organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{2-Benz­yl­oxy-2-[4-(morpholin-4-yl)phen­yl]eth­yl}-1H-benzimidazole

aDepartment of Chemistry, Bülent Ecevit University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, SO17 1BJ Southampton, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 30 November 2012; accepted 19 December 2012; online 22 December 2012)

In the title compound, C26H27N3O2, the morpholine ring adopts a chair conformation. The benzene and phenyl rings are inclined to the benzimidazole mean plane by 7.28 (6) and 61.45 (4)°, respectively. In the crystal, pairs of weak C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers. These dimers are further connected via weak C—H⋯N hydrogen bonds. A weak C—H⋯π inter­action is also observed.

Related literature

For general background to the biological activity of benzimidazole derivatives, see: Özel Güven et al. (2007a[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233-2236.],b[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731-734.]). For related structures, see: Caira et al. (2004[Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601-611.]); Freer et al. (1986[Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352.]); Özel Güven et al. (2008a[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437.],b[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496-o1497.],c[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588-o1589.]); Peeters et al. (1979a[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979a). Bull Soc. Chim. Belg. 88, 265-272.],b[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979b). Acta Cryst. B35, 2461-2464.], 1996[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225-2229.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27N3O2

  • Mr = 413.51

  • Triclinic, [P \overline 1]

  • a = 9.4719 (3) Å

  • b = 10.5057 (3) Å

  • c = 11.8110 (4) Å

  • α = 96.824 (3)°

  • β = 108.953 (4)°

  • γ = 98.312 (3)°

  • V = 1082.51 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.32 × 0.25 × 0.22 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • 13756 measured reflections

  • 4972 independent reflections

  • 3736 reflections with I > 2σ(I)

  • Rint = 0.043

  • 3 standard reflections every 2 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.135

  • S = 1.06

  • 4972 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.58 3.478 (2) 163
C6—H6⋯N3ii 0.93 2.56 3.439 (2) 159
C2—H2ACgiii 0.97 2.66 3.451 (2) 139
Symmetry codes: (i) -x, -y, -z; (ii) x, y, z+1; (iii) -x, -y+1, -z+1.

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The azole compounds possessing an imidazole or triazole ring (such as econazole, miconazole, ketoconazole, fluconazole and itraconazole) have been known as antifungal agents and used in clinics. Similar structures possessing benzimidazole ring in place of imidazole ring of miconazole and econazole have been reported to show antibacterial activity higher than antifungal activity (Özel Güven et al., 2007a,b). The crystal structures of econazole (Freer et al., 1986), miconazole (Peeters et al., 1979a), ketoconazole (Peeters et al., 1979b), fluconazole (Caira et al., 2004) and itraconazole (Peeters et al., 1996) have been reported, previously. Crystal structures of similar ether compounds having benzimidazole ring have been reported (Özel Güven et al., 2008a,b,c). Herewith we report the crystal structure of the title compound (I), which is a new benzimidazole derivative.

In (I) (Fig. 1), the bond lengths and angles are within normal ranges. The benzimidazole [A (N1/N2/C3–C9)] ring system is approximately planar with a maximum deviation of -0.010 (2) Å for atom C2 and its mean plane is oriented with respect to the benzene [B (C11–C16)] and phenyl [C (C17–C22)] rings at dihedral angles of A/B = 7.28 (6) and A/C = 61.45 (4) °. The dihedral angle between benzene and phenyl rings is B/C = 54.96 (5)°. Atom C10 is -0.008 (2) Å away from the plane of the benzene ring and atoms C1 and N3 are 0.056 (2) and 0.076 (2) Å away from the plane of the phenyl ring. The morpholine ring D (C23–C26/O2/N3) is not planar, but adopting a chair conformation with puckering parameters (Cremer & Pople, 1975) QT = 1.060 (5)Å, φ = 34.3 (2)° and θ = 57.3 (1)°.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric R22(28) dimers (Bernstein et al., 1995). These dimers are further connected via weak intermolecular C—H···N hydrogen bonds (Table 1), linking the molecules into centrosymmetric R44(16) dimers, to form a 2-D network (Fig. 2). A weak C—H···π interaction (Table 1) is also observed.

Related literature top

For general background to the biological activity of benzimidazole derivatives, see: Özel Güven et al. (2007a,b). For related structures, see: Caira et al. (2004); Freer et al. (1986); Özel Güven et al. (2008a,b,c); Peeters et al. (1979a,b, 1996). For hydrogen-bonding motifs, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound, (I), was synthesized by the reaction of 2-(1H-benzimidazol-1-yl)-1-(4-morpholinophenyl)ethanol with aryl halide using sodium hydrate. NaH (0.025 g, 0.618 mmol) was added to a solution of alcohol (0.2 g, 0.618 mmol) in DMF (4 ml) in small fractions. After stirring the mixture a few minutes, benzyl bromide (0.073 ml, 0.618 mmol) was added dropwise. Then, the reaction mixture was stirred additional 3 h at room temperature. The reaction was stopped by adding a small amount of methyl alcohol. After evaporation of the solvent, dichloromethane was added to the reaction mixture and extracted with water. The organic phase was separated and dried with anhydrous magnesium sulfate, then evaporated to dryness. The residue was purified by column chromatography using chloroform and crystallized from DMSO:H2O (1:1) to obtain colorless crystals suitable for X-ray analysis (yield; 0.089 g, 35%).

Refinement top

H atoms were positioned geometrically with C—H = 0.98, 0.93 and 0.97 Å for methine, aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). The highest residual electron density was found 1.10 Å from H1 and the deepest hole 0.59 Å from O1.

Structure description top

The azole compounds possessing an imidazole or triazole ring (such as econazole, miconazole, ketoconazole, fluconazole and itraconazole) have been known as antifungal agents and used in clinics. Similar structures possessing benzimidazole ring in place of imidazole ring of miconazole and econazole have been reported to show antibacterial activity higher than antifungal activity (Özel Güven et al., 2007a,b). The crystal structures of econazole (Freer et al., 1986), miconazole (Peeters et al., 1979a), ketoconazole (Peeters et al., 1979b), fluconazole (Caira et al., 2004) and itraconazole (Peeters et al., 1996) have been reported, previously. Crystal structures of similar ether compounds having benzimidazole ring have been reported (Özel Güven et al., 2008a,b,c). Herewith we report the crystal structure of the title compound (I), which is a new benzimidazole derivative.

In (I) (Fig. 1), the bond lengths and angles are within normal ranges. The benzimidazole [A (N1/N2/C3–C9)] ring system is approximately planar with a maximum deviation of -0.010 (2) Å for atom C2 and its mean plane is oriented with respect to the benzene [B (C11–C16)] and phenyl [C (C17–C22)] rings at dihedral angles of A/B = 7.28 (6) and A/C = 61.45 (4) °. The dihedral angle between benzene and phenyl rings is B/C = 54.96 (5)°. Atom C10 is -0.008 (2) Å away from the plane of the benzene ring and atoms C1 and N3 are 0.056 (2) and 0.076 (2) Å away from the plane of the phenyl ring. The morpholine ring D (C23–C26/O2/N3) is not planar, but adopting a chair conformation with puckering parameters (Cremer & Pople, 1975) QT = 1.060 (5)Å, φ = 34.3 (2)° and θ = 57.3 (1)°.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric R22(28) dimers (Bernstein et al., 1995). These dimers are further connected via weak intermolecular C—H···N hydrogen bonds (Table 1), linking the molecules into centrosymmetric R44(16) dimers, to form a 2-D network (Fig. 2). A weak C—H···π interaction (Table 1) is also observed.

For general background to the biological activity of benzimidazole derivatives, see: Özel Güven et al. (2007a,b). For related structures, see: Caira et al. (2004); Freer et al. (1986); Özel Güven et al. (2008a,b,c); Peeters et al. (1979a,b, 1996). For hydrogen-bonding motifs, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. C–H···O and C–H···N hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
1-{2-Benzyloxy-2-[4-(morpholin-4-yl)phenyl]ethyl}-1H-benzimidazole top
Crystal data top
C26H27N3O2Z = 2
Mr = 413.51F(000) = 440
Triclinic, P1Dx = 1.269 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4719 (3) ÅCell parameters from 11428 reflections
b = 10.5057 (3) Åθ = 3.0–27.6°
c = 11.8110 (4) ŵ = 0.08 mm1
α = 96.824 (3)°T = 100 K
β = 108.953 (4)°Prism, colourless
γ = 98.312 (3)°0.32 × 0.25 × 0.22 mm
V = 1082.51 (7) Å3
Data collection top
Rigaku Saturn724+
diffractometer
Rint = 0.043
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.1°
Graphite monochromatorh = 1212
profile data from ω–scansk = 1313
13756 measured reflectionsl = 1515
4972 independent reflections3 standard reflections every 2 min
3736 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.355P]
where P = (Fo2 + 2Fc2)/3
4972 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C26H27N3O2γ = 98.312 (3)°
Mr = 413.51V = 1082.51 (7) Å3
Triclinic, P1Z = 2
a = 9.4719 (3) ÅMo Kα radiation
b = 10.5057 (3) ŵ = 0.08 mm1
c = 11.8110 (4) ÅT = 100 K
α = 96.824 (3)°0.32 × 0.25 × 0.22 mm
β = 108.953 (4)°
Data collection top
Rigaku Saturn724+
diffractometer
Rint = 0.043
13756 measured reflections3 standard reflections every 2 min
4972 independent reflections intensity decay: 1%
3736 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.06Δρmax = 0.63 e Å3
4972 reflectionsΔρmin = 0.24 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28084 (13)0.57424 (10)0.27381 (10)0.0245 (3)
O20.08746 (15)0.09871 (11)0.38295 (11)0.0336 (3)
N10.18512 (16)0.52783 (12)0.47120 (12)0.0239 (3)
N20.28757 (19)0.70971 (13)0.61301 (13)0.0312 (3)
N30.03315 (15)0.10262 (12)0.17348 (11)0.0203 (3)
C10.24066 (19)0.44368 (15)0.28999 (14)0.0240 (3)
H10.33080.41850.34440.029*
C20.12280 (19)0.44506 (15)0.35127 (14)0.0243 (3)
H2A0.03680.47680.30080.029*
H2B0.08640.35660.35930.029*
C30.2357 (2)0.65983 (15)0.49714 (15)0.0296 (4)
H30.23340.71030.43720.036*
C40.20304 (18)0.48813 (15)0.58148 (13)0.0211 (3)
C50.16909 (19)0.36691 (15)0.61283 (14)0.0240 (3)
H50.12680.29140.55440.029*
C60.2014 (2)0.36446 (16)0.73509 (15)0.0288 (4)
H60.17930.28540.75960.035*
C70.2668 (2)0.47816 (17)0.82337 (15)0.0303 (4)
H70.28740.47260.90500.036*
C80.3011 (2)0.59754 (16)0.79188 (15)0.0298 (4)
H80.34520.67240.85090.036*
C90.26797 (19)0.60318 (15)0.66909 (15)0.0244 (3)
C100.4207 (2)0.59640 (17)0.25038 (18)0.0319 (4)
H10A0.41280.53760.17780.038*
H10B0.50340.58100.31820.038*
C110.45016 (18)0.73490 (16)0.23337 (15)0.0253 (3)
C120.5176 (2)0.83670 (17)0.33221 (16)0.0313 (4)
H120.54610.81840.41080.038*
C130.5426 (2)0.96468 (17)0.31489 (16)0.0317 (4)
H130.58681.03190.38170.038*
C140.5024 (2)0.99292 (17)0.19901 (16)0.0293 (4)
H140.52061.07890.18740.035*
C150.4350 (2)0.89280 (18)0.10032 (16)0.0320 (4)
H150.40650.91140.02190.038*
C160.4096 (2)0.76504 (17)0.11782 (16)0.0303 (4)
H160.36450.69820.05070.036*
C170.18236 (19)0.34981 (15)0.17011 (14)0.0224 (3)
C180.0535 (2)0.36116 (17)0.07608 (16)0.0307 (4)
H180.00050.42540.08880.037*
C190.0033 (2)0.27977 (17)0.03558 (15)0.0296 (4)
H190.08260.29100.09680.036*
C200.07978 (18)0.18079 (14)0.05807 (13)0.0199 (3)
C210.2087 (2)0.16989 (17)0.03657 (16)0.0326 (4)
H210.26250.10510.02500.039*
C220.2586 (2)0.25367 (17)0.14774 (15)0.0320 (4)
H220.34590.24440.20870.038*
C230.1301 (2)0.06684 (18)0.24194 (16)0.0332 (4)
H23A0.17560.14360.23860.040*
H23B0.17720.00310.20550.040*
C240.1588 (2)0.0102 (2)0.37283 (17)0.0406 (5)
H24A0.26750.01690.41570.049*
H24B0.12060.07720.41120.049*
C250.0716 (2)0.05690 (18)0.32175 (16)0.0332 (4)
H25A0.10980.01120.35900.040*
H25B0.12200.12970.33050.040*
C260.1096 (2)0.00560 (17)0.18839 (15)0.0296 (4)
H26A0.07740.07500.14950.036*
H26B0.21870.02380.14970.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0256 (6)0.0211 (6)0.0273 (6)0.0030 (5)0.0113 (5)0.0010 (5)
O20.0349 (7)0.0277 (6)0.0291 (7)0.0044 (5)0.0054 (5)0.0115 (5)
N10.0350 (8)0.0173 (6)0.0204 (7)0.0025 (5)0.0133 (6)0.0004 (5)
N20.0486 (10)0.0190 (7)0.0279 (8)0.0018 (6)0.0198 (7)0.0012 (6)
N30.0219 (7)0.0198 (6)0.0177 (6)0.0028 (5)0.0071 (5)0.0013 (5)
C10.0287 (9)0.0198 (8)0.0213 (8)0.0024 (6)0.0085 (6)0.0009 (6)
C20.0298 (9)0.0210 (8)0.0210 (8)0.0004 (6)0.0110 (7)0.0011 (6)
C30.0475 (11)0.0171 (8)0.0273 (9)0.0044 (7)0.0188 (8)0.0010 (6)
C40.0234 (8)0.0207 (7)0.0199 (7)0.0027 (6)0.0108 (6)0.0006 (6)
C50.0273 (9)0.0186 (7)0.0249 (8)0.0005 (6)0.0116 (7)0.0013 (6)
C60.0368 (10)0.0241 (8)0.0286 (9)0.0022 (7)0.0164 (7)0.0058 (7)
C70.0373 (10)0.0336 (9)0.0202 (8)0.0032 (8)0.0127 (7)0.0023 (7)
C80.0371 (10)0.0252 (8)0.0238 (8)0.0011 (7)0.0129 (7)0.0056 (7)
C90.0285 (9)0.0186 (8)0.0263 (8)0.0003 (6)0.0136 (7)0.0019 (6)
C100.0268 (9)0.0280 (9)0.0419 (10)0.0021 (7)0.0153 (8)0.0044 (7)
C110.0181 (8)0.0262 (8)0.0312 (9)0.0023 (6)0.0099 (6)0.0019 (7)
C120.0299 (9)0.0330 (9)0.0247 (9)0.0044 (7)0.0030 (7)0.0025 (7)
C130.0273 (9)0.0262 (9)0.0334 (9)0.0015 (7)0.0044 (7)0.0040 (7)
C140.0246 (9)0.0249 (8)0.0403 (10)0.0046 (7)0.0134 (7)0.0067 (7)
C150.0344 (10)0.0351 (10)0.0295 (9)0.0070 (8)0.0145 (8)0.0070 (7)
C160.0308 (10)0.0303 (9)0.0277 (9)0.0011 (7)0.0135 (7)0.0041 (7)
C170.0260 (8)0.0205 (7)0.0200 (8)0.0010 (6)0.0109 (6)0.0007 (6)
C180.0289 (9)0.0310 (9)0.0301 (9)0.0102 (7)0.0097 (7)0.0063 (7)
C190.0247 (9)0.0345 (9)0.0258 (9)0.0096 (7)0.0054 (7)0.0044 (7)
C200.0229 (8)0.0178 (7)0.0186 (7)0.0002 (6)0.0093 (6)0.0004 (6)
C210.0371 (10)0.0304 (9)0.0267 (9)0.0168 (8)0.0050 (7)0.0036 (7)
C220.0345 (10)0.0326 (9)0.0221 (8)0.0122 (8)0.0010 (7)0.0023 (7)
C230.0263 (9)0.0376 (10)0.0288 (9)0.0067 (8)0.0055 (7)0.0090 (7)
C240.0395 (11)0.0433 (11)0.0270 (9)0.0153 (9)0.0011 (8)0.0123 (8)
C250.0326 (10)0.0333 (9)0.0296 (9)0.0076 (8)0.0102 (7)0.0097 (7)
C260.0302 (9)0.0279 (9)0.0265 (9)0.0099 (7)0.0061 (7)0.0057 (7)
Geometric parameters (Å, º) top
O1—C11.4218 (19)C11—C121.391 (2)
O1—C101.432 (2)C12—H120.9300
O2—C241.423 (2)C13—C121.382 (2)
O2—C251.418 (2)C13—H130.9300
N1—C21.4584 (19)C14—C131.377 (3)
N1—C31.363 (2)C14—C151.380 (2)
N1—C41.380 (2)C14—H140.9300
N2—C31.307 (2)C15—H150.9300
N2—C91.386 (2)C16—C111.381 (2)
N3—C201.4020 (18)C16—C151.381 (2)
N3—C231.461 (2)C16—H160.9300
N3—C261.4562 (19)C17—C181.389 (2)
C1—C21.516 (2)C17—C221.372 (2)
C1—C171.512 (2)C18—H180.9300
C1—H10.9800C19—C181.380 (2)
C2—H2A0.9700C19—H190.9300
C2—H2B0.9700C20—C191.398 (2)
C3—H30.9300C20—C211.392 (2)
C5—C41.390 (2)C21—H210.9300
C5—C61.380 (2)C22—C211.387 (2)
C5—H50.9300C22—H220.9300
C6—H60.9300C23—C241.510 (2)
C7—C61.403 (2)C23—H23A0.9700
C7—H70.9300C23—H23B0.9700
C8—C71.374 (2)C24—H24A0.9700
C8—C91.391 (2)C24—H24B0.9700
C8—H80.9300C25—H25A0.9700
C9—C41.409 (2)C25—H25B0.9700
C10—H10A0.9700C26—C251.508 (2)
C10—H10B0.9700C26—H26A0.9700
C11—C101.491 (2)C26—H26B0.9700
C1—O1—C10112.15 (12)C12—C13—H13119.9
C25—O2—C24108.49 (13)C14—C13—C12120.23 (16)
C3—N1—C2127.13 (14)C14—C13—H13119.9
C3—N1—C4106.11 (13)C13—C14—C15119.58 (16)
C4—N1—C2126.76 (13)C13—C14—H14120.2
C3—N2—C9104.06 (13)C15—C14—H14120.2
C20—N3—C23117.52 (12)C14—C15—C16120.10 (16)
C20—N3—C26118.08 (13)C14—C15—H15119.9
C26—N3—C23111.50 (13)C16—C15—H15119.9
O1—C1—C2106.14 (12)C11—C16—H16119.5
O1—C1—C17111.26 (12)C15—C16—C11121.07 (16)
O1—C1—H1108.9C15—C16—H16119.5
C2—C1—H1108.9C18—C17—C1121.39 (14)
C17—C1—C2112.51 (13)C22—C17—C1121.31 (15)
C17—C1—H1108.9C22—C17—C18117.24 (14)
N1—C2—C1111.66 (13)C17—C18—H18119.1
N1—C2—H2A109.3C19—C18—C17121.85 (15)
N1—C2—H2B109.3C19—C18—H18119.1
C1—C2—H2A109.3C18—C19—C20120.98 (16)
C1—C2—H2B109.3C18—C19—H19119.5
H2A—C2—H2B107.9C20—C19—H19119.5
N1—C3—H3122.7C19—C20—N3120.82 (14)
N2—C3—N1114.56 (15)C21—C20—N3122.19 (14)
N2—C3—H3122.7C21—C20—C19116.86 (14)
N1—C4—C5132.71 (14)C20—C21—H21119.3
N1—C4—C9104.98 (13)C22—C21—C20121.35 (15)
C5—C4—C9122.31 (14)C22—C21—H21119.3
C4—C5—H5121.7C17—C22—C21121.70 (16)
C6—C5—C4116.56 (14)C17—C22—H22119.1
C6—C5—H5121.7C21—C22—H22119.1
C5—C6—C7121.73 (16)N3—C23—C24110.50 (14)
C5—C6—H6119.1N3—C23—H23A109.5
C7—C6—H6119.1N3—C23—H23B109.5
C6—C7—H7119.3C24—C23—H23A109.5
C8—C7—C6121.44 (15)C24—C23—H23B109.5
C8—C7—H7119.3H23A—C23—H23B108.1
C7—C8—C9118.07 (15)O2—C24—C23112.00 (15)
C7—C8—H8121.0O2—C24—H24A109.2
C9—C8—H8121.0O2—C24—H24B109.2
N2—C9—C4110.28 (14)C23—C24—H24A109.2
N2—C9—C8129.83 (15)C23—C24—H24B109.2
C8—C9—C4119.89 (15)H24A—C24—H24B107.9
O1—C10—C11107.45 (13)O2—C25—C26111.75 (14)
O1—C10—H10A110.2O2—C25—H25A109.3
O1—C10—H10B110.2O2—C25—H25B109.3
C11—C10—H10A110.2C26—C25—H25A109.3
C11—C10—H10B110.2C26—C25—H25B109.3
H10A—C10—H10B108.5H25A—C25—H25B107.9
C12—C11—C10121.43 (16)N3—C26—C25110.05 (14)
C16—C11—C10120.25 (15)N3—C26—H26A109.6
C16—C11—C12118.32 (16)N3—C26—H26B109.6
C11—C12—H12119.7C25—C26—H26A109.6
C13—C12—C11120.70 (16)C25—C26—H26B109.7
C13—C12—H12119.7H26A—C26—H26B108.2
C10—O1—C1—C2162.84 (13)C4—C5—C6—C70.7 (3)
C10—O1—C1—C1774.46 (17)C8—C7—C6—C50.3 (3)
C1—O1—C10—C11179.24 (13)C9—C8—C7—C60.5 (3)
C25—O2—C24—C2359.9 (2)C7—C8—C9—N2178.51 (17)
C24—O2—C25—C2660.96 (19)C7—C8—C9—C40.8 (3)
C3—N1—C2—C164.8 (2)N2—C9—C4—N10.47 (18)
C4—N1—C2—C1116.02 (17)N2—C9—C4—C5179.06 (15)
C2—N1—C3—N2179.33 (16)C8—C9—C4—N1179.93 (15)
C4—N1—C3—N21.4 (2)C8—C9—C4—C50.4 (2)
C2—N1—C4—C50.9 (3)C12—C11—C10—O182.65 (19)
C2—N1—C4—C9179.66 (15)C16—C11—C10—O196.93 (18)
C3—N1—C4—C5178.42 (18)C10—C11—C12—C13179.33 (16)
C3—N1—C4—C91.04 (17)C16—C11—C12—C130.3 (3)
C9—N2—C3—N11.0 (2)C14—C13—C12—C110.7 (3)
C3—N2—C9—C40.32 (19)C15—C14—C13—C120.9 (3)
C3—N2—C9—C8179.07 (18)C13—C14—C15—C160.7 (3)
C23—N3—C20—C1936.8 (2)C15—C16—C11—C10179.54 (16)
C23—N3—C20—C21147.48 (17)C15—C16—C11—C120.0 (3)
C26—N3—C20—C19175.07 (15)C11—C16—C15—C140.3 (3)
C26—N3—C20—C219.2 (2)C1—C17—C18—C19176.97 (16)
C20—N3—C23—C24167.07 (14)C22—C17—C18—C190.1 (3)
C26—N3—C23—C2452.07 (19)C1—C17—C22—C21177.82 (17)
C20—N3—C26—C25166.46 (14)C18—C17—C22—C210.8 (3)
C23—N3—C26—C2552.92 (19)C20—C19—C18—C170.9 (3)
O1—C1—C2—N162.84 (16)N3—C20—C19—C18176.71 (16)
C17—C1—C2—N1175.25 (13)C21—C20—C19—C180.8 (3)
O1—C1—C17—C1860.9 (2)N3—C20—C21—C22175.82 (16)
O1—C1—C17—C22116.07 (17)C19—C20—C21—C220.1 (3)
C2—C1—C17—C1858.1 (2)C17—C22—C21—C200.8 (3)
C2—C1—C17—C22124.97 (17)N3—C23—C24—O256.1 (2)
C6—C5—C4—N1179.01 (17)N3—C26—C25—O258.1 (2)
C6—C5—C4—C90.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 benzene ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.583.478 (2)163
C6—H6···N3ii0.932.563.439 (2)159
C2—H2A···Cgiii0.972.663.451 (2)139
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H27N3O2
Mr413.51
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.4719 (3), 10.5057 (3), 11.8110 (4)
α, β, γ (°)96.824 (3), 108.953 (4), 98.312 (3)
V3)1082.51 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.25 × 0.22
Data collection
DiffractometerRigaku Saturn724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13756, 4972, 3736
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.135, 1.06
No. of reflections4972
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.24

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 benzene ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.583.478 (2)163
C6—H6···N3ii0.932.563.439 (2)159
C2—H2A···Cgiii0.972.663.451 (2)139
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors are grateful to Zonguldak Karaelmas University Research Fund (project No. 2010-13-02-06).

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCaira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496–o1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588–o1589.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233–2236.  Web of Science PubMed Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731–734.  Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979a). Bull Soc. Chim. Belg. 88, 265–272.  CrossRef CAS Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979b). Acta Cryst. B35, 2461–2464.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds