organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Di­phenyl­carbamo­yl)-N,N′,N′,N′′,N′′-penta­methyl­guanidinium tetra­phenyl­borate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: Ioannis.Tiritiris@htw-aalen.de

(Received 11 December 2012; accepted 11 December 2012; online 15 December 2012)

In the title salt, C19H25N4O+·C24H20B, the C=N and C—N bond lengths in the CN3 unit are 1.3327 (8)/1.3364 (9) and 1.3802 (9) Å, indicating double- and single-bond character, respectively. The N—C—N angles are 118.77 (6), 120.29 (6) and 120.81 (6)°, showing only a small deviation of the CN3 plane from an ideal trigonal-planar geometry. The bonds between the N atoms and the terminal methyl C atoms all have values close to a typical single bond [1.4636 (9)–1.4772 (9) Å]. The crystal packing is caused by electrostatic inter­actions between cations and anions.

Related literature

For the synthesis and crystal structure of 3-[bis­(dimethyl­amino)­methyl­ene]-1,1-diphenyl­urea, see: Tiritiris (2012[Tiritiris, I. (2012). Acta Cryst. E68, o3085.]). For the crystal structures of alkali metal tetra­phenyl­borates, see: Behrens et al. (2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]).

[Scheme 1]

Experimental

Crystal data
  • C19H25N4O+·C24H20B

  • Mr = 644.64

  • Monoclinic, P 21 /n

  • a = 11.0564 (4) Å

  • b = 9.5942 (3) Å

  • c = 33.4312 (12) Å

  • β = 91.684 (2)°

  • V = 3544.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.24 × 0.17 × 0.15 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • 119072 measured reflections

  • 17178 independent reflections

  • 14383 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.06

  • 17178 reflections

  • 447 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3-[bis(dimethylamino)methylene]-1,1-diphenylurea - also known as N-diphenylcarbamoyl-N',N',N'',N''- tetramethylguanidine (Tiritiris, 2012) - is a guanidine derivative bearing additionally an urea moiety. By alkylation of the nitrogen atom, many structurally different guanidinium salts can be obtained. One of them is the here presented title compound. In the crystal structure of the salt, isolated cations and anions are present. One C–N bond of the CN3 unit in the cationic part is elongated (C1–N3 = 1.3802 (9) Å), indicating single bond character. The two remaining C–N bonds (C1–N2 = 1.3327 (8) Å and C1–N1 = 1.3364 (9) Å) are shorter and they show double bond character. As a consequence, the positive charge is not delocalized over the entire CN3 unit, but only between the two dimethylamino groups. The N–C1–N angles are: 120.29 (6)° (N1–C1–N2), 120.81 (6)° (N2–C1–N3) and 118.77 (6)° (N1–C1–N3), which indicate only a slight deviation of the CN3 plane from an ideal trigonal-planar geometry. The bonds between the N atoms and the terminal C-methyl groups, all have values close to a typical single bond (1.4636 (9)–1.4772 (9) Å). The C–O bond length in the diphenylcarbamoyl group is C7–O1 = 1.2148 (8) Å, and shows the expected double-bond character. The N–C bond lengths are: N3–C7 = 1.4267 (9) Å, N4–C7 = 1.3771 (8) Å, N4–C8 = 1.4348 (9) Å and N4–C14 = 1.4395 (9) Å. They are comparable with the data from the crystal structure analysis of 3-[bis(dimethylamino)methylene]- 1,1-diphenylurea (Tiritiris, 2012). The dihedral angle C1–N3–C7–N4 is 35.9 (1)° and the angle between the planes N1/C1/N2 and O1/C7/N4 is 61.5 (1)°, which show a significant twisting of the diphenylcarbamoyl group relative to the CN3 plane (Fig. 1). The bond lengths and angles in the tetraphenylborate ion are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). No specific interactions between the guanidinium ions and tetraphenylborate ions have been observed. Crystal packing is caused by electrostatic interactions between cations and anions.

Related literature top

For the synthesis and crystal structure of 3-[bis(dimethylamino)methylene]-1,1-diphenylurea, see: Tiritiris (2012). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012).

Experimental top

The title compound was obtained by reacting one equivalent of 3-[bis(dimethylamino)methylene]-1,1-diphenylurea (Tiritiris, 2012) with one equivalent of dimethyl sulfate in acetonitrile for two hours at room temperature. After evaporation of the solvent, the remaining viscous mass is washed with diethyl ether and dried, giving N-diphenylcarbamoyl- N,N',N',N'',N''-pentamethylguanidinium methyl sulfate (I). To 1.0 g (2.29 mmol) of (I) in 20 ml acetonitrile, 0.78 g (2.29 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After fifteen minutes of stirring at room temperature, the precipitated sodium methyl sulfate was filtered off. The title compound crystallized from a saturated acetonitrile solution during storage for several days at 273 K, forming colorless single crystals. Yield: 1.3 g (88%). 1H NMR (500 MHz, CD3CN): δ = 2.83 [s, 12 H, N(CH3)2], 2.95 [s, 3 H, NCH3], 6.85–6.88 [t, J = 7 Hz, 4 H, C6H5], 7.06–7.09 [t, J = 6 Hz, 8 H, C6H5], 7.25–7.29 [m, 8 H, C6H5], 7.30–7.48 [m, 10 H, C6H5]. 13C NMR (125 MHz, CD3CN): δ = 38.0 (NCH3), 40.9 [N(CH3)2], 122.6 (C6H5), 125.4 (C6H5), 126.5–130.9 (C6H5), 136.5 (C6H5), 143.3 (C6H5), 156.8 (N3C+), 161.6 (CO).

Refinement top

The hydrogen atoms of the methyl groups were derived from difference Fourier maps and allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with U(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The H atoms in the aromatic rings were placed at calculated positions with (C—H) = 0.95 Å. They were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).

Structure description top

3-[bis(dimethylamino)methylene]-1,1-diphenylurea - also known as N-diphenylcarbamoyl-N',N',N'',N''- tetramethylguanidine (Tiritiris, 2012) - is a guanidine derivative bearing additionally an urea moiety. By alkylation of the nitrogen atom, many structurally different guanidinium salts can be obtained. One of them is the here presented title compound. In the crystal structure of the salt, isolated cations and anions are present. One C–N bond of the CN3 unit in the cationic part is elongated (C1–N3 = 1.3802 (9) Å), indicating single bond character. The two remaining C–N bonds (C1–N2 = 1.3327 (8) Å and C1–N1 = 1.3364 (9) Å) are shorter and they show double bond character. As a consequence, the positive charge is not delocalized over the entire CN3 unit, but only between the two dimethylamino groups. The N–C1–N angles are: 120.29 (6)° (N1–C1–N2), 120.81 (6)° (N2–C1–N3) and 118.77 (6)° (N1–C1–N3), which indicate only a slight deviation of the CN3 plane from an ideal trigonal-planar geometry. The bonds between the N atoms and the terminal C-methyl groups, all have values close to a typical single bond (1.4636 (9)–1.4772 (9) Å). The C–O bond length in the diphenylcarbamoyl group is C7–O1 = 1.2148 (8) Å, and shows the expected double-bond character. The N–C bond lengths are: N3–C7 = 1.4267 (9) Å, N4–C7 = 1.3771 (8) Å, N4–C8 = 1.4348 (9) Å and N4–C14 = 1.4395 (9) Å. They are comparable with the data from the crystal structure analysis of 3-[bis(dimethylamino)methylene]- 1,1-diphenylurea (Tiritiris, 2012). The dihedral angle C1–N3–C7–N4 is 35.9 (1)° and the angle between the planes N1/C1/N2 and O1/C7/N4 is 61.5 (1)°, which show a significant twisting of the diphenylcarbamoyl group relative to the CN3 plane (Fig. 1). The bond lengths and angles in the tetraphenylborate ion are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). No specific interactions between the guanidinium ions and tetraphenylborate ions have been observed. Crystal packing is caused by electrostatic interactions between cations and anions.

For the synthesis and crystal structure of 3-[bis(dimethylamino)methylene]-1,1-diphenylurea, see: Tiritiris (2012). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are omitted for the sake of clarity.
N-(Diphenylcarbamoyl)- N,N',N',N'',N''-pentamethylguanidinium tetraphenylborate top
Crystal data top
C19H25N4O+·C24H20BF(000) = 1376
Mr = 644.64Dx = 1.208 Mg m3
Monoclinic, P21/nMelting point: 499 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.0564 (4) ÅCell parameters from 119072 reflections
b = 9.5942 (3) Åθ = 1.9–36.3°
c = 33.4312 (12) ŵ = 0.07 mm1
β = 91.684 (2)°T = 100 K
V = 3544.8 (2) Å3Block, colourless
Z = 40.24 × 0.17 × 0.15 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
14383 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.026
Graphite monochromatorθmax = 36.3°, θmin = 1.9°
φ scans, and ω scansh = 1818
119072 measured reflectionsk = 1515
17178 independent reflectionsl = 4955
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.121H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.058P)2 + 0.8563P]
where P = (Fo2 + 2Fc2)/3
17178 reflections(Δ/σ)max < 0.001
447 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H25N4O+·C24H20BV = 3544.8 (2) Å3
Mr = 644.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0564 (4) ŵ = 0.07 mm1
b = 9.5942 (3) ÅT = 100 K
c = 33.4312 (12) Å0.24 × 0.17 × 0.15 mm
β = 91.684 (2)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
14383 reflections with I > 2σ(I)
119072 measured reflectionsRint = 0.026
17178 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.06Δρmax = 0.51 e Å3
17178 reflectionsΔρmin = 0.22 e Å3
447 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.00096 (5)0.67518 (7)0.146331 (19)0.01387 (10)
N11.07031 (5)0.77454 (7)0.163107 (18)0.01749 (10)
N20.88355 (5)0.66826 (6)0.154064 (17)0.01423 (9)
N31.05465 (5)0.57515 (7)0.123078 (17)0.01599 (10)
C21.18186 (7)0.82630 (11)0.14580 (3)0.02881 (17)
H2A1.19080.78570.11920.043*
H2B1.25130.79980.16310.043*
H2C1.17810.92810.14360.043*
C31.04672 (7)0.82704 (8)0.20332 (2)0.02133 (13)
H3A1.00800.91870.20130.032*
H3B1.12330.83530.21870.032*
H3C0.99310.76220.21690.032*
C40.81203 (6)0.79278 (8)0.16271 (2)0.01889 (12)
H4A0.79910.79840.19150.028*
H4B0.73370.78720.14830.028*
H4C0.85550.87600.15400.028*
C50.81622 (7)0.53704 (8)0.15524 (3)0.02161 (13)
H5A0.87270.45860.15360.032*
H5B0.75800.53340.13260.032*
H5C0.77290.53130.18030.032*
C61.16588 (7)0.50748 (10)0.13910 (2)0.02623 (16)
H6A1.18640.54550.16570.039*
H6B1.23250.52530.12110.039*
H6C1.15250.40680.14120.039*
C70.99758 (6)0.50474 (7)0.090013 (19)0.01514 (10)
O11.02242 (5)0.38358 (6)0.083615 (17)0.02006 (10)
N40.91755 (5)0.58089 (6)0.066452 (17)0.01539 (9)
C80.92431 (6)0.72938 (7)0.061944 (19)0.01458 (10)
C91.03421 (7)0.79385 (8)0.05482 (2)0.02053 (12)
H9A1.10600.74000.05330.025*
C101.03832 (8)0.93813 (9)0.04998 (3)0.02628 (15)
H10A1.11380.98310.04640.032*
C110.93289 (8)1.01653 (8)0.05035 (3)0.02490 (14)
H11A0.93601.11480.04690.030*
C120.82267 (7)0.95055 (8)0.05573 (2)0.02075 (13)
H12A0.75001.00350.05500.025*
C130.81810 (6)0.80749 (7)0.06212 (2)0.01723 (11)
H13A0.74290.76320.06660.021*
C140.83769 (6)0.50707 (7)0.039062 (19)0.01551 (10)
C150.82544 (7)0.55132 (8)0.00044 (2)0.01974 (12)
H15A0.87450.62470.01000.024*
C160.74043 (8)0.48695 (9)0.02581 (2)0.02552 (15)
H16A0.73030.51820.05270.031*
C170.67023 (8)0.37747 (9)0.01230 (3)0.02613 (15)
H17A0.61240.33430.02980.031*
C180.68496 (8)0.33128 (9)0.02700 (2)0.02390 (14)
H18A0.63830.25520.03620.029*
C190.76810 (7)0.39665 (8)0.05277 (2)0.02067 (12)
H19A0.77750.36610.07970.025*
B10.52389 (6)0.21514 (8)0.15651 (2)0.01335 (11)
C200.44464 (6)0.14317 (7)0.191805 (19)0.01352 (10)
C210.48685 (6)0.03020 (7)0.21503 (2)0.01834 (11)
H21A0.56590.00460.21080.022*
C220.41710 (7)0.03286 (8)0.24409 (2)0.02053 (12)
H22A0.44940.10850.25930.025*
C230.30066 (6)0.01450 (8)0.25084 (2)0.01820 (11)
H23A0.25300.02780.27070.022*
C240.25530 (6)0.12485 (8)0.22803 (2)0.01747 (11)
H24A0.17580.15830.23220.021*
C250.32589 (6)0.18668 (7)0.19911 (2)0.01539 (10)
H25A0.29250.26120.18370.018*
C260.47738 (5)0.13982 (7)0.114657 (19)0.01352 (10)
C270.37644 (6)0.19096 (8)0.09256 (2)0.01912 (12)
H27A0.33590.27100.10220.023*
C280.33342 (7)0.12931 (8)0.05717 (2)0.02290 (14)
H28A0.26570.16840.04310.027*
C290.38922 (7)0.01102 (8)0.04241 (2)0.02233 (13)
H29A0.36130.03050.01810.027*
C300.48676 (7)0.04526 (8)0.06403 (2)0.01926 (12)
H30A0.52510.12710.05470.023*
C310.52867 (6)0.01772 (7)0.09943 (2)0.01514 (10)
H31A0.59470.02380.11380.018*
C320.66957 (6)0.19811 (7)0.166723 (19)0.01444 (10)
C330.71593 (7)0.22033 (10)0.20592 (2)0.02351 (14)
H33A0.66060.23880.22650.028*
C340.83882 (7)0.21646 (10)0.21588 (3)0.02745 (16)
H34A0.86580.23120.24280.033*
C350.92237 (7)0.19095 (8)0.18636 (3)0.02348 (14)
H35A1.00650.18790.19290.028*
C360.88095 (6)0.17006 (7)0.14723 (2)0.01941 (12)
H36A0.93690.15330.12670.023*
C370.75681 (6)0.17376 (7)0.13797 (2)0.01473 (10)
H37A0.73050.15910.11100.018*
C380.50307 (5)0.38509 (7)0.154358 (18)0.01357 (10)
C390.51311 (6)0.46073 (7)0.11854 (2)0.01621 (11)
H39A0.52590.41100.09450.019*
C400.50512 (6)0.60585 (8)0.11693 (2)0.01927 (12)
H40A0.51240.65250.09200.023*
C410.48660 (6)0.68271 (8)0.15148 (2)0.01973 (12)
H41A0.48060.78140.15050.024*
C420.47705 (7)0.61176 (8)0.18754 (2)0.01958 (12)
H42A0.46480.66240.21150.023*
C430.48534 (6)0.46658 (7)0.18870 (2)0.01693 (11)
H43A0.47870.42080.21370.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0132 (2)0.0150 (2)0.0133 (2)0.00064 (18)0.00187 (17)0.00090 (19)
N10.0149 (2)0.0200 (3)0.0174 (2)0.00287 (19)0.00295 (17)0.00106 (19)
N20.0131 (2)0.0132 (2)0.0164 (2)0.00042 (16)0.00001 (16)0.00077 (17)
N30.0144 (2)0.0196 (2)0.0138 (2)0.00508 (18)0.00286 (16)0.00122 (18)
C20.0179 (3)0.0382 (5)0.0302 (4)0.0107 (3)0.0011 (3)0.0005 (3)
C30.0237 (3)0.0208 (3)0.0191 (3)0.0004 (2)0.0063 (2)0.0046 (2)
C40.0165 (3)0.0171 (3)0.0230 (3)0.0031 (2)0.0004 (2)0.0032 (2)
C50.0209 (3)0.0161 (3)0.0281 (3)0.0051 (2)0.0047 (2)0.0016 (2)
C60.0216 (3)0.0357 (4)0.0209 (3)0.0142 (3)0.0074 (2)0.0037 (3)
C70.0158 (2)0.0164 (3)0.0132 (2)0.0025 (2)0.00034 (18)0.00101 (19)
O10.0235 (2)0.0166 (2)0.0200 (2)0.00525 (18)0.00059 (18)0.00018 (18)
N40.0178 (2)0.0140 (2)0.0140 (2)0.00098 (18)0.00418 (17)0.00090 (17)
C80.0161 (2)0.0145 (2)0.0130 (2)0.00119 (19)0.00102 (18)0.00093 (19)
C90.0174 (3)0.0209 (3)0.0233 (3)0.0002 (2)0.0016 (2)0.0040 (2)
C100.0266 (3)0.0217 (3)0.0307 (4)0.0053 (3)0.0023 (3)0.0055 (3)
C110.0355 (4)0.0162 (3)0.0231 (3)0.0004 (3)0.0013 (3)0.0021 (2)
C120.0274 (3)0.0176 (3)0.0173 (3)0.0063 (2)0.0005 (2)0.0003 (2)
C130.0177 (3)0.0178 (3)0.0161 (3)0.0030 (2)0.0002 (2)0.0002 (2)
C140.0182 (2)0.0153 (3)0.0129 (2)0.0014 (2)0.00250 (19)0.00088 (19)
C150.0261 (3)0.0198 (3)0.0132 (3)0.0008 (2)0.0019 (2)0.0000 (2)
C160.0359 (4)0.0254 (4)0.0147 (3)0.0010 (3)0.0078 (3)0.0018 (2)
C170.0305 (4)0.0251 (4)0.0222 (3)0.0008 (3)0.0096 (3)0.0062 (3)
C180.0278 (3)0.0214 (3)0.0222 (3)0.0051 (3)0.0043 (3)0.0036 (3)
C190.0268 (3)0.0192 (3)0.0158 (3)0.0040 (2)0.0033 (2)0.0003 (2)
B10.0125 (2)0.0153 (3)0.0122 (3)0.0002 (2)0.00062 (19)0.0003 (2)
C200.0141 (2)0.0132 (2)0.0132 (2)0.00016 (18)0.00034 (18)0.00006 (18)
C210.0193 (3)0.0166 (3)0.0192 (3)0.0037 (2)0.0019 (2)0.0039 (2)
C220.0242 (3)0.0171 (3)0.0203 (3)0.0006 (2)0.0009 (2)0.0062 (2)
C230.0198 (3)0.0191 (3)0.0158 (3)0.0053 (2)0.0003 (2)0.0020 (2)
C240.0138 (2)0.0214 (3)0.0172 (3)0.0023 (2)0.00034 (19)0.0014 (2)
C250.0135 (2)0.0167 (3)0.0159 (3)0.00022 (19)0.00057 (18)0.0022 (2)
C260.0129 (2)0.0144 (2)0.0132 (2)0.00080 (18)0.00111 (17)0.00018 (19)
C270.0169 (3)0.0185 (3)0.0216 (3)0.0026 (2)0.0068 (2)0.0036 (2)
C280.0241 (3)0.0199 (3)0.0239 (3)0.0008 (2)0.0123 (3)0.0019 (2)
C290.0278 (3)0.0194 (3)0.0192 (3)0.0027 (3)0.0079 (2)0.0030 (2)
C300.0222 (3)0.0150 (3)0.0204 (3)0.0011 (2)0.0025 (2)0.0035 (2)
C310.0157 (2)0.0131 (2)0.0165 (3)0.00082 (19)0.00221 (19)0.00027 (19)
C320.0132 (2)0.0163 (3)0.0137 (2)0.00047 (19)0.00181 (18)0.00037 (19)
C330.0175 (3)0.0376 (4)0.0152 (3)0.0030 (3)0.0035 (2)0.0015 (3)
C340.0204 (3)0.0393 (5)0.0221 (3)0.0035 (3)0.0093 (2)0.0016 (3)
C350.0147 (3)0.0220 (3)0.0333 (4)0.0002 (2)0.0074 (2)0.0004 (3)
C360.0132 (2)0.0156 (3)0.0293 (3)0.0000 (2)0.0001 (2)0.0025 (2)
C370.0134 (2)0.0132 (2)0.0176 (3)0.00071 (18)0.00013 (19)0.00067 (19)
C380.0125 (2)0.0154 (2)0.0127 (2)0.00173 (18)0.00025 (17)0.00052 (19)
C390.0160 (2)0.0181 (3)0.0145 (2)0.0014 (2)0.00031 (19)0.0023 (2)
C400.0174 (3)0.0193 (3)0.0210 (3)0.0024 (2)0.0019 (2)0.0060 (2)
C410.0151 (2)0.0153 (3)0.0287 (3)0.0023 (2)0.0009 (2)0.0019 (2)
C420.0198 (3)0.0169 (3)0.0222 (3)0.0034 (2)0.0021 (2)0.0036 (2)
C430.0195 (3)0.0161 (3)0.0152 (3)0.0030 (2)0.0013 (2)0.0007 (2)
Geometric parameters (Å, º) top
C1—N21.3327 (8)C19—H19A0.9500
C1—N11.3364 (9)B1—C201.6424 (9)
C1—N31.3802 (9)B1—C261.6437 (9)
N1—C21.4643 (10)B1—C321.6447 (9)
N1—C31.4662 (10)B1—C381.6480 (10)
N2—C51.4636 (9)C20—C211.4050 (9)
N2—C41.4662 (9)C20—C251.4059 (9)
N3—C71.4267 (9)C21—C221.3960 (10)
N3—C61.4772 (9)C21—H21A0.9500
C2—H2A0.9800C22—C231.3898 (11)
C2—H2B0.9800C22—H22A0.9500
C2—H2C0.9800C23—C241.3899 (10)
C3—H3A0.9800C23—H23A0.9500
C3—H3B0.9800C24—C251.3929 (9)
C3—H3C0.9800C24—H24A0.9500
C4—H4A0.9800C25—H25A0.9500
C4—H4B0.9800C26—C311.4036 (9)
C4—H4C0.9800C26—C271.4083 (9)
C5—H5A0.9800C27—C281.3939 (10)
C5—H5B0.9800C27—H27A0.9500
C5—H5C0.9800C28—C291.3893 (11)
C6—H6A0.9800C28—H28A0.9500
C6—H6B0.9800C29—C301.3895 (11)
C6—H6C0.9800C29—H29A0.9500
C7—O11.2148 (8)C30—C311.3960 (10)
C7—N41.3771 (8)C30—H30A0.9500
N4—C81.4348 (9)C31—H31A0.9500
N4—C141.4395 (9)C32—C371.4012 (9)
C8—C91.3903 (10)C32—C331.4092 (10)
C8—C131.3932 (9)C33—C341.3899 (11)
C9—C101.3945 (11)C33—H33A0.9500
C9—H9A0.9500C34—C351.3930 (13)
C10—C111.3877 (13)C34—H34A0.9500
C10—H10A0.9500C35—C361.3879 (11)
C11—C121.3896 (12)C35—H35A0.9500
C11—H11A0.9500C36—C371.3985 (9)
C12—C131.3903 (10)C36—H36A0.9500
C12—H12A0.9500C37—H37A0.9500
C13—H13A0.9500C38—C431.4074 (9)
C14—C151.3902 (10)C38—C391.4075 (9)
C14—C191.3947 (10)C39—C401.3960 (10)
C15—C161.3918 (11)C39—H39A0.9500
C15—H15A0.9500C40—C411.3906 (11)
C16—C171.3894 (13)C40—H40A0.9500
C16—H16A0.9500C41—C421.3911 (11)
C17—C181.3915 (12)C41—H41A0.9500
C17—H17A0.9500C42—C431.3964 (10)
C18—C191.3906 (10)C42—H42A0.9500
C18—H18A0.9500C43—H43A0.9500
N2—C1—N1120.29 (6)C18—C19—C14120.00 (7)
N2—C1—N3120.81 (6)C18—C19—H19A120.0
N1—C1—N3118.77 (6)C14—C19—H19A120.0
C1—N1—C2123.76 (6)C20—B1—C26105.46 (5)
C1—N1—C3120.96 (6)C20—B1—C32110.42 (5)
C2—N1—C3114.86 (6)C26—B1—C32114.39 (5)
C1—N2—C5123.17 (6)C20—B1—C38111.75 (5)
C1—N2—C4122.12 (6)C26—B1—C38110.98 (5)
C5—N2—C4114.70 (6)C32—B1—C38104.01 (5)
C1—N3—C7125.30 (5)C21—C20—C25115.45 (6)
C1—N3—C6117.95 (6)C21—C20—B1123.08 (6)
C7—N3—C6114.67 (6)C25—C20—B1121.37 (5)
N1—C2—H2A109.5C22—C21—C20122.52 (6)
N1—C2—H2B109.5C22—C21—H21A118.7
H2A—C2—H2B109.5C20—C21—H21A118.7
N1—C2—H2C109.5C23—C22—C21120.31 (6)
H2A—C2—H2C109.5C23—C22—H22A119.8
H2B—C2—H2C109.5C21—C22—H22A119.8
N1—C3—H3A109.5C22—C23—C24118.75 (6)
N1—C3—H3B109.5C22—C23—H23A120.6
H3A—C3—H3B109.5C24—C23—H23A120.6
N1—C3—H3C109.5C23—C24—C25120.32 (6)
H3A—C3—H3C109.5C23—C24—H24A119.8
H3B—C3—H3C109.5C25—C24—H24A119.8
N2—C4—H4A109.5C24—C25—C20122.64 (6)
N2—C4—H4B109.5C24—C25—H25A118.7
H4A—C4—H4B109.5C20—C25—H25A118.7
N2—C4—H4C109.5C31—C26—C27115.02 (6)
H4A—C4—H4C109.5C31—C26—B1123.77 (5)
H4B—C4—H4C109.5C27—C26—B1121.10 (6)
N2—C5—H5A109.5C28—C27—C26122.88 (7)
N2—C5—H5B109.5C28—C27—H27A118.6
H5A—C5—H5B109.5C26—C27—H27A118.6
N2—C5—H5C109.5C29—C28—C27120.27 (7)
H5A—C5—H5C109.5C29—C28—H28A119.9
H5B—C5—H5C109.5C27—C28—H28A119.9
N3—C6—H6A109.5C28—C29—C30118.60 (7)
N3—C6—H6B109.5C28—C29—H29A120.7
H6A—C6—H6B109.5C30—C29—H29A120.7
N3—C6—H6C109.5C29—C30—C31120.40 (7)
H6A—C6—H6C109.5C29—C30—H30A119.8
H6B—C6—H6C109.5C31—C30—H30A119.8
O1—C7—N4123.49 (6)C30—C31—C26122.76 (6)
O1—C7—N3119.50 (6)C30—C31—H31A118.6
N4—C7—N3117.00 (6)C26—C31—H31A118.6
C7—N4—C8123.53 (6)C37—C32—C33115.09 (6)
C7—N4—C14118.33 (6)C37—C32—B1124.32 (6)
C8—N4—C14117.04 (5)C33—C32—B1120.35 (6)
C9—C8—C13120.16 (6)C34—C33—C32123.03 (7)
C9—C8—N4120.55 (6)C34—C33—H33A118.5
C13—C8—N4119.15 (6)C32—C33—H33A118.5
C8—C9—C10119.55 (7)C33—C34—C35119.93 (7)
C8—C9—H9A120.2C33—C34—H34A120.0
C10—C9—H9A120.2C35—C34—H34A120.0
C11—C10—C9120.44 (8)C36—C35—C34119.07 (7)
C11—C10—H10A119.8C36—C35—H35A120.5
C9—C10—H10A119.8C34—C35—H35A120.5
C10—C11—C12119.63 (7)C35—C36—C37119.96 (7)
C10—C11—H11A120.2C35—C36—H36A120.0
C12—C11—H11A120.2C37—C36—H36A120.0
C11—C12—C13120.37 (7)C36—C37—C32122.92 (6)
C11—C12—H12A119.8C36—C37—H37A118.5
C13—C12—H12A119.8C32—C37—H37A118.5
C12—C13—C8119.73 (7)C43—C38—C39115.08 (6)
C12—C13—H13A120.1C43—C38—B1122.46 (6)
C8—C13—H13A120.1C39—C38—B1122.20 (6)
C15—C14—C19120.32 (6)C40—C39—C38122.71 (6)
C15—C14—N4119.66 (6)C40—C39—H39A118.6
C19—C14—N4119.92 (6)C38—C39—H39A118.6
C14—C15—C16119.24 (7)C41—C40—C39120.51 (7)
C14—C15—H15A120.4C41—C40—H40A119.7
C16—C15—H15A120.4C39—C40—H40A119.7
C17—C16—C15120.75 (7)C40—C41—C42118.50 (7)
C17—C16—H16A119.6C40—C41—H41A120.8
C15—C16—H16A119.6C42—C41—H41A120.8
C16—C17—C18119.77 (7)C41—C42—C43120.36 (7)
C16—C17—H17A120.1C41—C42—H42A119.8
C18—C17—H17A120.1C43—C42—H42A119.8
C19—C18—C17119.89 (8)C42—C43—C38122.83 (6)
C19—C18—H18A120.1C42—C43—H43A118.6
C17—C18—H18A120.1C38—C43—H43A118.6
N2—C1—N1—C2154.84 (7)C25—C20—C21—C221.46 (10)
N3—C1—N1—C229.32 (10)B1—C20—C21—C22177.94 (7)
N2—C1—N1—C333.03 (10)C20—C21—C22—C230.59 (12)
N3—C1—N1—C3142.81 (7)C21—C22—C23—C240.32 (11)
N1—C1—N2—C5147.91 (7)C22—C23—C24—C250.27 (11)
N3—C1—N2—C527.85 (10)C23—C24—C25—C200.70 (11)
N1—C1—N2—C431.14 (9)C21—C20—C25—C241.52 (10)
N3—C1—N2—C4153.11 (6)B1—C20—C25—C24178.06 (6)
N2—C1—N3—C734.10 (10)C20—B1—C26—C3189.37 (7)
N1—C1—N3—C7150.08 (7)C32—B1—C26—C3132.16 (9)
N2—C1—N3—C6128.56 (7)C38—B1—C26—C31149.45 (6)
N1—C1—N3—C647.25 (9)C20—B1—C26—C2786.83 (7)
C1—N3—C7—O1145.19 (7)C32—B1—C26—C27151.64 (6)
C6—N3—C7—O117.98 (10)C38—B1—C26—C2734.35 (8)
C1—N3—C7—N435.91 (10)C31—C26—C27—C282.83 (11)
C6—N3—C7—N4160.93 (7)B1—C26—C27—C28179.34 (7)
O1—C7—N4—C8152.04 (7)C26—C27—C28—C290.91 (13)
N3—C7—N4—C826.82 (9)C27—C28—C29—C301.16 (13)
O1—C7—N4—C1415.60 (10)C28—C29—C30—C311.13 (12)
N3—C7—N4—C14165.54 (6)C29—C30—C31—C260.98 (11)
C7—N4—C8—C946.21 (10)C27—C26—C31—C302.86 (10)
C14—N4—C8—C9121.57 (7)B1—C26—C31—C30179.27 (6)
C7—N4—C8—C13138.05 (7)C20—B1—C32—C37143.05 (6)
C14—N4—C8—C1354.16 (8)C26—B1—C32—C3724.28 (9)
C13—C8—C9—C103.42 (11)C38—B1—C32—C3796.93 (7)
N4—C8—C9—C10179.11 (7)C20—B1—C32—C3342.78 (9)
C8—C9—C10—C113.07 (13)C26—B1—C32—C33161.54 (7)
C9—C10—C11—C120.25 (13)C38—B1—C32—C3377.25 (8)
C10—C11—C12—C132.24 (12)C37—C32—C33—C340.99 (12)
C11—C12—C13—C81.89 (11)B1—C32—C33—C34175.68 (8)
C9—C8—C13—C120.96 (10)C32—C33—C34—C350.61 (14)
N4—C8—C13—C12176.71 (6)C33—C34—C35—C360.16 (13)
C7—N4—C14—C15132.19 (7)C34—C35—C36—C370.47 (12)
C8—N4—C14—C1536.25 (9)C35—C36—C37—C320.05 (11)
C7—N4—C14—C1951.37 (9)C33—C32—C37—C360.66 (10)
C8—N4—C14—C19140.18 (7)B1—C32—C37—C36175.11 (6)
C19—C14—C15—C161.91 (11)C20—B1—C38—C4335.08 (8)
N4—C14—C15—C16174.52 (7)C26—B1—C38—C43152.49 (6)
C14—C15—C16—C171.50 (12)C32—B1—C38—C4384.04 (7)
C15—C16—C17—C180.08 (13)C20—B1—C38—C39151.05 (6)
C16—C17—C18—C191.27 (13)C26—B1—C38—C3933.64 (8)
C17—C18—C19—C140.86 (13)C32—B1—C38—C3989.83 (7)
C15—C14—C19—C180.74 (12)C43—C38—C39—C400.53 (9)
N4—C14—C19—C18175.67 (7)B1—C38—C39—C40174.82 (6)
C26—B1—C20—C2195.42 (7)C38—C39—C40—C410.05 (10)
C32—B1—C20—C2128.65 (9)C39—C40—C41—C420.39 (10)
C38—B1—C20—C21143.90 (6)C40—C41—C42—C430.33 (10)
C26—B1—C20—C2580.85 (7)C41—C42—C43—C380.18 (11)
C32—B1—C20—C25155.07 (6)C39—C38—C43—C420.59 (10)
C38—B1—C20—C2539.83 (8)B1—C38—C43—C42174.87 (6)

Experimental details

Crystal data
Chemical formulaC19H25N4O+·C24H20B
Mr644.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.0564 (4), 9.5942 (3), 33.4312 (12)
β (°) 91.684 (2)
V3)3544.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.24 × 0.17 × 0.15
Data collection
DiffractometerBruker Kappa APEXII DUO
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
119072, 17178, 14383
Rint0.026
(sin θ/λ)max1)0.834
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.06
No. of reflections17178
No. of parameters447
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

 

Acknowledgements

The author thanks Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for the data collection.

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiritiris, I. (2012). Acta Cryst. E68, o3085.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds