ii 0.81 2.21 3.015 (2) 179
O33—H33B⋯O20iii 0.81 1.90 2.699 (2) 170
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.].

Supporting information


Related literature top

For flavaglines and their anticancer, neuro- and cardioprotective activities, see: Ribeiro et al. (2012a,b); Bernard et al. (2011); Thuaud et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Suitable crystals of the title compound were obtained by slow evaporation from acetone at room temperature.

Refinement top

H(—C) hydrogen atoms were postioned geometrically and were treated as riding on their parent C atoms. The torsion angles of the two methyl groups were obtained by refinement. The hydrogen atom of the hydroxyl group was treated as riding on his parent O atom, while the torsion angle of the associated group was refined. Hydrogen atoms of the water molecule and of the formamide groupwere restrained to O—H=0.82 (1) Å and to N—H=0.87 (2) Å, respectively.

Structure description top

For flavaglines and their anticancer, neuro- and cardioprotective activities, see: Ribeiro et al. (2012a,b); Bernard et al. (2011); Thuaud et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.
N-[3a-(4-Bromophenyl)-8b-hydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-1-yl]formamide monohydrate top
Crystal data top
C26H24BrNO5·H2OZ = 2
Mr = 528.39F(000) = 544
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 8.5941 (2) ÅCell parameters from 17225 reflections
b = 12.1107 (4) Åθ = 3.8–76.4°
c = 12.6642 (3) ŵ = 2.77 mm1
α = 70.537 (2)°T = 110 K
β = 73.495 (2)°Plate, colourless
γ = 73.898 (2)°0.34 × 0.26 × 0.07 mm
V = 1166.98 (5) Å3
Data collection top
Agilent SuperNova
diffractometer
4860 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4814 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4508 pixels mm-1θmax = 76.6°, θmin = 3.8°
ω scansh = 1010
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived from Clark & Reid (1995)]
k = 1512
Tmin = 0.551, Tmax = 0.868l = 1515
24473 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0341P)2 + 1.1295P]
where P = (Fo2 + 2Fc2)/3
4860 reflections(Δ/σ)max = 0.002
322 parametersΔρmax = 0.38 e Å3
3 restraintsΔρmin = 0.59 e Å3
Crystal data top
C26H24BrNO5·H2Oγ = 73.898 (2)°
Mr = 528.39V = 1166.98 (5) Å3
Triclinic, P1Z = 2
a = 8.5941 (2) ÅCu Kα radiation
b = 12.1107 (4) ŵ = 2.77 mm1
c = 12.6642 (3) ÅT = 110 K
α = 70.537 (2)°0.34 × 0.26 × 0.07 mm
β = 73.495 (2)°
Data collection top
Agilent SuperNova
diffractometer
4860 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived from Clark & Reid (1995)]
4814 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 0.868Rint = 0.021
24473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.38 e Å3
4860 reflectionsΔρmin = 0.59 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05195 (2)0.900096 (15)0.704006 (16)0.02799 (7)
O170.51357 (13)0.41085 (9)0.92476 (9)0.0149 (2)
H170.47520.34960.96490.022*
O10.60153 (14)0.39338 (9)0.65437 (9)0.0142 (2)
O130.62790 (15)0.02946 (10)0.73217 (10)0.0197 (2)
O150.73519 (15)0.13138 (10)0.99384 (9)0.0182 (2)
O330.32657 (16)0.26192 (11)1.08263 (11)0.0241 (3)
N180.79574 (19)0.41272 (13)0.96990 (11)0.0197 (3)
O201.05986 (18)0.32592 (16)0.98704 (13)0.0426 (4)
C210.82221 (18)0.59920 (14)0.55426 (13)0.0143 (3)
C110.81098 (18)0.49342 (13)0.65978 (12)0.0128 (3)
H110.88280.42150.63610.015*
C20.62613 (18)0.27675 (13)0.71823 (13)0.0133 (3)
C60.69272 (19)0.14421 (14)0.89379 (13)0.0145 (3)
C70.66121 (18)0.26081 (13)0.82267 (12)0.0131 (3)
C300.2423 (2)0.77447 (14)0.69946 (14)0.0190 (3)
C290.3489 (2)0.75174 (14)0.77164 (14)0.0182 (3)
H290.33480.80380.81710.022*
C100.86995 (19)0.50048 (14)0.75986 (12)0.0141 (3)
H10A0.81690.57720.77880.017*
H10B0.99180.49230.74190.017*
C280.47664 (19)0.65176 (14)0.77651 (13)0.0153 (3)
H280.55020.63530.82590.018*
C90.81604 (19)0.39483 (14)0.85875 (12)0.0143 (3)
H90.90240.32110.85290.017*
C270.49841 (18)0.57505 (13)0.70987 (12)0.0125 (3)
C140.5949 (2)0.01482 (16)0.62326 (15)0.0249 (4)
H14B0.48810.04000.61580.037*
H14C0.59100.09260.61730.037*
H14A0.68290.01820.56210.037*
C260.78129 (19)0.59676 (16)0.45604 (13)0.0190 (3)
H260.74400.52950.45700.023*
C220.8773 (2)0.69841 (15)0.55031 (14)0.0211 (3)
H220.90350.70250.61670.025*
C80.65169 (18)0.37999 (13)0.83925 (12)0.0119 (3)
C310.2653 (2)0.70372 (16)0.62875 (14)0.0213 (3)
H310.19420.72250.57720.026*
C40.64028 (19)0.07103 (14)0.75429 (13)0.0155 (3)
C120.63521 (18)0.46509 (13)0.71503 (12)0.0117 (3)
C250.7943 (2)0.69131 (17)0.35686 (14)0.0239 (4)
H250.76300.68940.29140.029*
C320.3941 (2)0.60461 (15)0.63388 (13)0.0181 (3)
H320.41150.55590.58460.022*
C30.61409 (19)0.18505 (14)0.67967 (13)0.0151 (3)
H30.58960.19950.60710.018*
C50.68119 (19)0.04909 (14)0.86002 (13)0.0166 (3)
H50.70090.03020.90830.020*
C160.7727 (2)0.01173 (15)1.06525 (14)0.0226 (3)
H16A0.67230.02191.09450.034*
H16C0.81360.01271.12970.034*
H16B0.85790.03741.02040.034*
C190.9206 (3)0.37794 (19)1.02350 (15)0.0300 (4)
H190.90080.39451.09500.036*
C230.8944 (3)0.79191 (16)0.45014 (16)0.0289 (4)
H230.93480.85820.44810.035*
C240.8529 (2)0.78850 (16)0.35359 (15)0.0279 (4)
H240.86440.85240.28540.033*
H33A0.338 (3)0.1995 (14)1.1318 (16)0.037 (7)*
H33B0.244 (2)0.273 (2)1.058 (2)0.045 (7)*
H180.704 (2)0.447 (2)0.9998 (19)0.031 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02195 (10)0.01868 (10)0.03460 (12)0.00392 (7)0.00600 (8)0.00272 (8)
O170.0187 (5)0.0133 (5)0.0112 (5)0.0043 (4)0.0008 (4)0.0039 (4)
O10.0223 (5)0.0122 (5)0.0114 (5)0.0053 (4)0.0063 (4)0.0035 (4)
O130.0288 (6)0.0137 (5)0.0201 (6)0.0040 (5)0.0077 (5)0.0074 (4)
O150.0281 (6)0.0134 (5)0.0139 (5)0.0020 (4)0.0102 (4)0.0017 (4)
O330.0224 (6)0.0228 (6)0.0261 (6)0.0097 (5)0.0116 (5)0.0040 (5)
N180.0255 (7)0.0251 (7)0.0121 (6)0.0115 (6)0.0061 (5)0.0028 (5)
O200.0302 (8)0.0681 (11)0.0305 (7)0.0182 (7)0.0182 (6)0.0016 (7)
C210.0110 (6)0.0166 (7)0.0120 (7)0.0010 (5)0.0001 (5)0.0029 (6)
C110.0126 (7)0.0144 (7)0.0105 (6)0.0026 (5)0.0016 (5)0.0033 (5)
C20.0130 (7)0.0124 (7)0.0135 (7)0.0023 (5)0.0017 (5)0.0036 (5)
C60.0153 (7)0.0149 (7)0.0128 (7)0.0024 (6)0.0027 (5)0.0040 (6)
C70.0135 (7)0.0136 (7)0.0129 (7)0.0028 (5)0.0024 (5)0.0049 (5)
C300.0154 (7)0.0152 (7)0.0184 (7)0.0008 (6)0.0012 (6)0.0004 (6)
C290.0196 (8)0.0149 (7)0.0178 (7)0.0021 (6)0.0021 (6)0.0043 (6)
C100.0146 (7)0.0162 (7)0.0121 (7)0.0048 (6)0.0035 (5)0.0028 (6)
C280.0165 (7)0.0157 (7)0.0140 (7)0.0035 (6)0.0039 (5)0.0037 (6)
C90.0161 (7)0.0160 (7)0.0122 (7)0.0043 (6)0.0057 (5)0.0027 (6)
C270.0122 (7)0.0135 (7)0.0104 (6)0.0049 (5)0.0010 (5)0.0009 (5)
C140.0386 (10)0.0212 (8)0.0214 (8)0.0075 (7)0.0091 (7)0.0107 (7)
C260.0159 (7)0.0253 (8)0.0150 (7)0.0049 (6)0.0029 (6)0.0041 (6)
C220.0267 (8)0.0179 (8)0.0169 (7)0.0052 (6)0.0034 (6)0.0030 (6)
C80.0136 (7)0.0125 (7)0.0093 (6)0.0027 (5)0.0020 (5)0.0027 (5)
C310.0171 (7)0.0267 (9)0.0178 (7)0.0013 (6)0.0071 (6)0.0030 (6)
C40.0150 (7)0.0145 (7)0.0183 (7)0.0026 (6)0.0013 (6)0.0086 (6)
C120.0148 (7)0.0130 (7)0.0098 (6)0.0042 (5)0.0037 (5)0.0043 (5)
C250.0169 (8)0.0335 (10)0.0138 (7)0.0015 (7)0.0043 (6)0.0013 (7)
C320.0178 (7)0.0221 (8)0.0158 (7)0.0035 (6)0.0054 (6)0.0060 (6)
C30.0162 (7)0.0168 (7)0.0141 (7)0.0034 (6)0.0030 (5)0.0067 (6)
C50.0189 (7)0.0130 (7)0.0168 (7)0.0017 (6)0.0041 (6)0.0038 (6)
C160.0334 (9)0.0146 (8)0.0174 (7)0.0015 (7)0.0107 (7)0.0005 (6)
C190.0378 (11)0.0429 (11)0.0155 (8)0.0274 (9)0.0119 (7)0.0050 (7)
C230.0388 (10)0.0170 (8)0.0252 (9)0.0075 (7)0.0039 (8)0.0005 (7)
C240.0293 (9)0.0210 (8)0.0193 (8)0.0017 (7)0.0030 (7)0.0048 (7)
Geometric parameters (Å, º) top
Br1—C301.9023 (16)C10—H10B0.9900
O17—C81.4194 (17)C28—C271.395 (2)
O17—H170.8400C28—H280.9500
O1—C21.3653 (18)C9—C81.567 (2)
O1—C121.4623 (16)C9—H91.0000
O13—C41.3737 (18)C27—C321.393 (2)
O13—C141.4304 (19)C27—C121.509 (2)
O15—C61.3649 (18)C14—H14B0.9800
O15—C161.4335 (19)C14—H14C0.9800
O33—H33A0.805 (10)C14—H14A0.9800
O33—H33B0.808 (10)C26—C251.391 (2)
N18—C191.328 (2)C26—H260.9500
N18—C91.4497 (19)C22—C231.394 (2)
N18—H180.830 (16)C22—H220.9500
O20—C191.226 (3)C8—C121.5882 (19)
C21—C221.390 (2)C31—C321.386 (2)
C21—C261.397 (2)C31—H310.9500
C21—C111.514 (2)C4—C31.389 (2)
C11—C101.5270 (19)C4—C51.402 (2)
C11—C121.554 (2)C25—C241.387 (3)
C11—H111.0000C25—H250.9500
C2—C71.379 (2)C32—H320.9500
C2—C31.391 (2)C3—H30.9500
C6—C51.391 (2)C5—H50.9500
C6—C71.399 (2)C16—H16A0.9800
C7—C81.5035 (19)C16—H16C0.9800
C30—C311.375 (2)C16—H16B0.9800
C30—C291.385 (2)C19—H190.9500
C29—C281.388 (2)C23—C241.384 (3)
C29—H290.9500C23—H230.9500
C10—C91.533 (2)C24—H240.9500
C10—H10A0.9900
C8—O17—H17109.5H14B—C14—H14A109.5
C2—O1—C12108.14 (11)H14C—C14—H14A109.5
C4—O13—C14117.21 (13)C25—C26—C21121.01 (16)
C6—O15—C16116.71 (12)C25—C26—H26119.5
H33A—O33—H33B112 (3)C21—C26—H26119.5
C19—N18—C9121.62 (16)C21—C22—C23120.81 (16)
C19—N18—H18119.6 (16)C21—C22—H22119.6
C9—N18—H18118.7 (17)C23—C22—H22119.6
C22—C21—C26118.30 (14)O17—C8—C7112.92 (12)
C22—C21—C11122.00 (14)O17—C8—C9111.29 (11)
C26—C21—C11119.67 (14)C7—C8—C9114.22 (12)
C21—C11—C10115.85 (12)O17—C8—C12111.92 (11)
C21—C11—C12115.75 (12)C7—C8—C12100.43 (11)
C10—C11—C12103.66 (11)C9—C8—C12105.31 (11)
C21—C11—H11107.0C30—C31—C32118.93 (15)
C10—C11—H11107.0C30—C31—H31120.5
C12—C11—H11107.0C32—C31—H31120.5
O1—C2—C7113.50 (13)O13—C4—C3123.59 (14)
O1—C2—C3121.92 (13)O13—C4—C5114.11 (14)
C7—C2—C3124.57 (14)C3—C4—C5122.30 (14)
O15—C6—C5123.77 (14)O1—C12—C27107.13 (11)
O15—C6—C7116.53 (13)O1—C12—C11109.18 (11)
C5—C6—C7119.69 (14)C27—C12—C11113.61 (12)
C2—C7—C6118.19 (13)O1—C12—C8106.45 (11)
C2—C7—C8110.01 (13)C27—C12—C8116.28 (11)
C6—C7—C8131.76 (13)C11—C12—C8103.86 (11)
C31—C30—C29121.48 (15)C24—C25—C26119.93 (16)
C31—C30—Br1118.73 (12)C24—C25—H25120.0
C29—C30—Br1119.69 (12)C26—C25—H25120.0
C30—C29—C28118.95 (15)C31—C32—C27121.27 (15)
C30—C29—H29120.5C31—C32—H32119.4
C28—C29—H29120.5C27—C32—H32119.4
C11—C10—C9103.86 (12)C4—C3—C2115.59 (14)
C11—C10—H10A111.0C4—C3—H3122.2
C9—C10—H10A111.0C2—C3—H3122.2
C11—C10—H10B111.0C6—C5—C4119.58 (14)
C9—C10—H10B111.0C6—C5—H5120.2
H10A—C10—H10B109.0C4—C5—H5120.2
C29—C28—C27120.88 (14)O15—C16—H16A109.5
C29—C28—H28119.6O15—C16—H16C109.5
C27—C28—H28119.6H16A—C16—H16C109.5
N18—C9—C10112.30 (12)O15—C16—H16B109.5
N18—C9—C8112.54 (12)H16A—C16—H16B109.5
C10—C9—C8105.93 (11)H16C—C16—H16B109.5
N18—C9—H9108.6O20—C19—N18124.46 (18)
C10—C9—H9108.6O20—C19—H19117.8
C8—C9—H9108.6N18—C19—H19117.8
C32—C27—C28118.33 (14)C24—C23—C22120.25 (17)
C32—C27—C12119.93 (13)C24—C23—H23119.9
C28—C27—C12121.69 (13)C22—C23—H23119.9
O13—C14—H14B109.5C23—C24—C25119.66 (16)
O13—C14—H14C109.5C23—C24—H24120.2
H14B—C14—H14C109.5C25—C24—H24120.2
O13—C14—H14A109.5
C22—C21—C11—C102.2 (2)Br1—C30—C31—C32173.36 (12)
C26—C21—C11—C10175.78 (13)C14—O13—C4—C33.5 (2)
C22—C21—C11—C12119.46 (16)C14—O13—C4—C5176.88 (14)
C26—C21—C11—C1262.55 (18)C2—O1—C12—C27135.71 (12)
C12—O1—C2—C74.89 (16)C2—O1—C12—C11100.86 (13)
C12—O1—C2—C3175.84 (13)C2—O1—C12—C810.68 (14)
C16—O15—C6—C51.3 (2)C32—C27—C12—O114.13 (18)
C16—O15—C6—C7178.07 (14)C28—C27—C12—O1168.42 (13)
O1—C2—C7—C6178.42 (13)C32—C27—C12—C11106.53 (15)
C3—C2—C7—C62.3 (2)C28—C27—C12—C1170.93 (17)
O1—C2—C7—C83.52 (18)C32—C27—C12—C8132.98 (14)
C3—C2—C7—C8175.74 (14)C28—C27—C12—C849.56 (19)
O15—C6—C7—C2176.78 (13)C21—C11—C12—O183.18 (15)
C5—C6—C7—C22.7 (2)C10—C11—C12—O1148.84 (11)
O15—C6—C7—C85.7 (2)C21—C11—C12—C2736.31 (17)
C5—C6—C7—C8174.89 (15)C10—C11—C12—C2791.67 (14)
C31—C30—C29—C283.3 (2)C21—C11—C12—C8163.58 (12)
Br1—C30—C29—C28172.89 (12)C10—C11—C12—C835.60 (14)
C21—C11—C10—C9170.38 (12)O17—C8—C12—O1108.19 (12)
C12—C11—C10—C942.46 (14)C7—C8—C12—O111.87 (14)
C30—C29—C28—C270.1 (2)C9—C8—C12—O1130.74 (12)
C19—N18—C9—C1089.55 (18)O17—C8—C12—C2711.03 (17)
C19—N18—C9—C8151.02 (15)C7—C8—C12—C27131.09 (12)
C11—C10—C9—N18155.59 (13)C9—C8—C12—C27110.03 (13)
C11—C10—C9—C832.37 (15)O17—C8—C12—C11136.61 (12)
C29—C28—C27—C323.3 (2)C7—C8—C12—C11103.33 (12)
C29—C28—C27—C12179.23 (14)C9—C8—C12—C1115.55 (14)
C22—C21—C26—C250.3 (2)C21—C26—C25—C241.8 (3)
C11—C21—C26—C25178.41 (14)C30—C31—C32—C270.7 (2)
C26—C21—C22—C231.3 (2)C28—C27—C32—C313.7 (2)
C11—C21—C22—C23176.71 (16)C12—C27—C32—C31178.72 (14)
C2—C7—C8—O17109.96 (14)O13—C4—C3—C2177.76 (14)
C6—C7—C8—O1767.8 (2)C5—C4—C3—C21.9 (2)
C2—C7—C8—C9121.54 (14)O1—C2—C3—C4179.26 (13)
C6—C7—C8—C960.7 (2)C7—C2—C3—C40.1 (2)
C2—C7—C8—C129.38 (15)O15—C6—C5—C4178.54 (14)
C6—C7—C8—C12172.91 (16)C7—C6—C5—C40.9 (2)
N18—C9—C8—O1711.60 (17)O13—C4—C5—C6178.16 (14)
C10—C9—C8—O17111.47 (13)C3—C4—C5—C61.5 (2)
N18—C9—C8—C7117.72 (14)C9—N18—C19—O202.1 (3)
C10—C9—C8—C7119.21 (13)C21—C22—C23—C241.6 (3)
N18—C9—C8—C12133.08 (13)C22—C23—C24—C250.1 (3)
C10—C9—C8—C1210.01 (15)C26—C25—C24—C231.5 (3)
C29—C30—C31—C322.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N18—H18···O170.832.312.652 (2)106
C32—H32···O10.952.282.661 (2)103
O17—H17···O330.841.902.686 (2)156
N18—H18···O17i0.832.383.185 (2)163
C28—H28···O33i0.952.533.328 (2)142
C29—H29···O15i0.952.623.516 (2)157
O33—H33A···O13ii0.812.213.015 (2)179
O33—H33B···O20iii0.811.902.699 (2)170
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H24BrNO5·H2O
Mr528.39
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)8.5941 (2), 12.1107 (4), 12.6642 (3)
α, β, γ (°)70.537 (2), 73.495 (2), 73.898 (2)
V3)1166.98 (5)
Z2
Radiation typeCu Kα
µ (mm1)2.77
Crystal size (mm)0.34 × 0.26 × 0.07
Data collection
DiffractometerAgilent SuperNova
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived from Clark & Reid (1995)]
Tmin, Tmax0.551, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
24473, 4860, 4814
Rint0.021
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.05
No. of reflections4860
No. of parameters322
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.59

Computer programs: CrysAlis PRO (Agilent, 2012), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N18—H18···O170.832.312.652 (2)106
C32—H32···O10.952.282.661 (2)103
O17—H17···O330.841.902.686 (2)156
N18—H18···O17i0.832.383.185 (2)163
C28—H28···O33i0.952.533.328 (2)142
C29—H29···O15i0.952.623.516 (2)157
O33—H33A···O13ii0.812.213.015 (2)179
O33—H33B···O20iii0.811.902.699 (2)170
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x1, y, z.
 

Acknowledgements

The Service Commun de Diffraction X of the Université de Lorraine is thanked for providing access to crystallographic facilities. Generous financial support for this work was provided to LD by the Association pour la Recherche sur le Cancer (ARC, grant Nos. 3940 and SFI20111204054) and the Fondation pour la Recherche Médicale. We also thank the ARC (NR) and MNESR (FT) for fellowships.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernard, Y., Ribeiro, N., Thuaud, F., Türkeri, G., Dirr, R., Boulberdaa, M., Nebigil, C. G. & Désaubry, L. (2011). PLoS ONE, 6, e25302.  Web of Science CrossRef PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRibeiro, N., Thuaud, F., Bernard, Y., Gaiddon, C., Cresteil, T., Hild, A., Hirsch, E., Michel, P. P., Nebigil, C. G. & Désaubry, L. (2012a). J. Med. Chem. 55. In the press. doi:10.1021/jm301201z.  Google Scholar
First citationRibeiro, N., Thuaud, F., Nebigil, C. G. & Désaubry, L. (2012b). Bioorg. Med. Chem. 20, 1857–1864.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThuaud, F., Ribeiro, N., Gaiddon, C., Cresteil, T. & Désaubry, L. (2011). J. Med. Chem. 54, 411–415.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds