organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[Anilino(phen­yl)meth­yl]cyclo­heptan­one

aDepartment of Chemistry, University of Maragheh, Maragheh, Iran, bDepartment of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran, and cDepartment of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey
*Correspondence e-mail: eftekharisis@maragheh.ac.ir

(Received 18 August 2012; accepted 12 December 2012; online 19 December 2012)

In the title compound, C20H23NO, the cyclo­hepta­none ring adopts a twist-chair conformation, with the amino­methyl substituent in an equatorial position. The relative configuration of the two stereocenters is R,R. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into chains along [100].

Related literature

For the synthesis of title compound and related compounds, see: Eftekhari-Sis et al. (2013[Eftekhari-Sis, B., Mohajer, S., Mahdavinia, G. R. & Büyükgüngör, O. (2013). RSC Advances. Submitted.]). For the biological activity of β-amino ketones, see: Arend et al. (1998[Arend, M., Westermann, B. & Risch, N. (1998). Angew. Chem. Int. Ed. 37, 1044-1070.]); Jadhav et al. (2008[Jadhav, V. J., Kulkarni, M. V., Rasal, V. P., Biradar, S. S. & Vinay, M. D. (2008). Eur. J. Med. Chem. 43, 1721-1729.]); Kalluraya et al. (2001[Kalluraya, B., Isloor, A. M., Chimbalkar, R. & Shenoy, S. (2001). Indian J. Heterocycl. Chem. pp. 239-240.]). For information on the Mannich reaction, see, for example: Eftekhari-Sis et al. (2006[Eftekhari-Sis, B., Abdollahifar, A., Hashemi, M. M. & Zirak, M. (2006). Eur. J. Org. Chem. pp. 5152-5157.]); Azizi et al. (2006[Azizi, N., Torkiyan, L. & Saidi, M. R. (2006). Org. Lett. 8, 2079-2082.]); Cordova (2004[Cordova, A. (2004). Acc. Chem. Res. 37, 102-112.]). For the crystal structures of related compounds, see: Eftekhari-Sis et al. (2012[Eftekhari-Sis, B., Mohajer, S. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2829.]); Yuan et al. (2007[Yuan, G.-X., Sun, J.-B., Zhang, L.-H. & Lu, G. (2007). Acta Cryst. E63, o3960.]); Fun et al. (2009[Fun, H.-K., Chantrapromma, S., Rai, S., Shetty, P. & Isloor, A. M. (2009). Acta Cryst. E65, o539-o540.]). For puckering parameters, see: Evans & Boeyens (1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23NO

  • Mr = 293.39

  • Monoclinic, P 21 /c

  • a = 5.7534 (4) Å

  • b = 16.1336 (8) Å

  • c = 18.1980 (13) Å

  • β = 99.371 (6)°

  • V = 1666.65 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.72 × 0.56 × 0.27 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.965, Tmax = 0.985

  • 10757 measured reflections

  • 3449 independent reflections

  • 2170 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.01

  • 3449 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.879 (19) 2.23 (2) 3.065 (2) 158.4 (16)
Symmetry code: (i) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Mannich reaction (Eftekhari-Sis et al., 2006; Azizi et al., 2006; Cordova, 2004) is one of the most important basic reactions in organic chemistry for its use in natural product and pharmaceutical syntheses due to formation of C—C and C—N bonds, simultaneously, to furnish β-amino ketones, which exhibit biological activity such as anti-inflammatory (Jadhav et al., 2008) and antimicrobial (Kalluraya et al., 2001) activities. We have synthesized the title compound and report its structure here, Fig 1. The cycloheptanone ring adopts twist-chair conformation, with puckering parameters of Q(2) = 0.539 (2) Å, Φ(2) = 41.7 (2)° and Q(3) = 0.644 (2) Å, Φ(3) = 319.2 (2)° (Evans & Boeyens, 1989). The aminomethyl moiety is positioned equatorially on the ring at C1.

Related literature top

For the synthesis of title compound and related compounds, see: Eftekhari-Sis et al. (2013). For the biological activity of β-amino ketones, see: Arend et al. (1998); Jadhav et al. (2008); Kalluraya et al. (2001). For information on the Mannich reaction, see, for example: Eftekhari-Sis et al. (2006); Azizi et al. (2006); Cordova (2004). For the crystal structures of related compounds, see: Eftekhari-Sis et al. (2012); Yuan et al. (2007); Fun et al. (2009). For puckering parameters, see: Evans & Boeyens (1989).

Experimental top

The title compound was obtained by adding of 0.04 g of Laponite-HPMC nano composite (Eftekhari-Sis et al., 2013) to a mixture of 0.5 mmol of benzaldehyde, 0.5 mmol of aniline and 3 equiv. of cycloheptanone and stirring at room temperature for 24 h. After completion of the reaction, 5 ml EtOH was added and the catalyst was removed by filtration. The filtrate was concentrated under reduced pressure. The obtained crude product was recrystallized from EtOH to afford the title compound in 60% yield. Colorless crystals suitable for crystal structure determination were grown from 96% EtOH.

Refinement top

Carbon bound H atoms were positioned geometrically, with C—H=0.93, 0.97, and 0.98 Å for aromatic, methylene and methine H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The nitrogen H atoms were located from the difference Fourier map and allowed to refine freely.

Structure description top

Mannich reaction (Eftekhari-Sis et al., 2006; Azizi et al., 2006; Cordova, 2004) is one of the most important basic reactions in organic chemistry for its use in natural product and pharmaceutical syntheses due to formation of C—C and C—N bonds, simultaneously, to furnish β-amino ketones, which exhibit biological activity such as anti-inflammatory (Jadhav et al., 2008) and antimicrobial (Kalluraya et al., 2001) activities. We have synthesized the title compound and report its structure here, Fig 1. The cycloheptanone ring adopts twist-chair conformation, with puckering parameters of Q(2) = 0.539 (2) Å, Φ(2) = 41.7 (2)° and Q(3) = 0.644 (2) Å, Φ(3) = 319.2 (2)° (Evans & Boeyens, 1989). The aminomethyl moiety is positioned equatorially on the ring at C1.

For the synthesis of title compound and related compounds, see: Eftekhari-Sis et al. (2013). For the biological activity of β-amino ketones, see: Arend et al. (1998); Jadhav et al. (2008); Kalluraya et al. (2001). For information on the Mannich reaction, see, for example: Eftekhari-Sis et al. (2006); Azizi et al. (2006); Cordova (2004). For the crystal structures of related compounds, see: Eftekhari-Sis et al. (2012); Yuan et al. (2007); Fun et al. (2009). For puckering parameters, see: Evans & Boeyens (1989).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of title compound, showing 40% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The unit cell contents of title compound.
[Figure 3] Fig. 3. The linking of molecules by N—H···O hydrogen bonds into infinite one-dimensional chains. Hydrogen bonds are shown as dashed lines.
2-[Anilino(phenyl)methyl]cycloheptanone top
Crystal data top
C20H23NOF(000) = 632
Mr = 293.39Dx = 1.169 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10757 reflections
a = 5.7534 (4) Åθ = 1.7–28.0°
b = 16.1336 (8) ŵ = 0.07 mm1
c = 18.1980 (13) ÅT = 296 K
β = 99.371 (6)°Prism, colourless
V = 1666.65 (19) Å30.72 × 0.56 × 0.27 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3449 independent reflections
Radiation source: fine-focus sealed tube2170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
rotation method scansθmax = 26.5°, θmin = 1.7°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 77
Tmin = 0.965, Tmax = 0.985k = 2020
10757 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0722P)2]
where P = (Fo2 + 2Fc2)/3
3449 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C20H23NOV = 1666.65 (19) Å3
Mr = 293.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7534 (4) ŵ = 0.07 mm1
b = 16.1336 (8) ÅT = 296 K
c = 18.1980 (13) Å0.72 × 0.56 × 0.27 mm
β = 99.371 (6)°
Data collection top
Stoe IPDS 2
diffractometer
3449 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2170 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.985Rint = 0.041
10757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.26 e Å3
3449 reflectionsΔρmin = 0.13 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4026 (3)0.45073 (9)0.32943 (9)0.0508 (4)
H10.52130.42110.30650.061*
C20.1676 (3)0.41004 (10)0.30531 (10)0.0545 (4)
C30.1590 (3)0.31909 (11)0.28983 (11)0.0680 (5)
H3A0.15900.31110.23700.082*
H3B0.01080.29780.30080.082*
C40.3563 (4)0.26786 (11)0.33231 (12)0.0750 (6)
H4A0.32050.20970.32290.090*
H4B0.50020.28010.31310.090*
C50.3998 (5)0.28183 (13)0.41489 (13)0.0919 (7)
H5A0.24880.28800.43150.110*
H5B0.47470.23280.43880.110*
C60.5488 (5)0.35543 (15)0.44101 (12)0.0922 (7)
H6A0.57330.35570.49500.111*
H6B0.70170.34760.42610.111*
C70.4594 (4)0.43901 (13)0.41458 (11)0.0786 (6)
H7A0.57610.48000.43460.094*
H7B0.31770.45050.43530.094*
C80.4030 (3)0.54291 (9)0.30610 (10)0.0533 (4)
H80.28120.57160.32830.064*
C90.5035 (3)0.52774 (10)0.17700 (11)0.0606 (5)
H90.64390.50260.19820.073*
C100.4556 (4)0.53841 (12)0.10111 (12)0.0726 (5)
H100.56420.52100.07170.087*
C110.2490 (4)0.57456 (13)0.06854 (13)0.0801 (6)
H110.21590.58100.01710.096*
C120.0910 (4)0.60127 (14)0.11243 (14)0.0850 (7)
H120.04890.62640.09070.102*
C130.1397 (3)0.59089 (12)0.18865 (12)0.0713 (5)
H130.03140.60930.21780.086*
C140.3459 (3)0.55379 (9)0.22262 (10)0.0530 (4)
C150.6636 (3)0.65940 (9)0.36011 (9)0.0525 (4)
C160.8846 (3)0.68313 (11)0.39812 (10)0.0604 (4)
H161.00510.64410.40650.073*
C170.9275 (4)0.76247 (12)0.42320 (12)0.0706 (5)
H171.07640.77660.44810.085*
C180.7531 (4)0.82152 (12)0.41206 (12)0.0760 (6)
H180.78230.87540.42930.091*
C190.5343 (4)0.79933 (11)0.37481 (12)0.0688 (5)
H190.41520.83890.36710.083*
C200.4877 (3)0.71963 (10)0.34864 (10)0.0587 (4)
H200.33870.70620.32330.070*
N10.6284 (3)0.57845 (9)0.33722 (10)0.0661 (5)
O10.0127 (2)0.44979 (8)0.30255 (10)0.0854 (5)
H1A0.751 (3)0.5457 (11)0.3392 (10)0.064 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0554 (9)0.0428 (8)0.0545 (10)0.0063 (7)0.0095 (7)0.0041 (7)
C20.0518 (9)0.0529 (9)0.0604 (11)0.0067 (8)0.0142 (8)0.0069 (8)
C30.0697 (11)0.0561 (10)0.0797 (13)0.0070 (9)0.0166 (9)0.0084 (9)
C40.0957 (15)0.0449 (9)0.0878 (15)0.0060 (10)0.0253 (11)0.0033 (9)
C50.132 (2)0.0664 (13)0.0802 (16)0.0179 (13)0.0271 (14)0.0195 (11)
C60.1148 (18)0.0980 (17)0.0584 (13)0.0108 (15)0.0023 (12)0.0184 (11)
C70.1024 (16)0.0695 (12)0.0605 (12)0.0015 (11)0.0029 (11)0.0085 (10)
C80.0482 (9)0.0410 (8)0.0709 (11)0.0037 (7)0.0104 (8)0.0043 (7)
C90.0577 (10)0.0510 (9)0.0719 (13)0.0038 (8)0.0067 (9)0.0009 (8)
C100.0826 (14)0.0633 (12)0.0738 (14)0.0020 (10)0.0182 (11)0.0008 (9)
C110.0962 (16)0.0693 (12)0.0719 (13)0.0007 (12)0.0054 (12)0.0129 (10)
C120.0760 (14)0.0830 (14)0.0903 (17)0.0155 (11)0.0031 (12)0.0220 (12)
C130.0606 (11)0.0674 (11)0.0857 (15)0.0125 (9)0.0110 (10)0.0134 (10)
C140.0509 (9)0.0348 (7)0.0730 (12)0.0021 (7)0.0092 (8)0.0022 (7)
C150.0585 (10)0.0456 (8)0.0551 (10)0.0011 (7)0.0142 (7)0.0021 (7)
C160.0588 (10)0.0578 (10)0.0639 (11)0.0009 (8)0.0076 (8)0.0071 (8)
C170.0700 (12)0.0648 (11)0.0757 (13)0.0106 (10)0.0076 (10)0.0152 (9)
C180.0901 (14)0.0522 (10)0.0873 (15)0.0114 (10)0.0198 (11)0.0138 (10)
C190.0754 (12)0.0462 (9)0.0876 (14)0.0064 (9)0.0215 (10)0.0000 (9)
C200.0591 (10)0.0469 (9)0.0707 (12)0.0001 (8)0.0122 (8)0.0007 (8)
N10.0520 (9)0.0463 (8)0.0961 (13)0.0057 (7)0.0010 (8)0.0161 (7)
O10.0558 (8)0.0696 (9)0.1328 (14)0.0105 (7)0.0216 (8)0.0106 (8)
Geometric parameters (Å, º) top
C1—C21.502 (2)C9—C141.390 (2)
C1—C71.542 (2)C9—H90.9300
C1—C81.547 (2)C10—C111.369 (3)
C1—H10.9800C10—H100.9300
C2—O11.214 (2)C11—C121.373 (3)
C2—C31.493 (2)C11—H110.9300
C3—C41.511 (3)C12—C131.380 (3)
C3—H3A0.9700C12—H120.9300
C3—H3B0.9700C13—C141.382 (2)
C4—C51.500 (3)C13—H130.9300
C4—H4A0.9700C15—N11.376 (2)
C4—H4B0.9700C15—C201.394 (2)
C5—C61.496 (3)C15—C161.399 (2)
C5—H5A0.9700C16—C171.368 (2)
C5—H5B0.9700C16—H160.9300
C6—C71.495 (3)C17—C181.375 (3)
C6—H6A0.9700C17—H170.9300
C6—H6B0.9700C18—C191.376 (3)
C7—H7A0.9700C18—H180.9300
C7—H7B0.9700C19—C201.382 (2)
C8—N11.446 (2)C19—H190.9300
C8—C141.511 (2)C20—H200.9300
C8—H80.9800N1—H1A0.879 (19)
C9—C101.374 (3)
C2—C1—C7105.86 (14)N1—C8—H8107.9
C2—C1—C8112.43 (13)C14—C8—H8107.9
C7—C1—C8112.58 (14)C1—C8—H8107.9
C2—C1—H1108.6C10—C9—C14121.25 (17)
C7—C1—H1108.6C10—C9—H9119.4
C8—C1—H1108.6C14—C9—H9119.4
O1—C2—C3120.63 (16)C11—C10—C9120.4 (2)
O1—C2—C1120.23 (15)C11—C10—H10119.8
C3—C2—C1119.02 (14)C9—C10—H10119.8
C2—C3—C4116.21 (16)C10—C11—C12119.5 (2)
C2—C3—H3A108.2C10—C11—H11120.3
C4—C3—H3A108.2C12—C11—H11120.3
C2—C3—H3B108.2C11—C12—C13120.1 (2)
C4—C3—H3B108.2C11—C12—H12120.0
H3A—C3—H3B107.4C13—C12—H12120.0
C5—C4—C3114.78 (17)C12—C13—C14121.4 (2)
C5—C4—H4A108.6C12—C13—H13119.3
C3—C4—H4A108.6C14—C13—H13119.3
C5—C4—H4B108.6C13—C14—C9117.37 (18)
C3—C4—H4B108.6C13—C14—C8122.03 (16)
H4A—C4—H4B107.5C9—C14—C8120.59 (15)
C6—C5—C4115.53 (18)N1—C15—C20123.29 (16)
C6—C5—H5A108.4N1—C15—C16119.13 (15)
C4—C5—H5A108.4C20—C15—C16117.57 (15)
C6—C5—H5B108.4C17—C16—C15121.42 (17)
C4—C5—H5B108.4C17—C16—H16119.3
H5A—C5—H5B107.5C15—C16—H16119.3
C7—C6—C5117.68 (19)C16—C17—C18120.77 (18)
C7—C6—H6A107.9C16—C17—H17119.6
C5—C6—H6A107.9C18—C17—H17119.6
C7—C6—H6B107.9C17—C18—C19118.66 (17)
C5—C6—H6B107.9C17—C18—H18120.7
H6A—C6—H6B107.2C19—C18—H18120.7
C6—C7—C1116.06 (17)C18—C19—C20121.50 (18)
C6—C7—H7A108.3C18—C19—H19119.3
C1—C7—H7A108.3C20—C19—H19119.3
C6—C7—H7B108.3C19—C20—C15120.08 (17)
C1—C7—H7B108.3C19—C20—H20120.0
H7A—C7—H7B107.4C15—C20—H20120.0
N1—C8—C14112.45 (14)C15—N1—C8124.99 (15)
N1—C8—C1108.37 (13)C15—N1—H1A118.8 (12)
C14—C8—C1112.20 (13)C8—N1—H1A116.2 (11)
C7—C1—C2—O190.59 (19)C12—C13—C14—C90.4 (3)
C8—C1—C2—O132.7 (2)C12—C13—C14—C8179.25 (17)
C7—C1—C2—C385.34 (18)C10—C9—C14—C130.1 (2)
C8—C1—C2—C3151.35 (16)C10—C9—C14—C8178.96 (15)
O1—C2—C3—C4147.48 (19)N1—C8—C14—C13125.11 (17)
C1—C2—C3—C428.4 (2)C1—C8—C14—C13112.42 (17)
C2—C3—C4—C550.6 (2)N1—C8—C14—C953.71 (18)
C3—C4—C5—C682.4 (3)C1—C8—C14—C968.77 (18)
C4—C5—C6—C761.6 (3)N1—C15—C16—C17178.84 (17)
C5—C6—C7—C156.2 (3)C20—C15—C16—C170.0 (3)
C2—C1—C7—C678.4 (2)C15—C16—C17—C180.3 (3)
C8—C1—C7—C6158.42 (19)C16—C17—C18—C190.3 (3)
C2—C1—C8—N1175.01 (14)C17—C18—C19—C200.1 (3)
C7—C1—C8—N155.55 (19)C18—C19—C20—C150.4 (3)
C2—C1—C8—C1460.23 (18)N1—C15—C20—C19178.42 (18)
C7—C1—C8—C14179.69 (15)C16—C15—C20—C190.4 (3)
C14—C9—C10—C110.6 (3)C20—C15—N1—C87.0 (3)
C9—C10—C11—C121.0 (3)C16—C15—N1—C8171.72 (16)
C10—C11—C12—C130.7 (3)C14—C8—N1—C1587.9 (2)
C11—C12—C13—C140.0 (3)C1—C8—N1—C15147.48 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.879 (19)2.23 (2)3.065 (2)158.4 (16)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H23NO
Mr293.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.7534 (4), 16.1336 (8), 18.1980 (13)
β (°) 99.371 (6)
V3)1666.65 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.72 × 0.56 × 0.27
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.965, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
10757, 3449, 2170
Rint0.041
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.01
No. of reflections3449
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.13

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.879 (19)2.23 (2)3.065 (2)158.4 (16)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The research council of the University of Maragheh is acknowledged for financial support.

References

First citationArend, M., Westermann, B. & Risch, N. (1998). Angew. Chem. Int. Ed. 37, 1044–1070.  Web of Science CrossRef Google Scholar
First citationAzizi, N., Torkiyan, L. & Saidi, M. R. (2006). Org. Lett. 8, 2079–2082.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCordova, A. (2004). Acc. Chem. Res. 37, 102–112.  Web of Science PubMed CAS Google Scholar
First citationEftekhari-Sis, B., Abdollahifar, A., Hashemi, M. M. & Zirak, M. (2006). Eur. J. Org. Chem. pp. 5152–5157.  Google Scholar
First citationEftekhari-Sis, B., Mohajer, S. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2829.  CSD CrossRef IUCr Journals Google Scholar
First citationEftekhari-Sis, B., Mohajer, S., Mahdavinia, G. R. & Büyükgüngör, O. (2013). RSC Advances. Submitted.  Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Rai, S., Shetty, P. & Isloor, A. M. (2009). Acta Cryst. E65, o539–o540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJadhav, V. J., Kulkarni, M. V., Rasal, V. P., Biradar, S. S. & Vinay, M. D. (2008). Eur. J. Med. Chem. 43, 1721–1729.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKalluraya, B., Isloor, A. M., Chimbalkar, R. & Shenoy, S. (2001). Indian J. Heterocycl. Chem. pp. 239–240.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYuan, G.-X., Sun, J.-B., Zhang, L.-H. & Lu, G. (2007). Acta Cryst. E63, o3960.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds