organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­chloro­aniline–4-(2,6-di­chloro­anilino)­pent-3-en-2-one (1/2)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: ventergjs@ufs.ac.za

(Received 27 September 2012; accepted 30 November 2012; online 8 December 2012)

The asymmetric unit of the title compound, C6H5Cl2N·2C11H11Cl2NO, is composed of one mol­ecule of an enamino–ketone [i.e. –(2,6-dichloro­phenyl­amino)­pent-3-en-2-one] and half a mol­ecule of 2,6-dichloro­aniline, the whole mol­ecule of the latter component being generated by twofold rotational symmetry. In this latter mol­ecule, there are two intra­molecular N—H⋯Cl contacts. In the enamino–ketone mol­ecule, there is an N—H⋯O hydrogen bond of moderate strength, and the dihedral angle between the benzene ring and penta­none fragment [C—C(—N)=C—C(=O)—C; planar within 0.005 (1) Å] is 81.85 (7)°. In the crystal, two mol­ecules of the enamino–ketone are bridged by a mol­ecule of 2,6-dichloro­aniline via N—H⋯O hydrogen bonds of moderate strength. There are also ππ inter­actions present, involving the benzene rings of inversion-related enamino–ketone mol­ecules [centroid–centroid distance = 3.724 (4) Å].

Related literature

For the properties of enamino–ketones as liquid crystals, see: Pyżuk et al. (1993[Pyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75-84.]). For fluorescence studies of enamino–ketones, see: Xia et al. (2008[Xia, M., Wu, B. & Xiang, G. (2008). J. Fluorine Chem. 129, 402-408.]). For the use of enamino–ketones in medicine, see: Tan et al. (2008[Tan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab Chip, 8, 885-891.]); and in catalysis, see: Roodt & Steyn (2000[Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1-23. Trivandrum: Transworld Research Network.]); Brink et al. (2010[Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572-5578.]). For background to the ligand preparation, see: Shaheen et al. (2006[Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873-o874.]); Venter et al. (2010[Venter, G. J. S., Steyl, G. & Roodt, A. (2010). Acta Cryst. E66, o1593-o1594.]); Venter, Brink et al. (2012[Venter, G. J. S., Brink, A., Steyl, G. & Roodt, A. (2012). Acta Cryst. E68, o3101-o3102.]). For applications of rhodium compounds containing bidentate ligand systems, see: Pyżuk et al. (1993[Pyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75-84.]); Tan et al. (2008[Tan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab Chip, 8, 885-891.]); Xia et al. (2008[Xia, M., Wu, B. & Xiang, G. (2008). J. Fluorine Chem. 129, 402-408.]). For related rhodium enamino–­ketonato complexes, see: Brink et al. (2010[Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572-5578.]); Damoense et al. (1994[Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10-13.]); Roodt & Steyn (2000[Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1-23. Trivandrum: Transworld Research Network.]); Venter, Steyl et al. (2012[Venter, G. J. S., Steyl, G. & Roodt, A. (2012). Acta Cryst. E68, m666-m667.]). For classification of hydrogen bonds, see: Gilli & Gilli (2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5Cl2N·2C11H11Cl2NO

  • Mr = 650.23

  • Monoclinic, C 2/c

  • a = 15.7140 (1) Å

  • b = 8.7210 (2) Å

  • c = 22.9950 (4) Å

  • β = 104.794 (1)°

  • V = 3046.81 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 100 K

  • 0.31 × 0.25 × 0.19 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.837, Tmax = 0.895

  • 34421 measured reflections

  • 3785 independent reflections

  • 3305 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.077

  • S = 1.04

  • 3785 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯Cl22 0.850 (17) 2.578 (17) 2.9710 (7) 109.4 (13)
N11—H11⋯O12 0.825 (16) 1.932 (16) 2.6223 (13) 140.7 (14)
N21—H21⋯O12 0.850 (17) 2.167 (17) 2.9732 (13) 158.4 (16)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The β-diketone compound AcacH (acetylacetone; or acetylacetonato if it is coordinated) has been studied extensively, and a large number of its derivatives have been synthesized up to date. One of these derivative types is known as enamino–ketones, which contain an unsaturated CC bond as well as nitrogen and oxygen atoms. enamino–ketones are of interest in various fields including liquid crystals (Pyżuk et al., 1993), fluorescence studies (Xia et al., 2008), medicine (Tan et al., 2008) and catalysis (Roodt & Steyn, 2000; Brink et al., 2010).

The title enamino–ketone (Fig. 1) is a derivative of 4-(phenylamino)pent-3-en-2-one (PhonyH; Shaheen et al., 2006). The 2,6-dichloroaniline molecule is located on a two-fold rotation axis. The pertinent two-fold axis passes through atoms N21, C211, C214 and H214. The molecule thus has symmetry of point group 2. The dihedral angle between the phenyl ring and the mean plane of the pentanone fragment [C1-C2(-N11) C3-C4(O12)-C5; maximum deviation 0.005 (1) Å for atom C4] in the title enamino–ketone, where the substituents are situated in the ortho position on the phenyl ring, is 81.85 (7) °. This angle is dependent on the position of the substituent on the phenyl ring, for example compounds with para substituents usually display smaller dihedral angles (Venter et al., 2010).

In the enamino–ketone molecule there is an intramolecular hydrogen-bond (Table 1 and Fig. 1) of moderate strength (Gilli & Gilli, 2009) in which the Nsecondary amine—H···Oketo is involved. There are two intramolecular contacts, Nprimary amine—H···Cl, observed in the 2,6-dichloroaniline molecule (Table 1 and Fig. 1).

In the crystal, two molecules of 4-(2,6-dichlorophenylamino)-pent-3-en-2-one and one molecule of 2,6-dichloroaniline are linked by Nprimary amine—H···Oketo intermolecular hydrogen bonds of moderate strength (Table 1 and Fig. 1). There are also π-π interactions present between the phenyl rings of the inversion-related 4-(2,6-dichlorophenylamino)-pent-3-en-2-one molecules, with a distance of 3.724 (4) Å between their centroids [symmetry operation: -x, -y+2, -z]. The packing style resulting from the respective interactions, with clearly visible π-π-stacking, is illustrated in Fig. 2.

As expected the bond distances in the title enamino–ketone differ significantly from the respective distances in compounds where the enamino–ketone is coordinated to rhodium (Venter, Steyl et al., 2012; Damoense et al., 1994; see Table 2), but they display similar bond distances to those observed in analogous enamino–ketones (Venter et al., 2010; Venter, Brink et al., 2012). The difference between the C2–C3 bond distance [1.376 (2) Å] and the C3–C4 bond distance [1.457 (3) °] indicates an unsaturated C2C3 bond in the pentenone backbone, which is consistent with the definition of an enamino–ketone. The N11···O12 distance is longer by ca. 0.2 Å upon coordination when comparing the title structure and selected compounds (II) and (III) with complexes (IV) and (V), as indicated in Table 2.

Related literature top

For the properties of enamino–ketones as liquid crystals, see: Pyżuk et al. (1993). For fluorescence studies of enamino–ketones, see: Xia et al. (2008). For the use of enamino–ketones in medicine, see: Tan et al. (2008); and in catalysis, see: Roodt & Steyn (2000); Brink et al. (2010). For background to the ligand preparation, see: Shaheen et al. (2006); Venter et al. (2010); Venter, Brink et al. (2012). For applications of rhodium compounds containing bidentate ligand systems, see: Pyżuk et al. (1993); Tan et al. (2008); Xia et al. (2008). For related rhodium enaminoketonato complexes, see: Brink et al. (2010); Damoense et al. (1994); Roodt & Steyn (2000); Venter, Steyl et al. (2012). For classification of hydrogen bonds, see: Gilli & Gilli (2009).

Experimental top

A solution of acetylacetone (11.07 g, 0.1106 mol), 2,6-dichloroaniline (16.25 g, 0.1001 mol) and 2 drops of H2SO4(conc.) in 150 ml benzene was refluxed for 24 h in a Dean-Stark trap. The mixture was then filtered and left to crystallize by slow evaporation of the solvent yielding 23.53 g (72.37%) of cuboid crystals with lengths of up to 4 mm. The title compound is stable in air and light over a period of several months.

Refinement top

All the hydrogen atoms were identified in a difference electron density map. The NH and NH2 H atoms were refined with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were placed into the idealized positions and constrained to ride on their parent atoms: C—H = 0.95 and 0.98 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for CH3 H atoms, and = 1.2 for other H atoms. The methyl groups were refined as rigid rotors in order to fit to the electron density.

Structure description top

The β-diketone compound AcacH (acetylacetone; or acetylacetonato if it is coordinated) has been studied extensively, and a large number of its derivatives have been synthesized up to date. One of these derivative types is known as enamino–ketones, which contain an unsaturated CC bond as well as nitrogen and oxygen atoms. enamino–ketones are of interest in various fields including liquid crystals (Pyżuk et al., 1993), fluorescence studies (Xia et al., 2008), medicine (Tan et al., 2008) and catalysis (Roodt & Steyn, 2000; Brink et al., 2010).

The title enamino–ketone (Fig. 1) is a derivative of 4-(phenylamino)pent-3-en-2-one (PhonyH; Shaheen et al., 2006). The 2,6-dichloroaniline molecule is located on a two-fold rotation axis. The pertinent two-fold axis passes through atoms N21, C211, C214 and H214. The molecule thus has symmetry of point group 2. The dihedral angle between the phenyl ring and the mean plane of the pentanone fragment [C1-C2(-N11) C3-C4(O12)-C5; maximum deviation 0.005 (1) Å for atom C4] in the title enamino–ketone, where the substituents are situated in the ortho position on the phenyl ring, is 81.85 (7) °. This angle is dependent on the position of the substituent on the phenyl ring, for example compounds with para substituents usually display smaller dihedral angles (Venter et al., 2010).

In the enamino–ketone molecule there is an intramolecular hydrogen-bond (Table 1 and Fig. 1) of moderate strength (Gilli & Gilli, 2009) in which the Nsecondary amine—H···Oketo is involved. There are two intramolecular contacts, Nprimary amine—H···Cl, observed in the 2,6-dichloroaniline molecule (Table 1 and Fig. 1).

In the crystal, two molecules of 4-(2,6-dichlorophenylamino)-pent-3-en-2-one and one molecule of 2,6-dichloroaniline are linked by Nprimary amine—H···Oketo intermolecular hydrogen bonds of moderate strength (Table 1 and Fig. 1). There are also π-π interactions present between the phenyl rings of the inversion-related 4-(2,6-dichlorophenylamino)-pent-3-en-2-one molecules, with a distance of 3.724 (4) Å between their centroids [symmetry operation: -x, -y+2, -z]. The packing style resulting from the respective interactions, with clearly visible π-π-stacking, is illustrated in Fig. 2.

As expected the bond distances in the title enamino–ketone differ significantly from the respective distances in compounds where the enamino–ketone is coordinated to rhodium (Venter, Steyl et al., 2012; Damoense et al., 1994; see Table 2), but they display similar bond distances to those observed in analogous enamino–ketones (Venter et al., 2010; Venter, Brink et al., 2012). The difference between the C2–C3 bond distance [1.376 (2) Å] and the C3–C4 bond distance [1.457 (3) °] indicates an unsaturated C2C3 bond in the pentenone backbone, which is consistent with the definition of an enamino–ketone. The N11···O12 distance is longer by ca. 0.2 Å upon coordination when comparing the title structure and selected compounds (II) and (III) with complexes (IV) and (V), as indicated in Table 2.

For the properties of enamino–ketones as liquid crystals, see: Pyżuk et al. (1993). For fluorescence studies of enamino–ketones, see: Xia et al. (2008). For the use of enamino–ketones in medicine, see: Tan et al. (2008); and in catalysis, see: Roodt & Steyn (2000); Brink et al. (2010). For background to the ligand preparation, see: Shaheen et al. (2006); Venter et al. (2010); Venter, Brink et al. (2012). For applications of rhodium compounds containing bidentate ligand systems, see: Pyżuk et al. (1993); Tan et al. (2008); Xia et al. (2008). For related rhodium enaminoketonato complexes, see: Brink et al. (2010); Damoense et al. (1994); Roodt & Steyn (2000); Venter, Steyl et al. (2012). For classification of hydrogen bonds, see: Gilli & Gilli (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level [Symmetry code: (i) -x, y, -z + 1/2]. The various intramolecular hydrogen bonds and contacts are shown as dashed lines.
[Figure 2] Fig. 2. A view of the unit cell along the b axis of the crystal structure of the title compound, illustrating the intra- and intermolecular N—H···O hydrogen bonds (dashed yellow lines).
2,6-Dichloroaniline–4-(2,6-dichloroanilino)pent-3-en-2-one (1/2) top
Crystal data top
C6H5Cl2N·2C11H11Cl2NOF(000) = 1336
Mr = 650.23Dx = 1.418 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9993 reflections
a = 15.7140 (1) Åθ = 2.8–28.2°
b = 8.7210 (2) ŵ = 0.60 mm1
c = 22.9950 (4) ÅT = 100 K
β = 104.794 (1)°Cuboid, colourless
V = 3046.81 (9) Å30.31 × 0.25 × 0.19 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3785 independent reflections
Radiation source: fine-focus sealed tube3305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scansθmax = 28.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2020
Tmin = 0.837, Tmax = 0.895k = 1111
34421 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0394P)2 + 2.1199P]
where P = (Fo2 + 2Fc2)/3
3785 reflections(Δ/σ)max = 0.002
186 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
46 constraints
Crystal data top
C6H5Cl2N·2C11H11Cl2NOV = 3046.81 (9) Å3
Mr = 650.23Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.7140 (1) ŵ = 0.60 mm1
b = 8.7210 (2) ÅT = 100 K
c = 22.9950 (4) Å0.31 × 0.25 × 0.19 mm
β = 104.794 (1)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3785 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3305 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.895Rint = 0.034
34421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
3785 reflectionsΔρmin = 0.23 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29987 (9)1.0652 (2)0.10718 (6)0.0321 (3)
H1A0.30660.99070.07680.048*
H1B0.35551.07410.13820.048*
H1C0.28391.16530.08810.048*
C20.22871 (8)1.01235 (15)0.13549 (6)0.0223 (3)
C30.24331 (9)0.99643 (17)0.19672 (6)0.0261 (3)
H30.30021.02010.22130.031*
C40.17787 (8)0.94637 (14)0.22541 (6)0.0214 (2)
C50.20270 (10)0.9341 (2)0.29307 (6)0.0344 (3)
H5A0.20771.03710.31070.052*
H5B0.25930.88090.30650.052*
H5C0.15730.87630.30600.052*
C1110.12706 (7)0.99074 (14)0.03518 (5)0.0174 (2)
C1120.10240 (8)1.12965 (14)0.00548 (6)0.0211 (2)
C1130.07626 (8)1.13817 (16)0.05687 (6)0.0252 (3)
H1130.05941.23370.07620.030*
C1140.07507 (8)1.00632 (17)0.09046 (6)0.0271 (3)
H1140.05721.01160.13310.032*
C1150.09966 (9)0.86664 (16)0.06261 (6)0.0256 (3)
H1150.09910.77640.08580.031*
C1160.12516 (8)0.86044 (14)0.00031 (6)0.0201 (2)
C2110.00000.53418 (19)0.25000.0181 (3)
C2120.02876 (8)0.44701 (14)0.20698 (5)0.0183 (2)
C2130.03042 (8)0.28839 (14)0.20718 (5)0.0217 (3)
H2130.05230.23450.17810.026*
C2140.00000.2083 (2)0.25000.0244 (4)
H2140.00000.09930.25000.029*
N110.14928 (7)0.98030 (13)0.09874 (5)0.0198 (2)
H110.1130 (10)0.9500 (18)0.1164 (7)0.024*
N210.00000.68981 (18)0.25000.0275 (4)
H210.0252 (11)0.737 (2)0.2268 (7)0.033*
O120.10094 (6)0.91464 (10)0.19690 (4)0.02136 (19)
Cl120.10261 (2)1.29453 (4)0.047476 (17)0.03288 (10)
Cl160.15505 (2)0.68546 (4)0.034586 (16)0.03104 (10)
Cl220.06336 (2)0.54706 (3)0.151471 (13)0.02337 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (6)0.0563 (9)0.0219 (6)0.0084 (6)0.0044 (5)0.0032 (6)
C20.0167 (6)0.0298 (6)0.0201 (6)0.0027 (5)0.0040 (5)0.0004 (5)
C30.0184 (6)0.0399 (7)0.0182 (6)0.0047 (5)0.0016 (5)0.0014 (5)
C40.0231 (6)0.0223 (6)0.0181 (6)0.0001 (5)0.0042 (5)0.0011 (5)
C50.0301 (7)0.0548 (9)0.0176 (6)0.0073 (7)0.0049 (5)0.0035 (6)
C1110.0136 (5)0.0222 (6)0.0167 (5)0.0025 (4)0.0044 (4)0.0011 (4)
C1120.0173 (6)0.0208 (6)0.0260 (6)0.0024 (5)0.0069 (5)0.0012 (5)
C1130.0172 (6)0.0305 (7)0.0274 (6)0.0005 (5)0.0048 (5)0.0124 (5)
C1140.0196 (6)0.0446 (8)0.0169 (6)0.0019 (6)0.0045 (5)0.0051 (5)
C1150.0233 (6)0.0333 (7)0.0209 (6)0.0025 (5)0.0066 (5)0.0055 (5)
C1160.0182 (6)0.0208 (6)0.0213 (6)0.0001 (5)0.0049 (5)0.0024 (5)
C2110.0154 (8)0.0176 (8)0.0196 (8)0.0000.0012 (6)0.000
C2120.0180 (6)0.0196 (6)0.0159 (5)0.0012 (4)0.0017 (4)0.0016 (4)
C2130.0246 (6)0.0200 (6)0.0182 (6)0.0029 (5)0.0013 (5)0.0025 (4)
C2140.0318 (10)0.0155 (8)0.0228 (9)0.0000.0010 (7)0.000
N110.0171 (5)0.0275 (5)0.0151 (5)0.0050 (4)0.0049 (4)0.0001 (4)
N210.0375 (9)0.0165 (7)0.0372 (9)0.0000.0258 (8)0.000
O120.0201 (4)0.0243 (4)0.0197 (4)0.0032 (4)0.0052 (3)0.0020 (3)
Cl120.03494 (19)0.01929 (16)0.0452 (2)0.00228 (13)0.01176 (16)0.00467 (13)
Cl160.0402 (2)0.02055 (16)0.03423 (19)0.00503 (13)0.01296 (15)0.00368 (12)
Cl220.02857 (17)0.02216 (15)0.02189 (15)0.00499 (11)0.01100 (12)0.00329 (11)
Geometric parameters (Å, º) top
C1—C21.5028 (18)C113—C1141.383 (2)
C1—H1A0.9800C113—H1130.9500
C1—H1B0.9800C114—C1151.385 (2)
C1—H1C0.9800C114—H1140.9500
C2—N111.3458 (16)C115—C1161.3867 (18)
C2—C31.3745 (17)C115—H1150.9500
C3—C41.4248 (18)C116—Cl161.7322 (12)
C3—H30.9500C211—N211.357 (2)
C4—O121.2501 (15)C211—C212i1.4103 (15)
C4—C51.5082 (18)C211—C2121.4104 (15)
C5—H5A0.9800C212—C2131.3835 (17)
C5—H5B0.9800C212—Cl221.7437 (12)
C5—H5C0.9800C213—C2141.3880 (16)
C111—C1161.3948 (17)C213—H2130.9500
C111—C1121.3960 (17)C214—C213i1.3881 (16)
C111—N111.4162 (15)C214—H2140.9500
C112—C1131.3889 (18)N11—H110.825 (16)
C112—Cl121.7316 (13)N21—H210.850 (17)
C2—C1—H1A109.5C114—C113—H113120.3
C2—C1—H1B109.5C112—C113—H113120.3
H1A—C1—H1B109.5C113—C114—C115120.73 (12)
C2—C1—H1C109.5C113—C114—H114119.6
H1A—C1—H1C109.5C115—C114—H114119.6
H1B—C1—H1C109.5C114—C115—C116119.02 (12)
N11—C2—C3120.52 (12)C114—C115—H115120.5
N11—C2—C1117.71 (11)C116—C115—H115120.5
C3—C2—C1121.77 (12)C115—C116—C111122.00 (11)
C2—C3—C4123.62 (12)C115—C116—Cl16119.05 (10)
C2—C3—H3118.2C111—C116—Cl16118.95 (9)
C4—C3—H3118.2N21—C211—C212i122.62 (7)
O12—C4—C3122.73 (11)N21—C211—C212122.62 (8)
O12—C4—C5119.08 (12)C212i—C211—C212114.76 (15)
C3—C4—C5118.18 (11)C213—C212—C211123.07 (12)
C4—C5—H5A109.5C213—C212—Cl22119.58 (10)
C4—C5—H5B109.5C211—C212—Cl22117.35 (9)
H5A—C5—H5B109.5C212—C213—C214119.74 (12)
C4—C5—H5C109.5C212—C213—H213120.1
H5A—C5—H5C109.5C214—C213—H213120.1
H5B—C5—H5C109.5C213—C214—C213i119.55 (16)
C116—C111—C112117.33 (11)C213—C214—H214120.2
C116—C111—N11120.94 (11)C213i—C214—H214120.2
C112—C111—N11121.67 (11)C2—N11—C111125.41 (11)
C113—C112—C111121.56 (12)C2—N11—H11113.8 (11)
C113—C112—Cl12119.29 (10)C111—N11—H11120.7 (11)
C111—C112—Cl12119.15 (10)C211—N21—H21119.2 (12)
C114—C113—C112119.37 (12)
N11—C2—C3—C40.0 (2)N11—C111—C116—C115176.95 (11)
C1—C2—C3—C4179.84 (14)C112—C111—C116—Cl16179.90 (9)
C2—C3—C4—O121.0 (2)N11—C111—C116—Cl162.72 (16)
C2—C3—C4—C5179.94 (14)N21—C211—C212—C213178.88 (9)
C116—C111—C112—C1130.53 (18)C212i—C211—C212—C2131.13 (9)
N11—C111—C112—C113176.62 (11)N21—C211—C212—Cl221.17 (10)
C116—C111—C112—Cl12179.39 (9)C212i—C211—C212—Cl22178.83 (10)
N11—C111—C112—Cl122.24 (16)C211—C212—C213—C2142.23 (17)
C111—C112—C113—C1140.40 (19)Cl22—C212—C213—C214177.73 (7)
Cl12—C112—C113—C114179.26 (10)C212—C213—C214—C213i1.07 (8)
C112—C113—C114—C1150.05 (19)C3—C2—N11—C111179.21 (13)
C113—C114—C115—C1160.35 (19)C1—C2—N11—C1110.7 (2)
C114—C115—C116—C1110.20 (19)C116—C111—N11—C299.59 (15)
C114—C115—C116—Cl16179.47 (10)C112—C111—N11—C283.36 (16)
C112—C111—C116—C1150.23 (18)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···Cl220.850 (17)2.578 (17)2.9710 (7)109.4 (13)
N11—H11···O120.825 (16)1.932 (16)2.6223 (13)140.7 (14)
N21—H21···O120.850 (17)2.167 (17)2.9732 (13)158.4 (16)

Experimental details

Crystal data
Chemical formulaC6H5Cl2N·2C11H11Cl2NO
Mr650.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)15.7140 (1), 8.7210 (2), 22.9950 (4)
β (°) 104.794 (1)
V3)3046.81 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.31 × 0.25 × 0.19
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.837, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
34421, 3785, 3305
Rint0.034
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.077, 1.04
No. of reflections3785
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···Cl220.850 (17)2.578 (17)2.9710 (7)109.4 (13)
N11—H11···O120.825 (16)1.932 (16)2.6223 (13)140.7 (14)
N21—H21···O120.850 (17)2.167 (17)2.9732 (13)158.4 (16)
Table 2. Comparative geometrical parameters (Å, °) for free N,O-bidendate (N,O-bid) compounds and coordinated dicarbonyl N,O-bidendate rhodium [Rh(N,O-bid)(CO)2] complexes. top
ParametersIIIIIIIVV
N11-C1111.416 (2)1.408 (2)1.417 (2)1.451 (2)-
N11-C21.346 (2)1.347 (2)1.348 (1)1.324 (2)1.303 (6)
O12-C41.250 (1)1.249 (2)1.253 (1)1.295 (2)1.281 (6)
C2-C31.375 (2)1.379 (2)1.384 (2)1.419 (3)1.396 (7)
C3-C41.425 (2)1.428 (2)1.424 (2)1.378 (3)1.388 (8)
N11···O122.622 (2)2.633 (2)2.646 (1)2.890 (2)2.826 (6)
N11-C2···C4-O12-0.8 (1)5.5 (1)1.70 (9)1.6 (2)1.2 (4)
Dihedral angle a81.87 (5)46.52 (5)29.90 (3)89.82 (6)-
(I) This work. (II) 4-((2-Chloro-phenyl)amino)pent-3-en-2-one (Venter, Brink et al., 2012). (III) 4-(4-Methylphenylamino)pent-3-en-2-onate (Venter et al., 2010). (IV) Dicarbonyl-(4-(2,6-dimethylphenylamino)pent-3-en-2-onato- κ2N,O)-rhodium(I) (Venter, Steyl et al., 2012). (V) (2-Imino-4-pentanonato-κ2N,O) -carbonyl-triphenylphosphine-rhodium(I) (Damoense et al., 1994)]. a) The torsion angle between the phenyl ring and pentenone fragments.
 

Acknowledgements

Mr Leo Kirsten is thanked for the XRD data collection. Financial assistance from the University of the Free State Strategic Academic Cluster Initiative, SASOL, the South African National Research Foundation (SA-NRF/THRIP) and the Inkaba ye Afrika Research Initiative is gratefully acknowledged. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572–5578.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDamoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10–13.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press.  Google Scholar
First citationPyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75–84.  Google Scholar
First citationRoodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1–23. Trivandrum: Transworld Research Network.  Google Scholar
First citationShaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab Chip, 8, 885–891.  CrossRef PubMed CAS Google Scholar
First citationVenter, G. J. S., Brink, A., Steyl, G. & Roodt, A. (2012). Acta Cryst. E68, o3101–o3102.  CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2010). Acta Cryst. E66, o1593–o1594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2012). Acta Cryst. E68, m666–m667.  CSD CrossRef IUCr Journals Google Scholar
First citationXia, M., Wu, B. & Xiang, G. (2008). J. Fluorine Chem. 129, 402–408.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds