organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-[3-Cyano-2-(di­cyano­methyl­ene)-1-oxa­spiro­[4.5]dec-3-en-4-yl]-3-(1-methyl-1,4-di­hydro­pyridin-4-yl­­idene)pent-4-en-1-yl 3,5-bis­­(benz­yl­oxy)benzoate

aCarbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand, and bPhotonics Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand 5040
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 27 November 2012; accepted 12 December 2012; online 19 December 2012)

In the title compound, C45H40N4O5, the cyclo­hexane entity on the (3-cyano-2,5-dihydro­furan-2-yl­idene)propane­dinitrile group, which replaces the usual dimethyl substituents, has not perturbed the delocalization geometry significantly. Weak inter­molecular inter­actions, viz. C—H⋯N(cyano), C—H⋯O(ether), C—H⋯π and ππ [between the aromatic rings with the shortest centroid–centroid distance of 3.603 (3) Å], consolidate the crystal packing, which exhibits voids of 57 Å3.

Related literature

For related structures, see Bhuiyan et al. (2011[Bhuiyan, M. D. H., Ashraf, M., Teshome, A., Gainsford, G. J., Kay, A. J., Asselberghs, I. & Clays, K. (2011). Dyes Pigm. 89, 177-187.]); Gainsford et al. (2008[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616-o619.], 2013[Gainsford, G. J., Ashraf, M. & Kay, A. J. (2013). Acta Cryst. E69, o120-o121.]); Gainsford, Anderson et al. (2011[Gainsford, G. J., Anderson, J., Bhuiyan, M. D. H. & Kay, A. J. (2011). Acta Cryst. E67, o3046-o3047.]); Gainsford, Ashraf & Kay (2011[Gainsford, G. J., Ashraf, M. & Kay, A. J. (2011). Acta Cryst. E67, o893.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For calculation software, see: Marder et al. (1993[Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S. & Biddle, S. L. (1993). J. Am. Chem. Soc. 115, 2524-2526.]).

[Scheme 1]

Experimental

Crystal data
  • C45H40N4O5

  • Mr = 716.81

  • Monoclinic, C 2/c

  • a = 29.7208 (16) Å

  • b = 16.0089 (4) Å

  • c = 16.5105 (6) Å

  • β = 106.705 (5)°

  • V = 7524.1 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 120 K

  • 0.49 × 0.45 × 0.01 mm

Data collection
  • Oxford Diffraction SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.638, Tmax = 1.000

  • 31832 measured reflections

  • 6878 independent reflections

  • 4748 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.144

  • S = 1.02

  • 6878 reflections

  • 488 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C33–C38 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯N3i 0.99 2.54 3.504 (3) 163
C19—H19⋯N2ii 0.95 2.47 3.347 (3) 153
C22—H22B⋯N2ii 0.98 2.59 3.454 (3) 147
C29—H29⋯O5iii 0.95 2.54 3.430 (3) 156
C12—H12ACg1iii 0.99 2.55 3.542 (3) 177
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+2, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP in WinGX (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.] and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), was synthesized as part of our ongoing research involving the development of organic nonlinear optical (NLO) chromophores. We have previously reported the crystallographic parameters for chromophores containing the 2-(3-cyano-4,5,5-trimethyl-5H-furan-2-ylidene)-malononitrile electron acceptor group (Bhuiyan et al., 2011). It was hoped that replacement of the 5,5 dimethyl substituents with a fused ring cylcohexane system would retain the donor-acceptor attributes whilst opening up more appropriate molecular packing arrangements for an improved NLO response.

In (I) (Fig. 1), the 5-membered ring plane of atoms O1,C4—C7 (hereafter "CCFP", [3-cyano-5,5-cyclohexane-2,5-dihydrofuran-2-ylidene]propanedinitrile) can be regarded as planar with maximum deviations for C4 & C5 of 0.010 (2) Å. The dicyano group (N1,C1,C2,C3,N2,C6) is planar but twisted by 5.04 (15)° with respect to the "CCFP" group; this is similar to the twist of 5.69 (17)° in related compound 2-{3-cyano-4-[3-(1-decyl-1,4-dihydroquinolin-4-ylidene)prop-1-enyl]- 5,5-dimethyl-2,5-dihydrofuran-2-ylidene}malononitrile (Gainsford et al., 2008), consistent with alleviating intramolecular contacts with the cyano group (C10–N3) and unaffected by the C5,C8–C12 ring atoms. The dihydropyridin-3-yl ring is planar and forms a dihedral angle of 16.33 (13)° with the "CCFP" mean plane. The plane of the connecting polyene atoms (C14–C16) form angles of 10.5 (3)° and 8.4 (2)° with the "CCFP" and dihydropyridin-3-yl ring, respectively, indicating a progressive twist along the molecule.

The remaining atoms of the molecule, excluding one of the terminal benzoyloxy ring atoms C39–C45 and the cyclohexane ring atoms C8—C12, are almost in parallel planes with dihedral angles for the C26–C31 and C33–C38 ring planes to the dihydropyridin-3-yl being 4.89 (11)° and 17.25 (11)°, respectively. The benzyloxy ring C30–C45 is twisted away from its parent benzene ring (C26–C31) with an interplanar dihedral angle of 76.24 (13)°. The benzoyloxy ring C33—C38 is constrained to its near coplanar position by intermolecular C—H···O and C–H···π interactions (Table 1). Overall the affect of the dimethyl replacement with a cyclohexane moiety has not changed the observed delocalized geometry with a BLA value of -0.041 Å (Marder et al., 1993) compared with 2-[4-(2-{5-tert-Butyl-2-chloro-3-[2-(3-pentyl-3H-benzothiazol-2-ylidene) -ethylidene]-cyclohex-1-enyl}-vinyl)-3-cyano-5,5-dimethyl-5H-furan -2-ylidene]-malononitrile (Gainsford et al., 2013) of -0.026 Å.

As was frequently observed for such compounds (Gainsford et al., 2013), the molecules pack into dimeric units about centres of symmetry utilizing in this case multiple CH···cyano(N), one C–H···O, and one C–H···π attractive interactions. Ring R22(14) & R22(8) motifs (Bernstein et al., 1995) about the centres are observed with additional chain C(13) & C(15) motifs. Table 1 summarizes the most attractive interactions and key elements are shown in Figure 2; there are several weaker C–H···N(cyano) close contacts not listed. The cyano atom N2 forms bifurcated donor interactions generating a R12(6) motif.

Related literature top

For related structures, see Bhuiyan et al. (2011); Gainsford et al. (2008, 2013); Gainsford, Anderson et al. (2011); Gainsford, Ashraf & Kay (2011). For hydrogen-bonding motifs, see: Bernstein et al. (1995). For calculation software, see: Marder et al. (1993).

Experimental top

In a conical flask fitted with a reflux condenser were added N-(2-(3-cyano-2-(dicyanomethylene)-1-oxaspiro[4.5]dec-3-en-4-yl)vinyl) -N-phenylacetamide (5 mmol), 4-(3-((3,5-bis(benzyloxy)benzoyl)oxy)propyl)-1-methylpyridin-1-ium iodide (5 mmol), triethylamine (5 mmol) and acetic anhydride (40 ml). The mixture was stirred at 80 °C overnight and then left to cool to room temperature. The solvent was removed and the product precipitated with the addition of diethyl ether (100 mL). The precipitate was collected by filtration and washed with diethyl ether (3 x 50 ml) and dried under vacuum. The resultant product was purified by column chromatography (ethyl acetate/acetone 4:1).

ESI 716.2992 (exptl) 716.2999 (calc) for C45H40N4O5 (Δ 1.0ppm). 1H NMR (500 MHz, d6-DMSO); 8.52 (d, J 7.2, rotamer 1 PyH, 1.8H), 8.45 (d, J 7.2, rotamer 2 PyH, 0.2H), 8.38 (d, J 12.5, rotamer 1 CH, 0.9H), 7.90 (d, J 7.1, rotamer 2, PyH, 0.2H), 7.75 (d, J 7.2, rotamer 1 PyH, 1.8H), 7.51 (d, J 13.0, rotamer 2 CH, 0.1H), 7.44–7.39 (m, ArH, 8H), 7.36–7.32 (m, ArH, 2H), 7.04–7.03 (m, ArH, 2H), 6.95 (t, J 2.3, rotamer 1 ArH, 0.9H), 6.92 (t, J 2.3, rotamer 2 ArH, 0.1H), 5.10 (s, rotamer 1 Bz CH2, 3.6H), 5.09 (s, rotamer 2 Bz CH2, 0.4H), 4.35 (t, J 6.4, CH2, 2H), 4.03 (s, NCH3, 3H), 3.09 (t, J 6.4, CH2, 2H), 1.71–1.42 (m, Cy CH2, 8H), 1.31–1.23 (m, Cy CH2, 8H). 13C NMR (125 MHz, d6-DMSO); 176.2, 165.4, 159.5, 159.4, 154.7, 143.5, 136.5, 136.0, 131.6, 128.5, 128.0, 127.7, 120.5, 120.1, 119.6, 118.6, 117.3, 116.5, 108.1, 106.4, 100.9, 93.8, 71.1, 69.6, 62.9, 45.6, 35.2, 25.2, 23.7, 21.6

Refinement top

Twenty-one outlier reflection identified by large Δ/σ(F2) ratios (>3.5) including two affected by backstop scatter were OMITted from the dataset. All methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other C bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 1.00 (primary), 0.99 (methylene) or 0.95 (phenyl) Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound, (I), was synthesized as part of our ongoing research involving the development of organic nonlinear optical (NLO) chromophores. We have previously reported the crystallographic parameters for chromophores containing the 2-(3-cyano-4,5,5-trimethyl-5H-furan-2-ylidene)-malononitrile electron acceptor group (Bhuiyan et al., 2011). It was hoped that replacement of the 5,5 dimethyl substituents with a fused ring cylcohexane system would retain the donor-acceptor attributes whilst opening up more appropriate molecular packing arrangements for an improved NLO response.

In (I) (Fig. 1), the 5-membered ring plane of atoms O1,C4—C7 (hereafter "CCFP", [3-cyano-5,5-cyclohexane-2,5-dihydrofuran-2-ylidene]propanedinitrile) can be regarded as planar with maximum deviations for C4 & C5 of 0.010 (2) Å. The dicyano group (N1,C1,C2,C3,N2,C6) is planar but twisted by 5.04 (15)° with respect to the "CCFP" group; this is similar to the twist of 5.69 (17)° in related compound 2-{3-cyano-4-[3-(1-decyl-1,4-dihydroquinolin-4-ylidene)prop-1-enyl]- 5,5-dimethyl-2,5-dihydrofuran-2-ylidene}malononitrile (Gainsford et al., 2008), consistent with alleviating intramolecular contacts with the cyano group (C10–N3) and unaffected by the C5,C8–C12 ring atoms. The dihydropyridin-3-yl ring is planar and forms a dihedral angle of 16.33 (13)° with the "CCFP" mean plane. The plane of the connecting polyene atoms (C14–C16) form angles of 10.5 (3)° and 8.4 (2)° with the "CCFP" and dihydropyridin-3-yl ring, respectively, indicating a progressive twist along the molecule.

The remaining atoms of the molecule, excluding one of the terminal benzoyloxy ring atoms C39–C45 and the cyclohexane ring atoms C8—C12, are almost in parallel planes with dihedral angles for the C26–C31 and C33–C38 ring planes to the dihydropyridin-3-yl being 4.89 (11)° and 17.25 (11)°, respectively. The benzyloxy ring C30–C45 is twisted away from its parent benzene ring (C26–C31) with an interplanar dihedral angle of 76.24 (13)°. The benzoyloxy ring C33—C38 is constrained to its near coplanar position by intermolecular C—H···O and C–H···π interactions (Table 1). Overall the affect of the dimethyl replacement with a cyclohexane moiety has not changed the observed delocalized geometry with a BLA value of -0.041 Å (Marder et al., 1993) compared with 2-[4-(2-{5-tert-Butyl-2-chloro-3-[2-(3-pentyl-3H-benzothiazol-2-ylidene) -ethylidene]-cyclohex-1-enyl}-vinyl)-3-cyano-5,5-dimethyl-5H-furan -2-ylidene]-malononitrile (Gainsford et al., 2013) of -0.026 Å.

As was frequently observed for such compounds (Gainsford et al., 2013), the molecules pack into dimeric units about centres of symmetry utilizing in this case multiple CH···cyano(N), one C–H···O, and one C–H···π attractive interactions. Ring R22(14) & R22(8) motifs (Bernstein et al., 1995) about the centres are observed with additional chain C(13) & C(15) motifs. Table 1 summarizes the most attractive interactions and key elements are shown in Figure 2; there are several weaker C–H···N(cyano) close contacts not listed. The cyano atom N2 forms bifurcated donor interactions generating a R12(6) motif.

For related structures, see Bhuiyan et al. (2011); Gainsford et al. (2008, 2013); Gainsford, Anderson et al. (2011); Gainsford, Ashraf & Kay (2011). For hydrogen-bonding motifs, see: Bernstein et al. (1995). For calculation software, see: Marder et al. (1993).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1999) view of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing showing intermolecular binding contacts (R22(14) and C–H···π) as blue dotted lines [symmetry codes: (i) 1/2 - x, 3/2 - y, 1 - z; (ii) 1/2 - x, y - 1/2, 1/2 - z].
(E)-5-(3-Cyano-2-(dicyanomethylene)-1-oxaspiro[4.5]dec-3-en-4-yl)-3- (1-methylpyridin-4(1H)-ylidene)pent-4-en-1-yl 3,5-bis(benzyloxy)benzoate top
Crystal data top
C45H40N4O5F(000) = 3024
Mr = 716.81Dx = 1.266 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 5455 reflections
a = 29.7208 (16) Åθ = 2.8–73.8°
b = 16.0089 (4) ŵ = 0.67 mm1
c = 16.5105 (6) ÅT = 120 K
β = 106.705 (5)°Plate, yellow
V = 7524.1 (5) Å30.49 × 0.45 × 0.01 mm
Z = 8
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6878 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4748 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.071
Detector resolution: 10.6501 pixels mm-1θmax = 68.2°, θmin = 3.2°
ω scansh = 3535
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1919
Tmin = 0.638, Tmax = 1.000l = 1917
31832 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0691P)2 + 2.9516P]
where P = (Fo2 + 2Fc2)/3
6878 reflections(Δ/σ)max < 0.001
488 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C45H40N4O5V = 7524.1 (5) Å3
Mr = 716.81Z = 8
Monoclinic, C2/cCu Kα radiation
a = 29.7208 (16) ŵ = 0.67 mm1
b = 16.0089 (4) ÅT = 120 K
c = 16.5105 (6) Å0.49 × 0.45 × 0.01 mm
β = 106.705 (5)°
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6878 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
4748 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 1.000Rint = 0.071
31832 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
6878 reflectionsΔρmin = 0.23 e Å3
488 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in CrysAlis PRO (Oxford Diffraction, 2007)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32530 (6)0.58411 (8)0.47050 (9)0.0302 (3)
O20.37640 (6)1.01270 (9)0.29493 (10)0.0349 (4)
O30.38897 (6)0.87595 (9)0.27559 (11)0.0418 (4)
O40.46422 (6)1.17572 (9)0.13475 (10)0.0353 (4)
O50.49344 (6)0.90251 (10)0.07098 (11)0.0403 (4)
N10.29766 (7)0.39441 (11)0.55045 (13)0.0371 (5)
N20.26282 (8)0.59452 (11)0.70530 (13)0.0403 (5)
N30.30967 (7)0.78188 (11)0.67582 (12)0.0361 (4)
N40.28722 (6)1.15634 (10)0.61141 (11)0.0279 (4)
C10.29686 (8)0.46514 (13)0.56464 (14)0.0299 (5)
C20.29536 (8)0.55113 (12)0.58331 (14)0.0284 (5)
C30.27750 (8)0.57533 (12)0.65055 (14)0.0307 (5)
C40.33533 (8)0.73015 (12)0.48301 (14)0.0281 (5)
C50.34064 (8)0.65630 (12)0.42888 (13)0.0278 (4)
C60.31187 (7)0.61102 (12)0.53672 (13)0.0262 (4)
C70.31686 (7)0.69802 (12)0.54721 (13)0.0263 (4)
C80.30667 (8)0.66319 (13)0.34007 (14)0.0320 (5)
H8A0.27420.66870.34420.038*
H8B0.31400.71420.31240.038*
C90.30951 (9)0.58736 (14)0.28600 (15)0.0356 (5)
H9A0.29860.53720.31000.043*
H9B0.28850.59580.22800.043*
C100.35947 (9)0.57340 (15)0.28232 (16)0.0409 (6)
H10A0.36920.62100.25300.049*
H10B0.36060.52210.24950.049*
C110.39340 (9)0.56480 (14)0.37067 (16)0.0391 (6)
H11A0.42580.55990.36640.047*
H11B0.38600.51310.39720.047*
C120.39053 (8)0.63983 (13)0.42687 (15)0.0320 (5)
H12A0.41060.62920.48510.038*
H12B0.40280.69010.40540.038*
C130.31180 (8)0.74285 (12)0.61819 (14)0.0285 (5)
C140.34625 (8)0.81009 (12)0.46547 (14)0.0296 (5)
H140.36250.81810.42420.035*
C150.33433 (8)0.88138 (12)0.50617 (14)0.0286 (5)
H150.31670.87130.54490.034*
C160.34535 (8)0.96279 (12)0.49610 (13)0.0266 (4)
C170.32635 (7)1.02850 (12)0.53696 (13)0.0270 (4)
C180.30183 (8)1.01255 (12)0.59721 (13)0.0291 (5)
H180.29860.95660.61370.035*
C190.28272 (8)1.07569 (12)0.63225 (14)0.0298 (5)
H190.26601.06270.67180.036*
C200.31179 (8)1.17533 (12)0.55675 (14)0.0305 (5)
H200.31561.23220.54370.037*
C210.33127 (8)1.11403 (13)0.51969 (14)0.0303 (5)
H210.34851.12930.48160.036*
C220.26343 (9)1.22221 (13)0.64581 (16)0.0382 (5)
H22A0.28081.27470.64930.057*
H22B0.26221.20610.70240.057*
H22C0.23141.22960.60870.057*
C230.37562 (8)0.98383 (12)0.43915 (13)0.0300 (5)
H23A0.39231.03710.45790.036*
H23B0.39950.93960.44410.036*
C240.34667 (8)0.99168 (14)0.34785 (14)0.0332 (5)
H24A0.33030.93820.32860.040*
H24B0.32261.03560.34270.040*
C250.39534 (8)0.94887 (13)0.26244 (14)0.0330 (5)
C260.42416 (8)0.98005 (13)0.20857 (13)0.0305 (5)
C270.42961 (8)1.06554 (13)0.19995 (13)0.0302 (5)
H270.41561.10430.22910.036*
C280.45591 (8)1.09321 (13)0.14781 (14)0.0307 (5)
C290.47602 (8)1.03630 (14)0.10522 (14)0.0326 (5)
H290.49361.05560.06910.039*
C300.47045 (8)0.95139 (14)0.11528 (14)0.0323 (5)
C310.44396 (8)0.92181 (14)0.16634 (14)0.0325 (5)
H310.43950.86360.17220.039*
C320.44280 (8)1.23607 (13)0.17648 (14)0.0315 (5)
H32A0.45471.22870.23850.038*
H32B0.40831.22820.15920.038*
C330.45466 (8)1.32258 (13)0.15247 (14)0.0307 (5)
C340.49068 (8)1.33723 (14)0.11593 (14)0.0318 (5)
H340.50861.29180.10500.038*
C350.50046 (8)1.41794 (14)0.09546 (15)0.0359 (5)
H350.52501.42750.07030.043*
C360.47465 (9)1.48459 (14)0.11152 (16)0.0409 (6)
H360.48141.53980.09740.049*
C370.43883 (9)1.47050 (15)0.14829 (17)0.0421 (6)
H370.42101.51620.15910.050*
C380.42898 (9)1.38999 (14)0.16940 (15)0.0370 (5)
H380.40481.38080.19540.044*
C390.49099 (9)0.81346 (14)0.07664 (17)0.0425 (6)
H39A0.49230.79800.13540.051*
H39B0.51870.78870.06400.051*
C400.44692 (9)0.77678 (14)0.01700 (17)0.0395 (6)
C410.42830 (9)0.80771 (14)0.06413 (16)0.0393 (6)
H410.44190.85600.08110.047*
C420.39010 (10)0.76945 (17)0.1214 (2)0.0519 (7)
H420.37730.79210.17640.062*
C430.37105 (11)0.6981 (2)0.0972 (3)0.0637 (9)
H430.34560.67050.13630.076*
C440.38874 (12)0.66699 (18)0.0166 (3)0.0687 (10)
H440.37510.61860.00010.082*
C450.42647 (11)0.70607 (16)0.0409 (2)0.0531 (7)
H450.43830.68450.09650.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0500 (9)0.0187 (7)0.0275 (8)0.0009 (6)0.0203 (7)0.0004 (6)
O20.0514 (9)0.0287 (8)0.0315 (9)0.0031 (7)0.0229 (7)0.0020 (6)
O30.0637 (11)0.0274 (8)0.0424 (10)0.0032 (7)0.0283 (9)0.0026 (7)
O40.0502 (9)0.0256 (7)0.0385 (9)0.0032 (6)0.0259 (8)0.0019 (6)
O50.0529 (10)0.0316 (8)0.0441 (10)0.0001 (7)0.0264 (8)0.0059 (7)
N10.0566 (12)0.0232 (9)0.0357 (11)0.0008 (8)0.0200 (10)0.0020 (8)
N20.0648 (14)0.0276 (9)0.0385 (12)0.0049 (9)0.0311 (11)0.0001 (8)
N30.0533 (12)0.0273 (9)0.0324 (11)0.0017 (8)0.0200 (9)0.0034 (8)
N40.0425 (10)0.0193 (8)0.0235 (9)0.0008 (7)0.0119 (8)0.0022 (7)
C10.0402 (12)0.0266 (11)0.0248 (11)0.0013 (9)0.0127 (9)0.0048 (8)
C20.0415 (12)0.0203 (9)0.0258 (11)0.0011 (8)0.0134 (9)0.0017 (8)
C30.0453 (13)0.0198 (9)0.0304 (12)0.0002 (9)0.0160 (10)0.0033 (8)
C40.0371 (11)0.0237 (10)0.0265 (11)0.0014 (8)0.0140 (9)0.0007 (8)
C50.0441 (12)0.0180 (9)0.0254 (11)0.0009 (8)0.0167 (9)0.0020 (8)
C60.0348 (11)0.0228 (10)0.0219 (11)0.0010 (8)0.0095 (9)0.0004 (8)
C70.0382 (11)0.0207 (9)0.0231 (11)0.0002 (8)0.0139 (9)0.0007 (8)
C80.0440 (12)0.0251 (10)0.0293 (12)0.0020 (9)0.0144 (10)0.0017 (9)
C90.0520 (14)0.0289 (11)0.0265 (12)0.0011 (9)0.0122 (10)0.0024 (9)
C100.0617 (16)0.0323 (11)0.0360 (13)0.0013 (11)0.0256 (12)0.0065 (10)
C110.0491 (14)0.0296 (11)0.0448 (14)0.0063 (10)0.0232 (12)0.0022 (10)
C120.0420 (12)0.0257 (10)0.0311 (12)0.0017 (9)0.0148 (10)0.0003 (9)
C130.0389 (12)0.0205 (9)0.0294 (12)0.0002 (8)0.0151 (9)0.0023 (9)
C140.0468 (12)0.0209 (9)0.0263 (11)0.0005 (9)0.0189 (10)0.0018 (8)
C150.0413 (12)0.0226 (10)0.0245 (11)0.0015 (8)0.0134 (9)0.0016 (8)
C160.0397 (11)0.0203 (9)0.0213 (11)0.0012 (8)0.0111 (9)0.0001 (8)
C170.0389 (11)0.0208 (9)0.0227 (11)0.0010 (8)0.0112 (9)0.0006 (8)
C180.0476 (12)0.0188 (9)0.0247 (11)0.0015 (8)0.0161 (10)0.0009 (8)
C190.0459 (12)0.0232 (10)0.0236 (11)0.0035 (9)0.0154 (10)0.0004 (8)
C200.0453 (12)0.0199 (9)0.0279 (11)0.0033 (8)0.0129 (10)0.0022 (8)
C210.0404 (12)0.0234 (10)0.0303 (12)0.0034 (8)0.0152 (10)0.0006 (9)
C220.0617 (15)0.0226 (10)0.0361 (13)0.0051 (10)0.0233 (12)0.0022 (9)
C230.0437 (12)0.0213 (9)0.0290 (12)0.0019 (9)0.0167 (10)0.0006 (8)
C240.0456 (13)0.0308 (11)0.0300 (12)0.0032 (9)0.0216 (10)0.0007 (9)
C250.0453 (13)0.0288 (11)0.0261 (11)0.0015 (9)0.0123 (10)0.0015 (9)
C260.0364 (11)0.0326 (11)0.0228 (11)0.0025 (9)0.0088 (9)0.0009 (9)
C270.0393 (12)0.0294 (10)0.0240 (11)0.0020 (9)0.0125 (9)0.0002 (9)
C280.0388 (12)0.0280 (10)0.0253 (11)0.0038 (9)0.0095 (9)0.0005 (9)
C290.0378 (12)0.0346 (11)0.0281 (12)0.0050 (9)0.0137 (10)0.0025 (9)
C300.0385 (12)0.0349 (11)0.0247 (12)0.0005 (9)0.0112 (10)0.0037 (9)
C310.0421 (12)0.0298 (11)0.0262 (12)0.0012 (9)0.0106 (10)0.0001 (9)
C320.0374 (11)0.0299 (11)0.0305 (12)0.0003 (9)0.0153 (10)0.0012 (9)
C330.0390 (12)0.0281 (11)0.0258 (11)0.0002 (9)0.0105 (9)0.0015 (9)
C340.0365 (11)0.0304 (11)0.0304 (12)0.0022 (9)0.0126 (10)0.0003 (9)
C350.0405 (12)0.0323 (11)0.0385 (13)0.0033 (9)0.0168 (11)0.0016 (10)
C360.0535 (14)0.0273 (11)0.0456 (15)0.0036 (10)0.0200 (12)0.0012 (10)
C370.0547 (15)0.0300 (11)0.0477 (15)0.0038 (10)0.0247 (12)0.0044 (11)
C380.0454 (13)0.0355 (12)0.0350 (13)0.0017 (10)0.0193 (11)0.0019 (10)
C390.0541 (15)0.0309 (12)0.0472 (15)0.0084 (10)0.0223 (12)0.0016 (11)
C400.0494 (14)0.0252 (11)0.0531 (16)0.0061 (9)0.0293 (12)0.0018 (10)
C410.0483 (14)0.0283 (11)0.0469 (15)0.0034 (10)0.0226 (12)0.0063 (10)
C420.0491 (15)0.0491 (15)0.0609 (18)0.0032 (12)0.0214 (14)0.0192 (13)
C430.0525 (17)0.0538 (17)0.092 (3)0.0068 (14)0.0328 (18)0.0312 (18)
C440.073 (2)0.0346 (14)0.119 (3)0.0119 (14)0.061 (2)0.0152 (17)
C450.0688 (18)0.0306 (12)0.075 (2)0.0054 (12)0.0441 (16)0.0038 (13)
Geometric parameters (Å, º) top
O1—C61.338 (3)C20—C211.370 (3)
O1—C51.482 (2)C20—H200.9500
O2—C251.350 (3)C21—H210.9500
O2—C241.450 (3)C22—H22A0.9800
O3—C251.212 (3)C22—H22B0.9800
O4—C281.372 (3)C22—H22C0.9800
O4—C321.437 (3)C23—C241.511 (3)
O5—C301.379 (3)C23—H23A0.9900
O5—C391.432 (3)C23—H23B0.9900
N1—C11.158 (3)C24—H24A0.9900
N2—C31.153 (3)C24—H24B0.9900
N3—C131.155 (3)C25—C261.487 (3)
N4—C201.349 (3)C26—C271.390 (3)
N4—C191.353 (3)C26—C311.392 (3)
N4—C221.471 (3)C27—C281.391 (3)
C1—C21.414 (3)C27—H270.9500
C2—C61.403 (3)C28—C291.387 (3)
C2—C31.415 (3)C29—C301.385 (3)
C4—C141.372 (3)C29—H290.9500
C4—C71.423 (3)C30—C311.391 (3)
C4—C51.517 (3)C31—H310.9500
C5—C121.516 (3)C32—C331.510 (3)
C5—C81.527 (3)C32—H32A0.9900
C6—C71.406 (3)C32—H32B0.9900
C7—C131.419 (3)C33—C341.392 (3)
C8—C91.524 (3)C33—C381.396 (3)
C8—H8A0.9900C34—C351.387 (3)
C8—H8B0.9900C34—H340.9500
C9—C101.520 (4)C35—C361.383 (3)
C9—H9A0.9900C35—H350.9500
C9—H9B0.9900C36—C371.387 (4)
C10—C111.522 (4)C36—H360.9500
C10—H10A0.9900C37—C381.388 (3)
C10—H10B0.9900C37—H370.9500
C11—C121.535 (3)C38—H380.9500
C11—H11A0.9900C39—C401.513 (4)
C11—H11B0.9900C39—H39A0.9900
C12—H12A0.9900C39—H39B0.9900
C12—H12B0.9900C40—C411.386 (4)
C14—C151.420 (3)C40—C451.394 (3)
C14—H140.9500C41—C421.393 (4)
C15—C161.365 (3)C41—H410.9500
C15—H150.9500C42—C431.384 (4)
C16—C171.449 (3)C42—H420.9500
C16—C231.514 (3)C43—C441.376 (5)
C17—C211.415 (3)C43—H430.9500
C17—C181.415 (3)C44—C451.392 (5)
C18—C191.367 (3)C44—H440.9500
C18—H180.9500C45—H450.9500
C19—H190.9500
C6—O1—C5109.36 (15)N4—C22—H22C109.5
C25—O2—C24117.37 (17)H22A—C22—H22C109.5
C28—O4—C32116.56 (17)H22B—C22—H22C109.5
C30—O5—C39119.21 (19)C24—C23—C16111.62 (18)
C20—N4—C19119.83 (18)C24—C23—H23A109.3
C20—N4—C22120.63 (17)C16—C23—H23A109.3
C19—N4—C22119.48 (18)C24—C23—H23B109.3
N1—C1—C2178.7 (3)C16—C23—H23B109.3
C6—C2—C1120.5 (2)H23A—C23—H23B108.0
C6—C2—C3120.80 (18)O2—C24—C23110.47 (18)
C1—C2—C3118.68 (19)O2—C24—H24A109.6
N2—C3—C2179.5 (3)C23—C24—H24A109.6
C14—C4—C7131.3 (2)O2—C24—H24B109.6
C14—C4—C5122.11 (19)C23—C24—H24B109.6
C7—C4—C5106.55 (17)H24A—C24—H24B108.1
O1—C5—C12107.93 (16)O3—C25—O2123.6 (2)
O1—C5—C4103.68 (16)O3—C25—C26125.2 (2)
C12—C5—C4114.61 (18)O2—C25—C26111.17 (18)
O1—C5—C8107.16 (16)C27—C26—C31122.0 (2)
C12—C5—C8111.88 (18)C27—C26—C25119.7 (2)
C4—C5—C8110.94 (17)C31—C26—C25118.28 (19)
O1—C6—C2117.47 (18)C26—C27—C28118.7 (2)
O1—C6—C7111.94 (18)C26—C27—H27120.7
C2—C6—C7130.6 (2)C28—C27—H27120.7
C6—C7—C13124.77 (19)O4—C28—C29115.4 (2)
C6—C7—C4108.43 (18)O4—C28—C27124.2 (2)
C13—C7—C4126.00 (18)C29—C28—C27120.4 (2)
C9—C8—C5111.87 (18)C30—C29—C28120.0 (2)
C9—C8—H8A109.2C30—C29—H29120.0
C5—C8—H8A109.2C28—C29—H29120.0
C9—C8—H8B109.2O5—C30—C29113.5 (2)
C5—C8—H8B109.2O5—C30—C31125.5 (2)
H8A—C8—H8B107.9C29—C30—C31121.0 (2)
C10—C9—C8111.09 (19)C30—C31—C26118.0 (2)
C10—C9—H9A109.4C30—C31—H31121.0
C8—C9—H9A109.4C26—C31—H31121.0
C10—C9—H9B109.4O4—C32—C33108.77 (17)
C8—C9—H9B109.4O4—C32—H32A109.9
H9A—C9—H9B108.0C33—C32—H32A109.9
C9—C10—C11111.1 (2)O4—C32—H32B109.9
C9—C10—H10A109.4C33—C32—H32B109.9
C11—C10—H10A109.4H32A—C32—H32B108.3
C9—C10—H10B109.4C34—C33—C38119.3 (2)
C11—C10—H10B109.4C34—C33—C32122.35 (19)
H10A—C10—H10B108.0C38—C33—C32118.3 (2)
C10—C11—C12111.83 (19)C35—C34—C33120.2 (2)
C10—C11—H11A109.3C35—C34—H34119.9
C12—C11—H11A109.3C33—C34—H34119.9
C10—C11—H11B109.3C36—C35—C34120.3 (2)
C12—C11—H11B109.3C36—C35—H35119.8
H11A—C11—H11B107.9C34—C35—H35119.8
C5—C12—C11111.96 (18)C35—C36—C37119.7 (2)
C5—C12—H12A109.2C35—C36—H36120.1
C11—C12—H12A109.2C37—C36—H36120.1
C5—C12—H12B109.2C36—C37—C38120.3 (2)
C11—C12—H12B109.2C36—C37—H37119.8
H12A—C12—H12B107.9C38—C37—H37119.8
N3—C13—C7176.4 (2)C37—C38—C33120.1 (2)
C4—C14—C15122.9 (2)C37—C38—H38120.0
C4—C14—H14118.5C33—C38—H38120.0
C15—C14—H14118.5O5—C39—C40113.3 (2)
C16—C15—C14127.5 (2)O5—C39—H39A108.9
C16—C15—H15116.3C40—C39—H39A108.9
C14—C15—H15116.3O5—C39—H39B108.9
C15—C16—C17119.8 (2)C40—C39—H39B108.9
C15—C16—C23119.59 (19)H39A—C39—H39B107.7
C17—C16—C23120.54 (17)C41—C40—C45118.6 (3)
C21—C17—C18114.85 (19)C41—C40—C39121.4 (2)
C21—C17—C16122.15 (19)C45—C40—C39119.8 (2)
C18—C17—C16123.00 (18)C40—C41—C42121.3 (2)
C19—C18—C17121.65 (19)C40—C41—H41119.3
C19—C18—H18119.2C42—C41—H41119.3
C17—C18—H18119.2C43—C42—C41119.2 (3)
N4—C19—C18121.0 (2)C43—C42—H42120.4
N4—C19—H19119.5C41—C42—H42120.4
C18—C19—H19119.5C44—C43—C42120.3 (3)
N4—C20—C21121.15 (19)C44—C43—H43119.9
N4—C20—H20119.4C42—C43—H43119.9
C21—C20—H20119.4C43—C44—C45120.4 (3)
C20—C21—C17121.5 (2)C43—C44—H44119.8
C20—C21—H21119.3C45—C44—H44119.8
C17—C21—H21119.3C44—C45—C40120.2 (3)
N4—C22—H22A109.5C44—C45—H45119.9
N4—C22—H22B109.5C40—C45—H45119.9
H22A—C22—H22B109.5
C6—O1—C5—C12123.48 (18)C18—C17—C21—C202.5 (3)
C6—O1—C5—C41.5 (2)C16—C17—C21—C20177.8 (2)
C6—O1—C5—C8115.86 (18)C15—C16—C23—C2485.1 (2)
C14—C4—C5—O1179.8 (2)C17—C16—C23—C2492.2 (2)
C7—C4—C5—O11.7 (2)C25—O2—C24—C2389.3 (2)
C14—C4—C5—C1262.5 (3)C16—C23—C24—O2179.38 (16)
C7—C4—C5—C12119.1 (2)C24—O2—C25—O30.4 (3)
C14—C4—C5—C865.4 (3)C24—O2—C25—C26179.01 (18)
C7—C4—C5—C8113.0 (2)O3—C25—C26—C27178.6 (2)
C5—O1—C6—C2178.95 (18)O2—C25—C26—C272.0 (3)
C5—O1—C6—C70.7 (2)O3—C25—C26—C313.1 (4)
C1—C2—C6—O15.3 (3)O2—C25—C26—C31176.36 (19)
C3—C2—C6—O1175.6 (2)C31—C26—C27—C280.4 (3)
C1—C2—C6—C7175.1 (2)C25—C26—C27—C28178.7 (2)
C3—C2—C6—C74.0 (4)C32—O4—C28—C29178.50 (19)
O1—C6—C7—C13170.7 (2)C32—O4—C28—C271.9 (3)
C2—C6—C7—C139.6 (4)C26—C27—C28—O4179.3 (2)
O1—C6—C7—C40.4 (3)C26—C27—C28—C290.3 (3)
C2—C6—C7—C4179.9 (2)O4—C28—C29—C30178.8 (2)
C14—C4—C7—C6179.6 (2)C27—C28—C29—C300.8 (3)
C5—C4—C7—C61.4 (2)C39—O5—C30—C29179.3 (2)
C14—C4—C7—C1310.3 (4)C39—O5—C30—C310.4 (3)
C5—C4—C7—C13171.5 (2)C28—C29—C30—O5178.3 (2)
O1—C5—C8—C964.4 (2)C28—C29—C30—C311.4 (3)
C12—C5—C8—C953.7 (2)O5—C30—C31—C26178.2 (2)
C4—C5—C8—C9176.92 (18)C29—C30—C31—C261.5 (3)
C5—C8—C9—C1055.5 (3)C27—C26—C31—C301.0 (3)
C8—C9—C10—C1156.0 (3)C25—C26—C31—C30179.3 (2)
C9—C10—C11—C1254.9 (3)C28—O4—C32—C33178.27 (18)
O1—C5—C12—C1165.4 (2)O4—C32—C33—C3416.0 (3)
C4—C5—C12—C11179.65 (18)O4—C32—C33—C38165.3 (2)
C8—C5—C12—C1152.2 (2)C38—C33—C34—C350.9 (3)
C10—C11—C12—C553.1 (3)C32—C33—C34—C35179.6 (2)
C7—C4—C14—C158.8 (4)C33—C34—C35—C360.3 (4)
C5—C4—C14—C15169.2 (2)C34—C35—C36—C370.0 (4)
C4—C14—C15—C16176.8 (2)C35—C36—C37—C380.4 (4)
C14—C15—C16—C17174.1 (2)C36—C37—C38—C331.0 (4)
C14—C15—C16—C233.2 (3)C34—C33—C38—C371.3 (4)
C15—C16—C17—C21171.2 (2)C32—C33—C38—C37180.0 (2)
C23—C16—C17—C216.1 (3)C30—O5—C39—C4083.2 (3)
C15—C16—C17—C189.2 (3)O5—C39—C40—C4138.8 (3)
C23—C16—C17—C18173.5 (2)O5—C39—C40—C45146.5 (2)
C21—C17—C18—C192.9 (3)C45—C40—C41—C420.2 (4)
C16—C17—C18—C19177.4 (2)C39—C40—C41—C42174.5 (2)
C20—N4—C19—C181.5 (3)C40—C41—C42—C431.3 (4)
C22—N4—C19—C18175.8 (2)C41—C42—C43—C442.0 (4)
C17—C18—C19—N41.0 (3)C42—C43—C44—C451.1 (4)
C19—N4—C20—C211.9 (3)C43—C44—C45—C400.5 (4)
C22—N4—C20—C21175.3 (2)C41—C40—C45—C441.2 (4)
N4—C20—C21—C170.2 (3)C39—C40—C45—C44173.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C33–C38 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···N3i0.992.543.504 (3)163
C19—H19···N2ii0.952.473.347 (3)153
C22—H22B···N2ii0.982.593.454 (3)147
C29—H29···O5iii0.952.543.430 (3)156
C12—H12A···Cg1iii0.992.553.542 (3)177
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC45H40N4O5
Mr716.81
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)29.7208 (16), 16.0089 (4), 16.5105 (6)
β (°) 106.705 (5)
V3)7524.1 (5)
Z8
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.49 × 0.45 × 0.01
Data collection
DiffractometerOxford Diffraction SuperNova (Dual, Cu at zero, Atlas)
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.638, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
31832, 6878, 4748
Rint0.071
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.144, 1.02
No. of reflections6878
No. of parameters488
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP in WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C33–C38 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···N3i0.992.543.504 (3)163
C19—H19···N2ii0.952.473.347 (3)153
C22—H22B···N2ii0.982.593.454 (3)147
C29—H29···O5iii0.952.543.430 (3)156
C12—H12A···Cg1iii0.992.553.542 (3)177
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+2, z.
 

Acknowledgements

We thank Dr J. Wikaira of the University of Canterbury, New Zealand, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhuiyan, M. D. H., Ashraf, M., Teshome, A., Gainsford, G. J., Kay, A. J., Asselberghs, I. & Clays, K. (2011). Dyes Pigm. 89, 177–187.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Anderson, J., Bhuiyan, M. D. H. & Kay, A. J. (2011). Acta Cryst. E67, o3046–o3047.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Ashraf, M. & Kay, A. J. (2011). Acta Cryst. E67, o893.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Ashraf, M. & Kay, A. J. (2013). Acta Cryst. E69, o120–o121.  CSD CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S. & Biddle, S. L. (1993). J. Am. Chem. Soc. 115, 2524–2526.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds