metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(ethanamidinium) (1,10-phen­an­thro­line-2,9-di­carboxyl­ato)manganate(II) hepta­hydrate

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: myl9831@163.com

(Received 22 September 2012; accepted 25 November 2012; online 5 December 2012)

In the title complex, (C2H7N2)2[Mn(C14H6N2O4)2]·7H2O, the MnII atom is coordinated by four N atoms and four O atoms from two 1,10-phenanthroline-2,9-dicarboxyl­ate ligands in a distorted dodeca­hedral geometry. The double negative charge is balanced by two ethanamidinium cations. A three-dimensional supra­molecular structure is formed through N—H⋯O and O—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.553 (2) Å].

Related literature

For general background to 1,10-phenanthroline derivatives, see: Kaes et al. (2000[Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553-3590.]); Albores & Rentschler (2008[Albores, P. & Rentschler, E. (2008). Eur. J. Inorg. Chem. 25, 4004-4011.]); Sreerama & Pal (2004[Sreerama, S. G. & Pal, S. (2004). Eur. J. Inorg. Chem. pp. 4718-4723.]) and to 1,10-phenanthroline-2,9-dicarboxyl­ate (H2phenda), see: Dean et al. (2008[Dean, N. E., Hancock, R. D., Cahill, C. L. & Frisch, M. (2008). Inorg. Chem. 47, 2000-2010.]); Gephart et al. (2008[Gephart, R. T. III, Williams, N. J., Reibenspies, J. H., De Sousa, A. S. & Hancock, R. D. (2008). Inorg. Chem. 47, 10342-10348.]); Moghimi et al. (2005[Moghimi, A., Alizadeh, R., Aghabozorg, H., Shockravi, A., Aragoni, M. C., Demartin, F., Isaia, F., Lippolis, V., Harrison, A., Shokrollahi, A. & Shamsipur, M. (2005). J. Mol. Struct. 750, 166-173.]); Fan et al. (2008[Fan, L. L., Li, C. J., Meng, Z. S. & Tong, M. L. (2008). Eur. J. Inorg. Chem. 25, 3905-3909.]). For the synthesis, see: Chandler et al. (1981[Chandler, C. J., Deady, L. W. & Reiss, J. A. (1981). J. Heterocycl. Chem. 18, 599-601.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H7N2)2[Mn(C14H6N2O4)2]·7H2O

  • Mr = 831.66

  • Triclinic, [P \overline 1]

  • a = 9.6330 (6) Å

  • b = 13.8174 (7) Å

  • c = 15.4828 (8) Å

  • α = 66.151 (5)°

  • β = 78.949 (5)°

  • γ = 75.397 (5)°

  • V = 1814.56 (19) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.69 mm−1

  • T = 150 K

  • 0.29 × 0.26 × 0.16 mm

Data collection
  • Agilent Gemini S Ultra CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.395, Tmax = 0.554

  • 10581 measured reflections

  • 5310 independent reflections

  • 4336 reflections with I > 2σ(I)

  • Rint = 0.024

  • θmax = 60.0°

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 0.95

  • 5310 reflections

  • 507 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O1W 0.90 1.93 2.792 (4) 159
N5—H5B⋯O2 0.90 1.93 2.797 (3) 161
N6—H6A⋯O1W 0.90 2.19 2.938 (4) 140
N6—H6B⋯O7Wi 0.90 1.94 2.830 (3) 169
N7—H7A⋯O8 0.90 1.96 2.840 (3) 167
N7—H7B⋯O1ii 0.90 1.93 2.812 (3) 168
N8—H8A⋯O3W 0.90 2.05 2.941 (3) 172
N8—H8B⋯O2Wiii 0.90 1.98 2.871 (3) 173
O1W—H1WB⋯O6iv 0.85 1.93 2.780 (3) 178
O1W—H1WA⋯O2W 0.85 1.98 2.826 (3) 171
O2W—H2WA⋯O4v 0.85 1.92 2.709 (3) 154
O2W—H2WB⋯O3ii 0.85 1.90 2.753 (3) 177
O3W—H3WA⋯O8 0.85 1.87 2.687 (3) 161
O3W—H3WB⋯O2iii 0.85 1.94 2.741 (3) 156
O4W—H4WA⋯O3W 0.85 2.18 2.996 (3) 161
O4W—H4WB⋯O7 0.85 1.98 2.808 (3) 164
O5W—H5WA⋯O4W 0.85 1.99 2.828 (3) 168
O5W—H5WB⋯O6W 0.85 1.99 2.783 (3) 154
O6W—H6WA⋯O6vi 0.85 1.89 2.737 (3) 174
O6W—H6WB⋯O5Wvii 0.85 2.03 2.826 (4) 155
O7W—H7WA⋯O6W 0.85 1.96 2.760 (3) 157
O7W—H7WB⋯O5vi 0.85 2.02 2.865 (3) 173
Symmetry codes: (i) -x+2, -y-2, -z; (ii) -x+1, -y-1, -z-1; (iii) x-1, y, z; (iv) x, y-1, z; (v) x+1, y-1, z; (vi) -x+1, -y-1, -z; (vii) -x+1, -y-2, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,10-Phenanthroline and its substituted derivatives have versatile chelating and bridging capability(Kaes et al., 2000; Albores & Rentschler, 2008) which have played an important role in the development of coordination chemistry while the oxime, similar to the cyanide, can link two magnetic moment carriers with the shortest pairwise exchange pathway (Sreerama & Pal, 2004). Preliminary study on the coordination chemistry of 1,10-phenanthroline-2,9-dicarboxylate (H2phenda) found that it chelates the metal ions such as Ca(II), Cu(II), Th(III), Eu(III) and Tb(III) as a tridentate or tetradentate ligand by the phenanthroline and one or both of the oxygen atoms on the carboxylate groups (Dean et al., 2008; Gephart et al., 2008; Moghimi et al., 2005; Fan et al., 2008). We report here the crystal structure of the title compound, (I).

The title compound is ionic and contains discrete 1,10-phenanthroline- 2,9-dicarboxylate manganese(II) anions, ethanamidinium cations and water molecules (Fig. 1). The Mn atom is coordinated by four N atoms and four O atoms from two 1,10-phenanthroline-2,9-dicarboxylate ligands in a distorted dodecahedron geometry.

In the crystal structure, intermolecular π-π interactions (Figure 2) between the neighboring aromatic rings of phenda ligands link the molecules into an infinite layer. The centroid to centroid distance between pyridine rings is 3.553 (2) Å. The crystal packing is further stabilized by N—H···O and O—H···O hydrogen bonds (Table 1 and Figure 3), which link the layers into a three dimensional framework (Figure 4).

Related literature top

For general background to 1,10-phenanthroline derivatives, see: Kaes et al. (2000); Albores & Rentschler (2008); Sreerama & Pal (2004) and to 1,10-phenanthroline-2,9-dicarboxylate (H2phenda) see: Dean et al. (2008); Gephart et al. (2008); Moghimi et al. (2005); Fan et al. (2008). For the synthesis, see: Chandler et al. (1981).

Experimental top

Hydrothermal treatment of manganese chloride tetrahydrate (0.2 mmol, 0.039 g), 1,10-phenanthroline-2,9-dicarboxylate (0.2 mmol, 0.054 g) synthesized according to C. J. Chandler et al. (1981), triethylamine (0.080 g, 0.4 mmol), and methanol/acetonitrile (15 ml,V/V = 5/1) over 72 h at 418 K yielded light yellow block-shaped crystals.

Refinement top

Diffraction data for compound I were recorded on Oxford Diffraction Gemini R CCD diffractometer at 150 (2) K. The data collection routine, unit cell refinement, and data processing were carried out with the program CrysAlis PRO for I.

All H atoms were placed in idealized positions, and were refined using as riding model with C—H distances of 0.95, 0.98, 0.90 and 0.85 Å, for aryl, methyl, amido and water, respectively, with Uiso(H) = 1.5Ueq (methyl C-atoms) and 1.2Ueq(non-methyl C-atoms). The hightest peak is located 1.13 Å from O5W and the deepest hole is located 0.68 Å from N5.

Structure description top

1,10-Phenanthroline and its substituted derivatives have versatile chelating and bridging capability(Kaes et al., 2000; Albores & Rentschler, 2008) which have played an important role in the development of coordination chemistry while the oxime, similar to the cyanide, can link two magnetic moment carriers with the shortest pairwise exchange pathway (Sreerama & Pal, 2004). Preliminary study on the coordination chemistry of 1,10-phenanthroline-2,9-dicarboxylate (H2phenda) found that it chelates the metal ions such as Ca(II), Cu(II), Th(III), Eu(III) and Tb(III) as a tridentate or tetradentate ligand by the phenanthroline and one or both of the oxygen atoms on the carboxylate groups (Dean et al., 2008; Gephart et al., 2008; Moghimi et al., 2005; Fan et al., 2008). We report here the crystal structure of the title compound, (I).

The title compound is ionic and contains discrete 1,10-phenanthroline- 2,9-dicarboxylate manganese(II) anions, ethanamidinium cations and water molecules (Fig. 1). The Mn atom is coordinated by four N atoms and four O atoms from two 1,10-phenanthroline-2,9-dicarboxylate ligands in a distorted dodecahedron geometry.

In the crystal structure, intermolecular π-π interactions (Figure 2) between the neighboring aromatic rings of phenda ligands link the molecules into an infinite layer. The centroid to centroid distance between pyridine rings is 3.553 (2) Å. The crystal packing is further stabilized by N—H···O and O—H···O hydrogen bonds (Table 1 and Figure 3), which link the layers into a three dimensional framework (Figure 4).

For general background to 1,10-phenanthroline derivatives, see: Kaes et al. (2000); Albores & Rentschler (2008); Sreerama & Pal (2004) and to 1,10-phenanthroline-2,9-dicarboxylate (H2phenda) see: Dean et al. (2008); Gephart et al. (2008); Moghimi et al. (2005); Fan et al. (2008). For the synthesis, see: Chandler et al. (1981).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The off-set π-π stacking interaction in the distance of 3.553 (2) Å between phenda2- groups from the neighboring units (the H-atoms on the phenda2- are omitted for clarity)
[Figure 3] Fig. 3. A perspective view of hydrogen bonding interactions shown as dashed lines.
[Figure 4] Fig. 4. The three-dimensional framework of the title compound through intermolecular π-π stacking interactions and all hydrogen bonds.
Bis(ethanamidinium) (1,10-phenanthroline-2,9-dicarboxylato)manganate(II) heptahydrate top
Crystal data top
(C2H7N2)2[Mn(C14H6N2O4)2]·7H2OZ = 2
Mr = 831.66F(000) = 866
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 9.6330 (6) ÅCell parameters from 2456 reflections
b = 13.8174 (7) Åθ = 3.8–60.5°
c = 15.4828 (8) ŵ = 3.69 mm1
α = 66.151 (5)°T = 150 K
β = 78.949 (5)°Block, yellow
γ = 75.397 (5)°0.29 × 0.26 × 0.16 mm
V = 1814.56 (19) Å3
Data collection top
Agilent Gemini S Ultra CCD
diffractometer
5310 independent reflections
Radiation source: Ultra (Cu) X-ray Source4336 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
ω and ψ scanθmax = 60.0°, θmin = 3.1°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1010
Tmin = 0.395, Tmax = 0.554k = 1515
10581 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0694P)2]
where P = (Fo2 + 2Fc2)/3
5310 reflections(Δ/σ)max < 0.001
507 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
(C2H7N2)2[Mn(C14H6N2O4)2]·7H2Oγ = 75.397 (5)°
Mr = 831.66V = 1814.56 (19) Å3
Triclinic, P1Z = 2
a = 9.6330 (6) ÅCu Kα radiation
b = 13.8174 (7) ŵ = 3.69 mm1
c = 15.4828 (8) ÅT = 150 K
α = 66.151 (5)°0.29 × 0.26 × 0.16 mm
β = 78.949 (5)°
Data collection top
Agilent Gemini S Ultra CCD
diffractometer
5310 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4336 reflections with I > 2σ(I)
Tmin = 0.395, Tmax = 0.554Rint = 0.024
10581 measured reflectionsθmax = 60.0°
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.95Δρmax = 0.49 e Å3
5310 reflectionsΔρmin = 0.38 e Å3
507 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.38224 (4)0.32469 (3)0.30135 (3)0.02456 (13)
O10.62034 (19)0.44480 (14)0.29790 (12)0.0315 (4)
O20.7512 (2)0.60690 (15)0.22274 (14)0.0405 (5)
O30.19195 (19)0.18187 (14)0.36856 (13)0.0322 (4)
O40.0144 (2)0.07603 (17)0.34049 (16)0.0526 (6)
O50.4381 (2)0.21686 (15)0.22559 (12)0.0342 (4)
O60.5792 (2)0.10790 (16)0.23117 (14)0.0429 (5)
O70.27142 (19)0.45336 (14)0.31506 (12)0.0316 (4)
O80.2046 (2)0.51264 (15)0.41261 (13)0.0352 (4)
N10.4178 (2)0.46684 (16)0.15591 (14)0.0247 (5)
N20.1863 (2)0.31304 (16)0.19121 (15)0.0266 (5)
N30.5253 (2)0.20108 (16)0.39983 (14)0.0249 (5)
N40.4184 (2)0.32404 (16)0.45354 (14)0.0238 (5)
C10.5334 (3)0.5458 (2)0.14235 (18)0.0275 (6)
C20.5504 (3)0.6328 (2)0.05494 (19)0.0327 (6)
H20.63230.68960.04790.039*
C30.4479 (3)0.6348 (2)0.01978 (19)0.0361 (7)
H30.45940.69240.07960.043*
C40.3259 (3)0.5520 (2)0.00840 (19)0.0328 (6)
C50.3154 (3)0.4703 (2)0.08246 (17)0.0264 (6)
C60.1906 (3)0.3847 (2)0.10117 (18)0.0276 (6)
C70.0811 (3)0.3796 (2)0.0278 (2)0.0355 (7)
C80.0404 (3)0.2954 (2)0.0534 (2)0.0398 (7)
H80.11810.28820.00690.048*
C90.0455 (3)0.2239 (2)0.1460 (2)0.0392 (7)
H90.12770.16810.16430.047*
C100.0723 (3)0.2344 (2)0.2135 (2)0.0317 (6)
C110.2133 (3)0.5429 (2)0.08190 (19)0.0386 (7)
H110.22000.59620.14420.046*
C120.0976 (3)0.4606 (2)0.0651 (2)0.0398 (7)
H120.02630.45670.11590.048*
C130.6447 (3)0.5317 (2)0.22789 (19)0.0280 (6)
C140.0830 (3)0.1565 (2)0.3165 (2)0.0333 (6)
C150.5761 (3)0.1406 (2)0.37003 (18)0.0271 (6)
C160.6643 (3)0.0680 (2)0.4304 (2)0.0331 (6)
H160.69890.02560.40690.040*
C170.7004 (3)0.0583 (2)0.5229 (2)0.0337 (6)
H170.76050.00960.56390.040*
C180.6479 (3)0.1210 (2)0.55703 (19)0.0299 (6)
C190.5597 (3)0.19174 (19)0.49131 (18)0.0250 (5)
C200.5006 (3)0.2583 (2)0.52032 (17)0.0248 (5)
C210.5305 (3)0.2531 (2)0.61455 (18)0.0292 (6)
C220.4655 (3)0.3189 (2)0.63757 (19)0.0326 (6)
H220.48090.31790.70040.039*
C230.3805 (3)0.3840 (2)0.57014 (18)0.0308 (6)
H230.33580.42790.58570.037*
C240.3596 (3)0.3856 (2)0.47696 (18)0.0264 (6)
C250.6768 (3)0.1183 (2)0.65205 (19)0.0333 (6)
H250.73670.07170.69690.040*
C260.6210 (3)0.1805 (2)0.67956 (19)0.0349 (6)
H260.64200.17610.74340.042*
C270.5275 (3)0.1559 (2)0.26719 (19)0.0301 (6)
C280.2712 (3)0.4568 (2)0.39516 (18)0.0276 (6)
N50.8010 (3)0.8300 (2)0.1744 (2)0.0640 (8)
H5A0.75210.85470.20260.077*
H5B0.77620.76190.17650.077*
N60.9723 (3)0.9812 (2)0.1703 (2)0.0604 (8)
H6A0.92920.98460.21540.073*
H6B1.06001.02090.15450.073*
C290.9287 (4)0.8931 (3)0.1516 (2)0.0517 (8)
C301.0219 (4)0.8639 (3)0.1027 (3)0.0615 (10)
H30A0.96210.83810.05450.092*
H30B1.07070.80690.14930.092*
H30C1.09390.92750.07210.092*
N70.1675 (2)0.59460 (18)0.54617 (16)0.0329 (5)
H7A0.16790.57390.49810.039*
H7B0.22520.57410.60080.039*
N80.0118 (2)0.70915 (18)0.45609 (16)0.0349 (5)
H8A0.01210.69540.40410.042*
H8B0.03800.75900.45010.042*
C310.0874 (3)0.6628 (2)0.53660 (19)0.0309 (6)
C320.0816 (3)0.6870 (2)0.6215 (2)0.0375 (7)
H32A0.17070.67590.66390.056*
H32B0.00110.63890.65510.056*
H32C0.07150.76210.60100.056*
O1W0.7167 (2)0.93913 (18)0.26699 (16)0.0517 (6)
H1WB0.67250.98940.25670.062*
H1WA0.75590.91190.32320.062*
O2W0.8697 (2)0.87175 (15)0.44941 (13)0.0374 (5)
H2WA0.92390.93390.43150.045*
H2WB0.85100.85740.50520.045*
O3W0.0311 (2)0.64852 (16)0.29789 (14)0.0433 (5)
H3WA0.07480.59620.32800.052*
H3WB0.05440.61720.28650.052*
O4W0.2349 (2)0.65284 (17)0.17187 (14)0.0455 (5)
H4WA0.18020.66750.20010.055*
H4WB0.24110.58780.20620.055*
O5W0.4446 (4)0.8419 (2)0.1000 (2)0.0860 (10)
H5WA0.38130.78410.11410.103*
H5WB0.45000.86240.04090.103*
O6W0.5485 (3)0.94350 (19)0.07739 (16)0.0579 (6)
H6WA0.50410.92990.12550.069*
H6WB0.57581.00600.07520.069*
O7W0.7721 (2)0.87078 (19)0.10478 (17)0.0560 (6)
H7WA0.72170.89880.08530.067*
H7WB0.71330.83990.13860.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0283 (2)0.0252 (2)0.0204 (2)0.00653 (17)0.00202 (16)0.00818 (17)
O10.0312 (10)0.0301 (10)0.0291 (10)0.0049 (8)0.0017 (8)0.0083 (9)
O20.0352 (11)0.0331 (11)0.0472 (12)0.0015 (9)0.0024 (9)0.0146 (9)
O30.0336 (10)0.0295 (10)0.0315 (10)0.0048 (8)0.0076 (8)0.0084 (8)
O40.0449 (13)0.0370 (12)0.0569 (14)0.0085 (10)0.0079 (10)0.0069 (10)
O50.0441 (11)0.0353 (11)0.0285 (10)0.0152 (9)0.0045 (8)0.0127 (9)
O60.0539 (13)0.0485 (12)0.0396 (11)0.0203 (10)0.0067 (9)0.0230 (10)
O70.0396 (11)0.0334 (10)0.0273 (10)0.0131 (8)0.0031 (8)0.0134 (8)
O80.0372 (11)0.0407 (11)0.0379 (11)0.0153 (9)0.0038 (8)0.0204 (9)
N10.0286 (11)0.0243 (11)0.0247 (11)0.0051 (9)0.0060 (9)0.0113 (9)
N20.0281 (12)0.0257 (11)0.0289 (12)0.0063 (9)0.0039 (9)0.0122 (10)
N30.0272 (11)0.0215 (11)0.0269 (11)0.0028 (9)0.0064 (9)0.0095 (9)
N40.0249 (11)0.0221 (11)0.0260 (11)0.0026 (9)0.0060 (9)0.0102 (9)
C10.0333 (14)0.0247 (14)0.0293 (14)0.0079 (11)0.0086 (11)0.0112 (12)
C20.0386 (16)0.0259 (14)0.0316 (15)0.0056 (12)0.0113 (12)0.0057 (12)
C30.0480 (18)0.0325 (15)0.0273 (15)0.0142 (13)0.0128 (13)0.0031 (12)
C40.0425 (16)0.0357 (16)0.0262 (14)0.0176 (13)0.0055 (12)0.0108 (12)
C50.0333 (14)0.0277 (14)0.0236 (13)0.0123 (11)0.0040 (11)0.0108 (11)
C60.0319 (14)0.0295 (14)0.0275 (14)0.0116 (11)0.0003 (11)0.0149 (12)
C70.0378 (16)0.0438 (17)0.0356 (16)0.0180 (13)0.0044 (12)0.0233 (14)
C80.0350 (16)0.0457 (18)0.0457 (18)0.0128 (14)0.0090 (13)0.0269 (15)
C90.0321 (16)0.0356 (16)0.0527 (19)0.0052 (12)0.0012 (13)0.0225 (15)
C100.0291 (15)0.0290 (15)0.0419 (16)0.0047 (12)0.0056 (12)0.0181 (13)
C110.0515 (19)0.0471 (18)0.0229 (14)0.0254 (15)0.0001 (12)0.0110 (13)
C120.0467 (18)0.0498 (19)0.0296 (15)0.0222 (15)0.0081 (13)0.0192 (14)
C130.0270 (14)0.0278 (15)0.0337 (15)0.0054 (12)0.0062 (11)0.0145 (13)
C140.0336 (16)0.0270 (15)0.0402 (16)0.0053 (12)0.0077 (13)0.0122 (13)
C150.0262 (13)0.0239 (13)0.0318 (14)0.0022 (11)0.0074 (11)0.0105 (11)
C160.0336 (15)0.0295 (15)0.0410 (17)0.0105 (12)0.0068 (12)0.0142 (13)
C170.0310 (15)0.0300 (15)0.0383 (16)0.0107 (12)0.0022 (12)0.0086 (13)
C180.0261 (14)0.0261 (14)0.0339 (15)0.0027 (11)0.0038 (11)0.0086 (12)
C190.0235 (13)0.0212 (13)0.0280 (14)0.0010 (10)0.0044 (10)0.0079 (11)
C200.0236 (13)0.0240 (13)0.0248 (13)0.0001 (10)0.0065 (10)0.0080 (11)
C210.0291 (14)0.0303 (15)0.0259 (14)0.0001 (11)0.0052 (11)0.0106 (12)
C220.0360 (15)0.0380 (16)0.0259 (14)0.0030 (12)0.0048 (12)0.0160 (13)
C230.0354 (15)0.0321 (15)0.0299 (14)0.0059 (12)0.0057 (12)0.0160 (13)
C240.0267 (13)0.0246 (13)0.0293 (14)0.0004 (11)0.0073 (11)0.0122 (11)
C250.0307 (15)0.0349 (15)0.0281 (14)0.0090 (12)0.0030 (11)0.0066 (12)
C260.0356 (15)0.0404 (17)0.0251 (14)0.0062 (13)0.0006 (12)0.0111 (13)
C270.0347 (15)0.0261 (14)0.0327 (14)0.0051 (12)0.0106 (12)0.0115 (12)
C280.0268 (14)0.0242 (14)0.0319 (15)0.0005 (11)0.0062 (11)0.0118 (12)
N50.070 (2)0.0449 (17)0.083 (2)0.0005 (15)0.0239 (17)0.0293 (16)
N60.0657 (19)0.0425 (16)0.081 (2)0.0048 (14)0.0284 (16)0.0308 (16)
C290.055 (2)0.046 (2)0.054 (2)0.0131 (16)0.0062 (16)0.0152 (16)
C300.073 (3)0.059 (2)0.059 (2)0.0178 (19)0.0177 (19)0.0208 (19)
N70.0352 (13)0.0374 (13)0.0304 (12)0.0120 (11)0.0006 (10)0.0155 (11)
N80.0334 (13)0.0360 (13)0.0359 (13)0.0091 (10)0.0043 (10)0.0123 (11)
C310.0266 (14)0.0299 (15)0.0345 (15)0.0010 (12)0.0046 (12)0.0124 (12)
C320.0351 (16)0.0399 (16)0.0428 (17)0.0070 (13)0.0063 (13)0.0200 (14)
O1W0.0516 (13)0.0528 (14)0.0579 (14)0.0179 (11)0.0000 (11)0.0261 (12)
O2W0.0433 (11)0.0324 (10)0.0354 (10)0.0074 (9)0.0120 (9)0.0081 (9)
O3W0.0378 (11)0.0422 (12)0.0452 (12)0.0079 (9)0.0024 (9)0.0145 (10)
O4W0.0535 (13)0.0419 (12)0.0386 (11)0.0154 (10)0.0028 (10)0.0096 (10)
O5W0.135 (3)0.0618 (17)0.0708 (18)0.0146 (17)0.0524 (18)0.0365 (15)
O6W0.0748 (16)0.0636 (15)0.0467 (13)0.0144 (12)0.0092 (11)0.0304 (12)
O7W0.0481 (13)0.0637 (15)0.0654 (15)0.0037 (11)0.0068 (11)0.0373 (13)
Geometric parameters (Å, º) top
Mn1—N22.309 (2)C17—H170.9500
Mn1—N42.312 (2)C18—C191.412 (4)
Mn1—N32.327 (2)C18—C251.431 (4)
Mn1—N12.329 (2)C19—C201.439 (4)
Mn1—O32.3630 (18)C20—C211.407 (4)
Mn1—O72.3863 (18)C21—C221.407 (4)
Mn1—O52.4382 (17)C21—C261.438 (4)
Mn1—O12.4645 (18)C22—C231.361 (4)
O1—C131.255 (3)C22—H220.9500
O2—C131.251 (3)C23—C241.410 (4)
O3—C141.262 (3)C23—H230.9500
O4—C141.237 (3)C24—C281.517 (4)
O5—C271.258 (3)C25—C261.351 (4)
O6—C271.253 (3)C25—H250.9500
O7—C281.261 (3)C26—H260.9500
O8—C281.250 (3)N5—C291.332 (4)
N1—C11.329 (3)N5—H5A0.9000
N1—C51.348 (3)N5—H5B0.9000
N2—C101.321 (3)N6—C291.313 (4)
N2—C61.345 (3)N6—H6A0.9000
N3—C151.325 (3)N6—H6B0.9000
N3—C191.351 (3)C29—C301.493 (5)
N4—C241.322 (3)C30—H30A0.9800
N4—C201.345 (3)C30—H30B0.9800
C1—C21.405 (4)C30—H30C0.9800
C1—C131.514 (4)N7—C311.310 (4)
C2—C31.365 (4)N7—H7A0.8999
C2—H20.9500N7—H7B0.9000
C3—C41.400 (4)N8—C311.317 (4)
C3—H30.9500N8—H8A0.9000
C4—C51.406 (4)N8—H8B0.8999
C4—C111.436 (4)C31—C321.495 (4)
C5—C61.439 (4)C32—H32A0.9800
C6—C71.405 (4)C32—H32B0.9800
C7—C81.414 (4)C32—H32C0.9800
C7—C121.430 (4)O1W—H1WB0.8501
C8—C91.375 (4)O1W—H1WA0.8499
C8—H80.9500O2W—H2WA0.8500
C9—C101.409 (4)O2W—H2WB0.8499
C9—H90.9500O3W—H3WA0.8498
C10—C141.523 (4)O3W—H3WB0.8501
C11—C121.354 (4)O4W—H4WA0.8499
C11—H110.9500O4W—H4WB0.8500
C12—H120.9500O5W—H5WA0.8500
C15—C161.403 (4)O5W—H5WB0.8499
C15—C271.514 (4)O6W—H6WA0.8501
C16—C171.368 (4)O6W—H6WB0.8499
C16—H160.9500O7W—H7WA0.8500
C17—C181.407 (4)O7W—H7WB0.8501
N2—Mn1—N4136.11 (7)O4—C14—O3126.9 (3)
N2—Mn1—N3132.09 (7)O4—C14—C10117.4 (2)
N4—Mn1—N369.49 (7)O3—C14—C10115.6 (2)
N2—Mn1—N169.13 (7)N3—C15—C16122.0 (2)
N4—Mn1—N1130.55 (7)N3—C15—C27113.8 (2)
N3—Mn1—N1131.49 (7)C16—C15—C27124.1 (2)
N2—Mn1—O367.82 (7)C17—C16—C15119.9 (2)
N4—Mn1—O380.79 (7)C17—C16—H16120.0
N3—Mn1—O383.18 (7)C15—C16—H16120.0
N1—Mn1—O3136.69 (7)C16—C17—C18119.6 (3)
N2—Mn1—O783.15 (7)C16—C17—H17120.2
N4—Mn1—O767.47 (7)C18—C17—H17120.2
N3—Mn1—O7136.91 (7)C17—C18—C19116.6 (2)
N1—Mn1—O778.60 (7)C17—C18—C25125.2 (3)
O3—Mn1—O791.77 (6)C19—C18—C25118.2 (2)
N2—Mn1—O575.67 (7)N3—C19—C18123.4 (2)
N4—Mn1—O5135.37 (7)N3—C19—C20116.3 (2)
N3—Mn1—O566.19 (7)C18—C19—C20120.3 (2)
N1—Mn1—O585.00 (7)N4—C20—C21123.3 (2)
O3—Mn1—O588.98 (6)N4—C20—C19116.7 (2)
O7—Mn1—O5156.79 (6)C21—C20—C19120.0 (2)
N2—Mn1—O1135.12 (7)C22—C21—C20116.3 (3)
N4—Mn1—O179.20 (6)C22—C21—C26125.4 (2)
N3—Mn1—O179.36 (7)C20—C21—C26118.3 (2)
N1—Mn1—O166.09 (6)C23—C22—C21120.2 (2)
O3—Mn1—O1157.04 (6)C23—C22—H22119.9
O7—Mn1—O190.89 (6)C21—C22—H22119.9
O5—Mn1—O197.40 (6)C22—C23—C24119.4 (2)
C13—O1—Mn1119.48 (16)C22—C23—H23120.3
C14—O3—Mn1120.52 (16)C24—C23—H23120.3
C27—O5—Mn1120.15 (16)N4—C24—C23121.7 (3)
C28—O7—Mn1120.22 (17)N4—C24—C28114.0 (2)
C1—N1—C5118.4 (2)C23—C24—C28124.3 (2)
C1—N1—Mn1122.99 (17)C26—C25—C18121.6 (3)
C5—N1—Mn1118.63 (16)C26—C25—H25119.2
C10—N2—C6119.0 (2)C18—C25—H25119.2
C10—N2—Mn1121.43 (18)C25—C26—C21121.6 (2)
C6—N2—Mn1119.54 (16)C25—C26—H26119.2
C15—N3—C19118.5 (2)C21—C26—H26119.2
C15—N3—Mn1123.05 (17)O6—C27—O5126.0 (3)
C19—N3—Mn1118.41 (16)O6—C27—C15118.0 (3)
C24—N4—C20119.1 (2)O5—C27—C15116.0 (2)
C24—N4—Mn1121.88 (17)O8—C28—O7126.0 (3)
C20—N4—Mn1119.00 (15)O8—C28—C24118.0 (2)
N1—C1—C2122.1 (2)O7—C28—C24116.0 (2)
N1—C1—C13114.2 (2)C29—N5—H5A113.1
C2—C1—C13123.7 (2)C29—N5—H5B123.4
C3—C2—C1119.3 (3)H5A—N5—H5B121.6
C3—C2—H2120.4C29—N6—H6A116.3
C1—C2—H2120.4C29—N6—H6B117.8
C2—C3—C4120.1 (3)H6A—N6—H6B122.1
C2—C3—H3120.0N6—C29—N5120.7 (3)
C4—C3—H3120.0N6—C29—C30119.8 (3)
C3—C4—C5116.7 (3)N5—C29—C30119.5 (3)
C3—C4—C11125.5 (3)C29—C30—H30A109.5
C5—C4—C11117.9 (3)C29—C30—H30B109.5
N1—C5—C4123.4 (2)H30A—C30—H30B109.5
N1—C5—C6116.4 (2)C29—C30—H30C109.5
C4—C5—C6120.2 (2)H30A—C30—H30C109.5
N2—C6—C7123.6 (2)H30B—C30—H30C109.5
N2—C6—C5116.1 (2)C31—N7—H7A120.3
C7—C6—C5120.2 (2)C31—N7—H7B116.6
C6—C7—C8116.4 (3)H7A—N7—H7B122.9
C6—C7—C12118.5 (3)C31—N8—H8A121.6
C8—C7—C12125.0 (3)C31—N8—H8B121.0
C9—C8—C7119.6 (3)H8A—N8—H8B117.3
C9—C8—H8120.2N7—C31—N8122.6 (2)
C7—C8—H8120.2N7—C31—C32117.9 (2)
C8—C9—C10119.3 (3)N8—C31—C32119.6 (2)
C8—C9—H9120.4C31—C32—H32A109.5
C10—C9—H9120.4C31—C32—H32B109.5
N2—C10—C9122.0 (3)H32A—C32—H32B109.5
N2—C10—C14113.9 (2)C31—C32—H32C109.5
C9—C10—C14124.1 (2)H32A—C32—H32C109.5
C12—C11—C4122.0 (3)H32B—C32—H32C109.5
C12—C11—H11119.0H1WB—O1W—H1WA115.9
C4—C11—H11119.0H2WA—O2W—H2WB107.1
C11—C12—C7121.1 (3)H3WA—O3W—H3WB103.0
C11—C12—H12119.4H4WA—O4W—H4WB103.6
C7—C12—H12119.4H5WA—O5W—H5WB105.4
O2—C13—O1126.1 (2)H6WA—O6W—H6WB125.3
O2—C13—C1117.7 (2)H7WA—O7W—H7WB105.6
O1—C13—C1116.2 (2)
N2—Mn1—O1—C1313.5 (2)C3—C4—C5—N12.4 (4)
N4—Mn1—O1—C13134.56 (18)C11—C4—C5—N1176.4 (2)
N3—Mn1—O1—C13154.53 (18)C3—C4—C5—C6177.5 (2)
N1—Mn1—O1—C139.39 (17)C11—C4—C5—C63.7 (4)
O3—Mn1—O1—C13164.36 (18)C10—N2—C6—C71.4 (4)
O7—Mn1—O1—C1367.71 (18)Mn1—N2—C6—C7175.47 (19)
O5—Mn1—O1—C1390.55 (18)C10—N2—C6—C5177.9 (2)
N2—Mn1—O3—C147.74 (18)Mn1—N2—C6—C55.2 (3)
N4—Mn1—O3—C14156.4 (2)N1—C5—C6—N23.0 (3)
N3—Mn1—O3—C14133.32 (19)C4—C5—C6—N2176.8 (2)
N1—Mn1—O3—C1414.4 (2)N1—C5—C6—C7177.6 (2)
O7—Mn1—O3—C1489.61 (19)C4—C5—C6—C72.6 (4)
O5—Mn1—O3—C1467.18 (19)N2—C6—C7—C81.9 (4)
O1—Mn1—O3—C14173.92 (18)C5—C6—C7—C8177.4 (2)
N2—Mn1—O5—C27158.4 (2)N2—C6—C7—C12179.9 (2)
N4—Mn1—O5—C2715.3 (2)C5—C6—C7—C120.5 (4)
N3—Mn1—O5—C278.08 (18)C6—C7—C8—C90.3 (4)
N1—Mn1—O5—C27131.87 (19)C12—C7—C8—C9178.1 (3)
O3—Mn1—O5—C2791.07 (19)C7—C8—C9—C101.6 (4)
O7—Mn1—O5—C27176.82 (18)C6—N2—C10—C90.7 (4)
O1—Mn1—O5—C2766.80 (19)Mn1—N2—C10—C9177.49 (19)
N2—Mn1—O7—C28140.83 (18)C6—N2—C10—C14177.9 (2)
N4—Mn1—O7—C285.86 (17)Mn1—N2—C10—C141.1 (3)
N3—Mn1—O7—C288.5 (2)C8—C9—C10—N22.2 (4)
N1—Mn1—O7—C28149.16 (18)C8—C9—C10—C14176.3 (3)
O3—Mn1—O7—C2873.41 (18)C3—C4—C11—C12179.4 (3)
O5—Mn1—O7—C28164.95 (17)C5—C4—C11—C121.9 (4)
O1—Mn1—O7—C2883.78 (18)C4—C11—C12—C71.2 (4)
N2—Mn1—N1—C1176.7 (2)C6—C7—C12—C112.4 (4)
N4—Mn1—N1—C143.1 (2)C8—C7—C12—C11175.3 (3)
N3—Mn1—N1—C155.0 (2)Mn1—O1—C13—O2168.8 (2)
O3—Mn1—N1—C1170.03 (16)Mn1—O1—C13—C111.0 (3)
O7—Mn1—N1—C189.71 (19)N1—C1—C13—O2174.7 (2)
O5—Mn1—N1—C1106.80 (19)C2—C1—C13—O26.8 (4)
O1—Mn1—N1—C16.42 (17)N1—C1—C13—O15.1 (3)
N2—Mn1—N1—C52.20 (16)C2—C1—C13—O1173.4 (2)
N4—Mn1—N1—C5135.73 (16)Mn1—O3—C14—O4170.2 (2)
N3—Mn1—N1—C5126.16 (17)Mn1—O3—C14—C109.9 (3)
O3—Mn1—N1—C58.8 (2)N2—C10—C14—O4174.3 (2)
O7—Mn1—N1—C589.14 (17)C9—C10—C14—O44.2 (4)
O5—Mn1—N1—C574.35 (17)N2—C10—C14—O35.8 (3)
O1—Mn1—N1—C5174.73 (19)C9—C10—C14—O3175.7 (2)
N4—Mn1—N2—C1051.9 (2)C19—N3—C15—C160.2 (4)
N3—Mn1—N2—C1053.1 (2)Mn1—N3—C15—C16178.83 (18)
N1—Mn1—N2—C10179.3 (2)C19—N3—C15—C27178.6 (2)
O3—Mn1—N2—C104.16 (18)Mn1—N3—C15—C272.4 (3)
O7—Mn1—N2—C1098.89 (19)N3—C15—C16—C170.1 (4)
O5—Mn1—N2—C1090.68 (19)C27—C15—C16—C17178.8 (2)
O1—Mn1—N2—C10176.76 (17)C15—C16—C17—C180.4 (4)
N4—Mn1—N2—C6131.34 (17)C16—C17—C18—C190.3 (4)
N3—Mn1—N2—C6123.72 (17)C16—C17—C18—C25179.7 (3)
N1—Mn1—N2—C63.94 (17)C15—N3—C19—C180.3 (4)
O3—Mn1—N2—C6179.04 (19)Mn1—N3—C19—C18178.78 (18)
O7—Mn1—N2—C684.31 (18)C15—N3—C19—C20179.4 (2)
O5—Mn1—N2—C686.12 (18)Mn1—N3—C19—C201.6 (3)
O1—Mn1—N2—C60.0 (2)C17—C18—C19—N30.1 (4)
N2—Mn1—N3—C1545.3 (2)C25—C18—C19—N3180.0 (2)
N4—Mn1—N3—C15179.7 (2)C17—C18—C19—C20179.6 (2)
N1—Mn1—N3—C1553.8 (2)C25—C18—C19—C200.4 (4)
O3—Mn1—N3—C1596.98 (19)C24—N4—C20—C211.5 (4)
O7—Mn1—N3—C15177.74 (16)Mn1—N4—C20—C21179.14 (18)
O5—Mn1—N3—C155.08 (18)C24—N4—C20—C19178.9 (2)
O1—Mn1—N3—C1597.99 (19)Mn1—N4—C20—C190.5 (3)
N2—Mn1—N3—C19135.64 (16)N3—C19—C20—N40.7 (3)
N4—Mn1—N3—C191.30 (16)C18—C19—C20—N4179.6 (2)
N1—Mn1—N3—C19125.27 (17)N3—C19—C20—C21179.7 (2)
O3—Mn1—N3—C1983.99 (17)C18—C19—C20—C210.0 (4)
O7—Mn1—N3—C191.3 (2)N4—C20—C21—C222.0 (4)
O5—Mn1—N3—C19175.89 (19)C19—C20—C21—C22178.4 (2)
O1—Mn1—N3—C1981.04 (17)N4—C20—C21—C26179.4 (2)
N2—Mn1—N4—C2448.4 (2)C19—C20—C21—C260.2 (4)
N3—Mn1—N4—C24178.4 (2)C20—C21—C22—C230.9 (4)
N1—Mn1—N4—C2453.9 (2)C26—C21—C22—C23179.4 (2)
O3—Mn1—N4—C2492.32 (19)C21—C22—C23—C240.6 (4)
O7—Mn1—N4—C243.49 (17)C20—N4—C24—C230.1 (4)
O5—Mn1—N4—C24171.37 (16)Mn1—N4—C24—C23179.22 (17)
O1—Mn1—N4—C2499.01 (19)C20—N4—C24—C28179.3 (2)
N2—Mn1—N4—C20130.95 (17)Mn1—N4—C24—C281.4 (3)
N3—Mn1—N4—C200.90 (16)C22—C23—C24—N41.2 (4)
N1—Mn1—N4—C20126.74 (17)C22—C23—C24—C28178.2 (2)
O3—Mn1—N4—C2087.01 (17)C17—C18—C25—C26179.3 (3)
O7—Mn1—N4—C20177.19 (19)C19—C18—C25—C260.6 (4)
O5—Mn1—N4—C208.0 (2)C18—C25—C26—C210.5 (4)
O1—Mn1—N4—C2081.66 (17)C22—C21—C26—C25178.5 (3)
C5—N1—C1—C21.1 (4)C20—C21—C26—C250.1 (4)
Mn1—N1—C1—C2177.75 (18)Mn1—O5—C27—O6170.0 (2)
C5—N1—C1—C13177.5 (2)Mn1—O5—C27—C159.8 (3)
Mn1—N1—C1—C133.7 (3)N3—C15—C27—O6174.7 (2)
N1—C1—C2—C32.5 (4)C16—C15—C27—O66.5 (4)
C13—C1—C2—C3175.9 (2)N3—C15—C27—O55.0 (3)
C1—C2—C3—C41.4 (4)C16—C15—C27—O5173.7 (2)
C2—C3—C4—C50.9 (4)Mn1—O7—C28—O8172.32 (19)
C2—C3—C4—C11177.8 (3)Mn1—O7—C28—C247.3 (3)
C1—N1—C5—C41.4 (4)N4—C24—C28—O8175.7 (2)
Mn1—N1—C5—C4179.72 (18)C23—C24—C28—O84.9 (4)
C1—N1—C5—C6178.4 (2)N4—C24—C28—O73.9 (3)
Mn1—N1—C5—C60.5 (3)C23—C24—C28—O7175.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1W0.901.932.792 (4)159
N5—H5B···O20.901.932.797 (3)161
N6—H6A···O1W0.902.192.938 (4)140
N6—H6B···O7Wi0.901.942.830 (3)169
N7—H7A···O80.901.962.840 (3)167
N7—H7B···O1ii0.901.932.812 (3)168
N8—H8A···O3W0.902.052.941 (3)172
N8—H8B···O2Wiii0.901.982.871 (3)173
O1W—H1WB···O6iv0.851.932.780 (3)178
O1W—H1WA···O2W0.851.982.826 (3)171
O2W—H2WA···O4v0.851.922.709 (3)154
O2W—H2WB···O3ii0.851.902.753 (3)177
O3W—H3WA···O80.851.872.687 (3)161
O3W—H3WB···O2iii0.851.942.741 (3)156
O4W—H4WA···O3W0.852.182.996 (3)161
O4W—H4WB···O70.851.982.808 (3)164
O5W—H5WA···O4W0.851.992.828 (3)168
O5W—H5WB···O6W0.851.992.783 (3)154
O6W—H6WA···O6vi0.851.892.737 (3)174
O6W—H6WB···O5Wvii0.852.032.826 (4)155
O7W—H7WA···O6W0.851.962.760 (3)157
O7W—H7WB···O5vi0.852.022.865 (3)173
Symmetry codes: (i) x+2, y2, z; (ii) x+1, y1, z1; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y1, z; (vi) x+1, y1, z; (vii) x+1, y2, z.

Experimental details

Crystal data
Chemical formula(C2H7N2)2[Mn(C14H6N2O4)2]·7H2O
Mr831.66
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.6330 (6), 13.8174 (7), 15.4828 (8)
α, β, γ (°)66.151 (5), 78.949 (5), 75.397 (5)
V3)1814.56 (19)
Z2
Radiation typeCu Kα
µ (mm1)3.69
Crystal size (mm)0.29 × 0.26 × 0.16
Data collection
DiffractometerAgilent Gemini S Ultra CCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.395, 0.554
No. of measured, independent and
observed [I > 2σ(I)] reflections
10581, 5310, 4336
Rint0.024
θmax (°)60.0
(sin θ/λ)max1)0.562
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 0.95
No. of reflections5310
No. of parameters507
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1W0.901.932.792 (4)158.9
N5—H5B···O20.901.932.797 (3)161.4
N6—H6A···O1W0.902.192.938 (4)140.1
N6—H6B···O7Wi0.901.942.830 (3)168.5
N7—H7A···O80.901.962.840 (3)166.8
N7—H7B···O1ii0.901.932.812 (3)167.5
N8—H8A···O3W0.902.052.941 (3)171.8
N8—H8B···O2Wiii0.901.982.871 (3)173.0
O1W—H1WB···O6iv0.851.932.780 (3)177.6
O1W—H1WA···O2W0.851.982.826 (3)170.5
O2W—H2WA···O4v0.851.922.709 (3)153.5
O2W—H2WB···O3ii0.851.902.753 (3)177.2
O3W—H3WA···O80.851.872.687 (3)161.3
O3W—H3WB···O2iii0.851.942.741 (3)156.0
O4W—H4WA···O3W0.852.182.996 (3)161.3
O4W—H4WB···O70.851.982.808 (3)163.6
O5W—H5WA···O4W0.851.992.828 (3)168.3
O5W—H5WB···O6W0.851.992.783 (3)153.8
O6W—H6WA···O6vi0.851.892.737 (3)174.1
O6W—H6WB···O5Wvii0.852.032.826 (4)155.3
O7W—H7WA···O6W0.851.962.760 (3)156.5
O7W—H7WB···O5vi0.852.022.865 (3)172.8
Symmetry codes: (i) x+2, y2, z; (ii) x+1, y1, z1; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y1, z; (vi) x+1, y1, z; (vii) x+1, y2, z.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationAlbores, P. & Rentschler, E. (2008). Eur. J. Inorg. Chem. 25, 4004–4011.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChandler, C. J., Deady, L. W. & Reiss, J. A. (1981). J. Heterocycl. Chem. 18, 599–601.  CrossRef CAS Google Scholar
First citationDean, N. E., Hancock, R. D., Cahill, C. L. & Frisch, M. (2008). Inorg. Chem. 47, 2000–2010.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFan, L. L., Li, C. J., Meng, Z. S. & Tong, M. L. (2008). Eur. J. Inorg. Chem. 25, 3905–3909.  Web of Science CSD CrossRef Google Scholar
First citationGephart, R. T. III, Williams, N. J., Reibenspies, J. H., De Sousa, A. S. & Hancock, R. D. (2008). Inorg. Chem. 47, 10342–10348.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoghimi, A., Alizadeh, R., Aghabozorg, H., Shockravi, A., Aragoni, M. C., Demartin, F., Isaia, F., Lippolis, V., Harrison, A., Shokrollahi, A. & Shamsipur, M. (2005). J. Mol. Struct. 750, 166–173.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreerama, S. G. & Pal, S. (2004). Eur. J. Inorg. Chem. pp. 4718–4723.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds